This Is Auburn

Manufacturing News

Interdisciplinary research team receives NSF grant to develop waste-reducing, biodegradable paper electronics

10/20/2021 8:52:47 AM      

Current electronics and electronics device printing technologies rely on wet processes such as screen or inkjet printing that require extensive development of inks or solutions with limited sources of functional materials. These inks are often impure, incompatible with biodegradable paper substrates, and printed on eco-unfriendly plastics leading to a huge amount of electronic waste (or E-waste).

Masoud Mahjouri-Samani, the principal investigator and assistant professor in electrical and computer engineering, and a team of scientists representing multi-disciplinary units and centers from Auburn University were awarded a $499,940 grant by the National Science Foundation for their project, “Multi-material Manufacturing of Eco-Friendly and Biodegradable Paper-Based Flexible Hybrid Electronics.”

Co-principal investigators are Shuai Shao, associate professor in mechanical engineering, Nima Shamsaei, Philpott-WestPoint Stevens Distinguished Professor in mechanical engineering and Director of the National Center for Additive Manufacturing Excellence (NCAME), and Michael C. Hamilton, James B. Davis Professor in electrical and computer engineering and director of the Alabama Micro/Nano Science and Technology Center (AMNSTC).

“The team’s extensive expertise in theory and computation, additive manufacturing, mechanical reliability, and micro/nanoelectronics, not only guarantees the success of this research but also opens up a new opportunity for future collaborative activities,” said Shao.

Hamilton believes the infrastructure is well suited for such research activities. “The AMNSTC provides valuable scientific and technical expertise as well as international visibility to this work,” he added. “AMNSTC also provides access to a wide variety of electronic device fabrication and characterization instrumentation that allows us to test the functionality of our printed devices.”

“We are definitely excited about this interdisciplinary research activity among the NCAME, AMNSTC, as well as the departments of Electrical and Computer Engineering and Mechanical Engineering at Auburn University,” said Shamsaei. “At NCAME, most of our capabilities lie in fabricating metallic materials with micro-level accuracy. This research is not only a new addition to the center’s activity and field of additive manufacturing but also can potentially grow into a new field of Functional Additive Nanomanufacturing here at Auburn.”

The team’s research demonstrates a transformative dry additive nanomanufacturing approach that enables the printing of eco-friendly papertronics. Currently, substrates in use are made of polymers, which never decompose.

“What are you going to do with those products, many of which are designed for specific short-term tasks such as smart package labeling and sensors, once you have used them?” Mahjouri-Samani asked. “Throw them away, right? But, again, they don’t decompose. They aren’t biodegradable because they aren’t printed on biodegradable substrates such as paper. We can help prevent a huge waste problem.”

How can electronics and sensors be printed on biodegradable papers? The team has that answer, too.

“We have designed and developed the first printer in the world that can print on any substrate,” said Mahjouri-Samani, who dubbed this creation an “additive nanomanufacturing printer.”

This printing method is based on what he deems an “in-situ and on-demand” generation of nanoparticles by pulsed laser ablation of target materials at atmospheric pressure and at room temperature. These nanoparticles flow out of a nozzle creating a stream of nanoparticles. A substrate is then placed under the nozzle on a programmable X-Y-Z stage where these nanoparticles can be laser sintered (compacted into a solid mass) and crystallized in real-time to form desired patterns and devices.

“Overall, our additive nanomanufacturing process is capable of printing a wide range of dry, contamination-free, multi-layered, and intrinsically pure structures,” he added. “This approach also offers the flexibility of printing onto different types of substrates, including metals, ceramics, plastics, paper and flexible substrates such as thermoplastic polymers.”

Mahjouri-Samani said the primary purpose of this research effort is “to make a positive impact on humanity. We want planet Earth to be as clean as possible for this generation, and generations to follow,” he added. “If we can develop another way to reduce waste, then we are making a positive difference.”

Media Contact: Joe McAdory, jem0040@auburn.edu, 334.844.3447

BY JOE McADORY

from the left: Michael C. Hamilton, Shuai Shao, Masoud Mahjouri-Samani and Nima Shamsaei.

From the left: Michael C. Hamilton, Shuai Shao, Masoud Mahjouri-Samani and Nima Shamsaei.

Categories: Manufacturing, Engineering, Advanced Systems


USDA grants Auburn engineers $500K for timber, steel structure research

10/8/2021 2:29:36 PM      

Four Auburn Engineering professors from three different disciplines will research the best way to design a sustainable, economically feasible building structure using timber and steel thanks to nearly $500K in federal and industry funds, including $237,000 from the USDA Forest Service Wood Innovations Grant program.

The goal of the project is not only to provide an environmentally friendly construction option but also a structurally efficient and widely applicable building method. 

According to Kadir Sener, assistant professor of civil and environmental engineering and co-principal investigator on the project, steel and timber are ideal structural partners. The combination of steel and timber have a degree of structural performance that the individual materials could never reach, he said.

“In order to open the market for mass timber, we wanted to use it with steel structures, since timber alone is not economically feasible for high-rise buildings,” Sener said. “We ended up designing a very sustainable construction system, too.”

The current construction practice for mid-rise steel frame buildings uses 60-70% of the overall material in the floor alone. Additionally, most of the material used is concrete — an inexpensive, yet environmentally detrimental material which leaves a substantial carbon footprint. For this reason, cross-laminated timber panels will replace the concrete in this new design.

“Southern pine, the species that we are going to be using, is stronger than most other species of wood commonly used,” said David Rouche, assistant professor of civil and environmental engineering and specialist in the cross-laminated timber (CLT) component of the project. “It grows quickly, it's abundant in the southeast and the industry is growing so there is a lot of great potential for it in regards to this project.”

Replacing concrete floor elements with CLT panels has numerous advantages, such as significant reduction in structure weight, which will reduce gravity and seismic demands, reducing the carbon footprint by eliminating cement production and replacing time-consuming concrete field work. Additionally, it offers more convenient repair methods, providing more favorable structural performance and being a more sustainable option during repurposing or deconstruction.

The industry partners providing financial and technical support for the project include American Institute of Steel Construction, the Softwood Lumber Boards, the American Wood Council and Simpson Strong-Tie.

Media Contact: Jeremy Henderson, jdh0123@auburn.edu, 334-844-3591

BY VIRGINIA SPEIRS

from left: Kadir Sener and David Roueche

Pictured from the left: Kadir Sener and David Roueche

Categories: Manufacturing, Energy & the Environment, Engineering


Auburn to expand Industry 4.0 research, education, training and innovation capabilities with $7.2M DoD award

9/15/2021 9:52:09 AM      

The Interdisciplinary Center for Advanced Manufacturing Systems (ICAMS) at Auburn University is the recipient of a $7.2 million award from the Department of Defense’s (DoD) Office of Industrial Policy’s Industrial Base Analysis and Sustainment (IBAS) Program to encourage small and medium-sized manufacturers to adopt the advanced technologies associated with Industry 4.0, or smart manufacturing. The award will allow the center to increase efforts to improve the skills of the next generation of engineers and the existing workforce to take full advantage of those technologies in their operations.

“With this award, we are building upon our original mission and expanding our research and services in key areas,” said Gregory Harris, ICAMS director and associate professor in the Samuel Ginn College of Engineering's Department of Industrial and Systems Engineering.

Gregory Purdy, assistant professor of industrial and systems engineering, is a co-principal investigator on the award and an ICAMS collaborating faculty member. He explained that one new focus of the funding will be devoted to the creation of the nation’s first cyber-physical manufacturing range (CpMR) housed on a university campus. The CpMR will provide a testbed to research, test, demonstrate and teach the technologies and processes to significantly improve technology adoption in small and medium-sized manufacturers and overcome the fear of malicious cyber activity in their systems.

“Industry 4.0 driven manufacturing environments are a collection of different equipment and technologies that increase the potential attack surface for malicious cyberattacks,” Purdy explained. “We are trying to understand what vulnerabilities exist in these systems and the potential impacts of a cyberattack on both the process and resulting part. However, it is not feasible to simulate attacks on a production resource that is used day-in and day-out.”

The CpMR solves this dilemma by incorporating modern manufacturing technologies in an Industry 4.0 ecosystem with current generation automation, thereby allowing a safe environment for testing and evaluating malicious cyber activity in an Industry 4.0 smart manufacturing platform.

“It allows students, researchers and other professionals to execute attacks and see what the outcome is in a state-of-the-art machining cell,” Purdy said. “I could unleash the most potent and sophisticated attack that I have and completely make everything go haywire, without endangering a key production resource.”

The new funding will also support the purchase of additional manufacturing equipment to further develop an Industry 4.0 manufacturing environment, including the creation of a digital manufacturing demonstration cell. The manufacturing and metrology cell will demonstrate the full digital manufacturing process flow starting by automatically scanning a subject and creating a point cloud from the 3D scan that is converted into a solid model. This model will be sent to a vertical machining center that will produce the part. A robotic arm will remove the part from the mill and deliver it to a coordinate measurement machine. The automated inspection process will then confirm the part matches the reference design. The digital manufacturing demonstration cell will be able to continuously run a product and show the capability of the connected enterprise.

“This additional equipment is going to make us more capable and allow us the ability to better showcase digital manufacturing demonstrations on site,” Harris explained. “We can show that this artifact can go all the way from design through production with little to no human intervention, really highlighting digital manufacturing capabilities. Manufacturers will be able to relate to that and say, ‘if they can do that with this artifact, I can envision what I’m trying to do using this technology.’”

According to Harris, another of those key areas of service is a “Path to the Plains” partnership with Southern Union State Community College (SU), where SU students can take Auburn University courses while completing their associate degree. The partnership also outlines a plan for a graduate certificate in advanced manufacturing and an advanced manufacturing minor. Additionally, any Auburn undergraduate student will be able to obtain a certificate in mechatronics through the partnership with SU. Participating students will be assisted by scholarships to support their educational success.

“The ability at ICAMS to create tailored programs upon request from industry allows local industries to adapt to changing industry trends much more easily using existing personnel,” said Lewis Payton, ICAMS associate director and professor of practice in the Department of Industrial and Systems Engineering. “Auburn students in the new manufacturing minor will also be graduating with hands-on experience using industrial grade equipment. ICAMS is poised to become the premier fabrication and teaching laboratory in the Southeast, including future expansion into the area of die fabrication and repair.”

Other ICAMS services that will be introduced or enhanced with this recent award include:

  • An annual call for undergraduate and graduate research proposals to be evaluated and awarded to those that expand the demonstration, education training and research capabilities of ICAMS.
  • Research into inspection technologies to understand how to provide real-time quality data as feedback to adjust equipment controls to continuously improve control limits and reduce the possibility of a defective product.
  • The creation of a smart cyber-physical sensing, modeling and control digital twin infrastructure with augmented and mixed reality.
  • The extension of annual survey research for three additional years, for a total of a five-year study into technology adoption amid small and medium-sized manufacturers. 

“ICAMS represents a major, transformational change in the areas of outreach, innovation and education at Auburn University,” Payton said. “By early in 2022, ICAMS will be the most capable prototyping laboratory within the state of Alabama for innovation, creating a unique opportunity for companies and for student design teams across the campus.” 

Adele Ratcliff, director of the DoD IBAS program which is funding the effort, commended the ICAMS project’s goal of reducing the barriers against Industry 4.0 technologies being implemented in small and medium manufacturing company operations.

“The ICAMS comprehensive approach of providing technical support, project planning, skilled workers and a way to test new technology’s real-life impact on production flows is a forward-leaning model that has been proven to overcome technology-adoption hesitancy in companies of all sizes,” Ratcliff said. “Larger manufacturers have the resources to fund these risk reduction activities on their own. By partnering with small and medium manufacturers, ICAMS allows these companies to have confidence that their technology implementation projects will provide valuable process and capability improvements with limited operational risk.” 

ICAMS, which launched in 2018, has formed and strengthened relationships with the city of Auburn Industrial Development Board and the Alabama Community College System. Through these relationships, ICAMS has doubled its facility footprint from 10,000 square-feet to 20,000 square-feet, providing adequate space for its dedicated operations, and utilized the space to educate and train students and industry personnel to use the advanced manufacturing technologies and capabilities to benefit the DoD and its supporting manufacturing sector.

Media Contact: Cassie Montgomery, cmontgomery@auburn.edu, 334.844.3668

BY CASSIE MONTGOMERY

ICAMS collaborating faculty members and graduate students in lab

ICAMS collaborating faculty members and graduate students.

Categories: Manufacturing, Engineering, Advanced Systems


Auburn University researcher selected for NSF’s prestigious CAREER program, seeks to address critical societal issues with new products from engineered biomass

4/9/2021 1:40:00 PM      

Maria Soledad Peresin, assistant professor of forest biomaterials in the Auburn University School of Forestry and Wildlife Sciences, has been selected for the prestigious National Science Foundation Faculty Early Career Development, or CAREER, program.

The CAREER Program is a foundation-wide activity that offers the NSF’s most prestigious awards in support of early career faculty who have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization. Applicants must be untenured assistant professors at the time of application.

Funding for Peresin’s research, which began in April and will last five years, is expected to total $691,619.

Peresin—recently promoted to associate professor with tenure, effective this fall—aims to unlock the potential of certain components of plant or animal biomass to design engineered biomaterials. To do this, she will work to advance the fundamental understanding of naturally occurring systems to address critical societal issues, such as the removal of emerging contaminants from drinking water.

“I am delighted to be one of the 2021 NSF CAREER Award recipients,” Peresin said. “The proposal was a lot of work, but it was worth every bit of effort in terms of the doors that this grant opens to us. I certainly consider this achievement to be a reward to my entire research team, to whom I am very grateful. Without their hard work, resilience and professionalism, I would have not been able to establish this program.”

At Auburn’s Forestry Products Development Center, or FPDC, Peresin’s multidisciplinary research team gathers expertise in chemistry, pharmacy, materials sciences, engineering and product development to stimulate ideas for new businesses in food, pharmaceutical, biotechnology and medical sectors. The team achieves this through the development of novel value-added product development from biomass—including wood, annual crops, agro-forestry and sericulture, among others—focusing on surface modification of nanocellulose fibers for water remediation, macromolecules immobilization and developing composite materials using biobased polymers.

This project will focus on developing and using renewable, natural polymers—chemicals composed of the building blocks of smaller repeating molecules—to design efficient and sustainable absorbents, which are highly porous structures for the removal of contaminants such as antibiotics, analgesics and herbicides from water bodies. Natural polymer systems are inexpensive and could lead to more affordable filtration systems across the globe—increasing the economic impact of this research.

“There is still a lot to do and learn, but this award certainly gives my research program a great boost,” she said.

This program also provides her with an impactful platform for education and contributing to improved science literacy in Alabama. Peresin has established a successful mentoring program within Auburn University that involves internships and exchange programs with Tuskegee University and international institutions, such as the University of British Columbia and KU Leuven of Belgium for both undergraduate and graduate-level students.

Peresin is also a founding faculty member of the Sustainable Biomaterials and Packaging, or BIOP, program at Auburn, which provides another forum for disseminating information, recruiting new students and informally educating others on the utilization of bio-based materials, including its use to address water quality issues.

“This award is a game changer in many aspects, not only for the prestige, but also because of the unique nature of this five-year funding,” Peresin said. “This will allow me to focus on developing my research program in alignment with my education and outreach efforts toward increasing opportunities in STEM for underrepresented minorities.”

Peresin has partnered with Professor Becky Barlow, the school’s Alabama Extension coordinator and the Harry E. Murphy Professor, to disseminate the outcomes of her work through outreach events such as the yearly ForestHER workshop, an educational program for female forest landowners. Additionally, she will work with Auburn High School teachers on developing specific modules to be included in advanced placement biology and environmental sciences classes, with the aim of making them available to the entire state of Alabama through the Alabama Science in Motion program.

Janaki Alavalapati, dean of the School of Forestry and Wildlife Sciences, said Peresin is at a stage in her career to expand and strengthen the programs with which she is involved through the NSF CAREER Award.

“Dr. Peresin cares about students, their progress and their well-being,” Alavalapati said. “She is a co-lead to promote diversity and inclusion in the school, and her colleagues view her as being fully engaged in her profession and scientific organizations.

“She is the type of professor who climbs to the top of the ladder while being very humble and approachable. Her work is already making a difference in the lives of students and citizens of this country and beyond.”

The NSF CAREER Award opens new doors for both new and existing developments, an exciting prospect for Peresin and those who work with her.

“This funding will enable the consolidation of already established partnerships with national and international research groups and will take the quality of the research we conduct at the FPDC to the next level,” she said.

BY TERI GREENE

Maria Soledad Peresin outdoors

Maria Soledad Peresin, assistant professor of forest biomaterials in the Auburn University School of Forestry and Wildlife Sciences, has been selected for the prestigious National Science Foundation Faculty Early Career Development, or CAREER, program.

Categories: Manufacturing, Energy & the Environment


NSF grant to allow Auburn professors to study how nanomaterials disperse in liquids

3/25/2021 2:01:32 PM      

As consumer electronics get smaller, the need for smaller parts, such as batteries, grows. Researchers are actively exploring additive manufacturing techniques to create the necessary smaller parts, but they first need to establish a fundamental understanding of the nanomaterial known as MXenes. 

Virginia Davis, the Dr. Daniel F. and Josephine Breeden Professor of chemical engineering, and Majid Beidaghi, associate professor of materials engineering, are working to evaluate the properties of MXenes with a $328,420 National Science Foundation award for their project “Understanding the Effects of Sheet Size and Salt Addition on Aqueous MXene Dispersions: Phase Behavior, Rheological Properties and Printability.” 

“MXenes are a new material and they have a lot of amazing properties and potential in applications such as batteries, supercapacitors and things that power our everyday devices,” Davis said. “However, in order to enable them to be used in these applications, we have to understand how to process them into different structures.” 

MXenes are a family of 2D crystalline nanomaterials composed of transition metal carbides, nitrides or carbonitrides. One advantage of MXenes is that they can be dispersed in water and processed into devices and structures using fluid phase processing techniques such as direct ink writing, a specialized 3D printing technique. To date, advances in MXene processing have required time-consuming and expensive trial-and-error approaches. 

“Our grant is looking at using fundamental tools for understanding how solids disperse in liquids and to gain new insight as to the behavior of (MXenes) to enable them to be printed into small devices using additive manufacturing,” Davis said. “In this grant we’re particularly looking at MXenes in the context of other 2D or sheet-like nanomaterials. If we can understand those fundamental principles that govern these sheet-like materials, then we can apply it to other new materials that we may discover or make materials we already know about, such as nanoclays, work even better.” 

This topic represents a natural cross-section of Davis’ and Beidaghi’s specialized research areas. Beidaghi has studied MXenes and their potential since he was a post-doctoral research fellow at Drexel University. Davis is interested in understanding how to effectively process nanomaterials and how they flow in liquids. 

“Really it was both of us coming together at Auburn that allowed us to tackle both parts of the problem, the materials chemistry part and the phase behavior part,” Davis said. 

The two plan to collaborate with other researchers to advance the experimental and theoretical methods to study dispersions of nanomaterials.

Media Contact: Cassie Montgomery, cmontgomery@auburn.edu, 334.844.3668

BY CASSIE MONTGOMERY

From the left: Virginia Davis (in lab) and Majid Beidaghi (outdoors)

From the left: Virginia Davis and Majid Beidaghi

Categories: Manufacturing, Engineering, Advanced Systems


Auburn faculty members to research lead-free defense electronics as part of $7M award

2/24/2021 7:03:12 AM      

Auburn University will soon help strengthen the economic and force posture of the United States’ lead-free defense electronics industrial base through participation in the newly-launched Defense Electronics Consortium (DEC). 

The DEC was established by the U.S. Partnership for Assured Electronics through an award from the U.S. Department of Defense. The total award amount is expected to exceed $42 million – $7 million of which is expected to come to Auburn – and will be distributed during a period of five to seven years. 

The first year of the project was funded at $3.9 million, with $830,000 awarded to Auburn Engineering. Auburn faculty will partner with researchers from Purdue University and the University of Maryland to focus on the Lead-Free Defense Electronics Project, the first initiative to flow through the DEC. 

When compared to consumer electronics, defense electronics are subjected to harsher environments and are often designed for a much longer lifespan. Auburn faculty, led by principal investigator Sa’d Hamasha, assistant professor of industrial and systems engineering, will develop a comprehensive evaluation system for solder selection to meet specific defense-related requirements. 

“The outcome of this research is a lead-free Solder Users Handbook to ensure a safe transition of aerospace and defense electronics to lead-free technology,” he said. “The lead-free project includes a plan for developing a comprehensive solder agnostic evaluation system for defense lead-free technology. The goal is to enable future new solders and electronics packaging technologies and processes for specific defense use cases.” 

The interdisciplinary project is a collaboration between faculty in Auburn’s industrial and systems engineering and mechanical engineering departments. From the Department of Industrial and Systems Engineering, Hamasha will direct the research program, department chair John L. Evans is a co-principal investigator and will manage the USPAE consortium interface, and assistant professors Daniel Silva and Peter Liu are also co-principal investigators. Participating faculty from the Department of Mechanical Engineering include department chair and Quina Professor Jeffrey Suhling and professor George Flowers, Graduate School dean, as co-principal investigators. Emeritus professors Wayne Johnson from the Department of Electrical and Computer Engineering and Michael Bozack from the Department of Physics will also contribute. 

“Auburn’s involvement comes after 25 years of excellence in electronics packaging, manufacturing and reliability and one of the largest research efforts in lead-free solder in the United States,” said Evans, the Charles D. Miller Chair Professor. 

Hamasha explained that in addition to the Auburn team’s wealth of research experience, Auburn’s state-of-the-art facilities will be used to fill the gaps in thermal cycling, drop shock and vibration testing, all important factors to determining military suitability. 

“Our team has experience investigating mechanical properties, failure and fatigue behavior and reliability of more than 50 standard and enhanced lead-free solder alloys, as well as the manufacturability of these materials,” Suhling said. “And our research has targeted mission critical electronic products for military, automotive, aerospace and industrial applications that are exposed to harsh environments.” 

Overall, the work produced by the DEC has the potential to make a great impact in the defense industry.

“The DEC work will accelerate the use of advanced electronics technology for the defense industry, while also improving product quality, reliability, performance and reducing product costs,” Evans said.

Media Contact: Cassie Montgomery, cmontgomery@auburn.edu, 334.844.3668

BY CASSIE MONTGOMERY

From left, Sa'd Hamasha, John L. Evans, Jeffrey Suhling and George FlowersFrom left, Sa'd Hamasha, John L. Evans, Jeffrey Suhling and George Flowers

Categories: Manufacturing, Transportation, Engineering


Auburn University research projects among recipients of $2.57 million state award

12/9/2020 1:59:57 PM      

Two Auburn University research projects are among the recipients of a $2.57 million award by the Alabama governor’s office to five of the state’s research institutions, Gov. Kay Ivey announced recently.

Brian Via and Beatriz Erramuspe, director and research fellow, respectively, of the Forest Products Development Center in the School of Forestry and Wildlife Sciences, were awarded $247,142 to research development of a paper-based device for a cost-effective method to detect dangerous formaldehyde emissions in wood panels.

Sabit Adanur, professor in the Department of Mechanical Engineering in the Samuel Ginn College of Engineering, was awarded $75,374 to conduct research relating to the design, fabrication and testing of novel medical face masks to prevent the spread of COVID-19 or future contagious viruses.

The grants are from the Alabama Research and Development Enhancement Fund, or ARDEF, a state-funded program created in 2019 under the Alabama Innovation Act and administered by the Alabama Department of Economic and Community Affairs, or ADECA.

The funding provides support and encourages new and continuing research that will result in products and services to improve the lives of Alabamians either from the products themselves or from new job opportunities.

“This funding from the Alabama Research and Development Enhancement Fund will help Auburn researchers continue to solve real-world problems through discovery and innovation,” said James Weyhenmeyer, Auburn’s vice president for research and economic development.

“The research being performed at our universities and institutions offers strong evidence that innovation is alive and well in Alabama," Ivey said when making the announcement. “These grants will help provide the needed resources to bring even more ideas and research to light, eventually resulting in new products and new job opportunities.”

Other institutions named in the award announcement include the Basham Institute of Science in Dadeville, Alabama, and various campuses of the University of Alabama. This is the second round of ARDEF funds awarded in this program in 2020.

Ivey earlier this year awarded $2.27 million in grants to state research institutions and programs. Three Auburn research projects were recipients in that earlier announcement.​

BY MITCH EMMONS

from the left: Brian Via, Beatriz Erramuspe, and Sabit Adanur

From the left: Brian Via, Beatriz Erramuspe and Sabit Adanur 

Categories: Manufacturing, Health Sciences, Engineering, Auburn In the News


Auburn, UCLA faculty teaming up to develop micro-scale magnetic shields

9/30/2020 6:43:08 AM      

An Auburn Engineering faculty member recently received a United States Office of Naval Research subcontract to work on a new technology that will use custom additively manufactured micro-scale shields to help protect electronics from magnetic fields, while also allowing integration of fiber optics for optical communication.

Michael Hamilton, the James B. Davis Professor of electrical and computer engineering and director of the Alabama Micro/Nano Science and Technology Center, will work with Systems Visions, a local company that provides engineering principles to design and develop structures, systems and processes, on new technologies to help shield sensitive superconducting electronic chips from magnetic fields while still allowing for signals to be sent and received through integrated fiber optics.

Hamilton will collaborate on this project with Robert Candler, professor of electrical and computer engineering at the University of California, Los Angeles. Hamilton and Candler graduated in the same class from Auburn University with bachelor’s degrees in electrical engineering in 2000.

“Interestingly enough, Rob is not just my colleague, but my friend who also went to Auburn at the same time I did,” Hamilton said. “We’ve been looking for a project to work on together for a while, so it was nice to find something that lined up both with what he’s working on and with what I’m working on.”

Hamilton said the duo are in phase one of the project with multiple challenges to overcome before a working prototype can be developed. Some challenges include engineering the technology to withstand ultra-cold temperatures around 4 Kelvin (-452 degrees Fahrenheit) and scaling down the integration of the fiber optics to about 10 millionths of a meter in diameter ­ – 10 times smaller than a strand of hair.

“We’re characterizing these magnetic shields and making big strides in the steps toward building those little photonic structures,” Hamilton said. “Another piece of this project is observing how these micro-scale structures behave when we cool them down to a very low temperature and seeing if there’s a way we can engineer the interfaces and materials to perform better when you make it cold.”

Hamilton said he is confident that he and his team will work through the challenges of social distancing in the new normal with COVID-19 and that he is eager to contribute to the advancement of this technology under this subcontract. 

“We’ve actually been really fortunate at Auburn where research can continue,” Hamilton said. “I know there are some places that had to just shut everything down, but we’ve been able to keep things going at a pretty good pace.”

BY VIRGINIA SPEIRS

Media Contact: Chris Anthony, chris.anthony@auburn.edu, 334.844.3447

 

Michael HamiltonMichael Hamilton

Categories: Manufacturing, Engineering, Advanced Systems


Auburn University Interdisciplinary Center for Advanced Manufacturing wins $4.26 million DOD award

9/23/2020 11:13:40 AM      

The Interdisciplinary Center for Advanced Manufacturing Systems, or ICAMS, at Auburn University has received a $4.26 million award from the U.S. Department of Defense to explore the digitalization of manufacturing and become a resource for small and medium manufacturers throughout the country.

“The most significant way ICAMS can make a difference is in helping small and medium manufacturers understand the technologies they should be utilizing and helping them understand the need for adopting Industry 4.0/Smart Manufacturing concepts, therefore really digitalizing the full supply chain,” said Gregory Harris, ICAMS director and associate professor of industrial and systems engineering.

There is a growing digital divide between large manufacturers and the small- to medium-sized manufacturers that make up 85% of the industrial base in the United States. These large, original equipment manufacturers have blended their manufacturing physical and virtual domains into an Industry 4.0 environment, achieving positive productivity results. ICAMS researchers hope to help close this gap, in part by promoting advanced manufacturing principles to create a skilled workforce pipeline that starts in high school and continues through community college and beyond.

“The ideal student coming into this program is somebody who is a cross between a mechanical engineer, an industrial and systems engineer and a computer scientist. It’s a very interdisciplinary environment where, if you’re interested in computers and making things and realizing innovations, you will thrive. That’s the kind of student we’re looking for,” Harris said.  

ICAMS is led by Harris and several additional faculty members from the Department of Industrial and Systems Engineering: assistant professor Peter Liu, assistant professor Konstantinos Mykoniatis, associate professor Lewis Payton and assistant professor Gregory Purdy. The center is also supported through a partnership with the City of Auburn’s Industrial Development Board, which has provided a facility to house large equipment and provide a hands-on learning laboratory for ICAMS students.

“Part of what we’re doing with ICAMS is helping develop the skill base and the skillsets needed so that the community college system and high schools can train students in the new technologies to be potential employees,” he explained. “We’re working with industry to train their current employees in these new capabilities and create a more effective system. Finally, we’re training engineers to be able to go out and help design, build and run these systems, thus ushering in the future of manufacturing.”

BY CASSIE MONTGOMERY

The Interdisciplinary Center for Advanced Manufacturing, or ICAMS, at Auburn University, housed within the Department of InLewis Payton; Greg Purdy; Greg Harris; Peter Liu; and Konstantinos MykoniatisThe Interdisciplinary Center for Advanced Manufacturing, or ICAMS, at Auburn University, housed within the Department of Industrial and Systems Engineering, is led by, from left to right, Lewis Payton, associate research professor; Greg Purdy, assistant professor; Greg Harris, ICAMS director and associate professor; Peter Liu, assistant professor; and Konstantinos Mykoniatis, assistant professor.

Categories: Manufacturing, Advanced Systems