This Is Auburn

Advanced Systems News

Interdisciplinary research team receives NSF grant to develop waste-reducing, biodegradable paper electronics

10/20/2021 8:52:47 AM      

Current electronics and electronics device printing technologies rely on wet processes such as screen or inkjet printing that require extensive development of inks or solutions with limited sources of functional materials. These inks are often impure, incompatible with biodegradable paper substrates, and printed on eco-unfriendly plastics leading to a huge amount of electronic waste (or E-waste).

Masoud Mahjouri-Samani, the principal investigator and assistant professor in electrical and computer engineering, and a team of scientists representing multi-disciplinary units and centers from Auburn University were awarded a $499,940 grant by the National Science Foundation for their project, “Multi-material Manufacturing of Eco-Friendly and Biodegradable Paper-Based Flexible Hybrid Electronics.”

Co-principal investigators are Shuai Shao, associate professor in mechanical engineering, Nima Shamsaei, Philpott-WestPoint Stevens Distinguished Professor in mechanical engineering and Director of the National Center for Additive Manufacturing Excellence (NCAME), and Michael C. Hamilton, James B. Davis Professor in electrical and computer engineering and director of the Alabama Micro/Nano Science and Technology Center (AMNSTC).

“The team’s extensive expertise in theory and computation, additive manufacturing, mechanical reliability, and micro/nanoelectronics, not only guarantees the success of this research but also opens up a new opportunity for future collaborative activities,” said Shao.

Hamilton believes the infrastructure is well suited for such research activities. “The AMNSTC provides valuable scientific and technical expertise as well as international visibility to this work,” he added. “AMNSTC also provides access to a wide variety of electronic device fabrication and characterization instrumentation that allows us to test the functionality of our printed devices.”

“We are definitely excited about this interdisciplinary research activity among the NCAME, AMNSTC, as well as the departments of Electrical and Computer Engineering and Mechanical Engineering at Auburn University,” said Shamsaei. “At NCAME, most of our capabilities lie in fabricating metallic materials with micro-level accuracy. This research is not only a new addition to the center’s activity and field of additive manufacturing but also can potentially grow into a new field of Functional Additive Nanomanufacturing here at Auburn.”

The team’s research demonstrates a transformative dry additive nanomanufacturing approach that enables the printing of eco-friendly papertronics. Currently, substrates in use are made of polymers, which never decompose.

“What are you going to do with those products, many of which are designed for specific short-term tasks such as smart package labeling and sensors, once you have used them?” Mahjouri-Samani asked. “Throw them away, right? But, again, they don’t decompose. They aren’t biodegradable because they aren’t printed on biodegradable substrates such as paper. We can help prevent a huge waste problem.”

How can electronics and sensors be printed on biodegradable papers? The team has that answer, too.

“We have designed and developed the first printer in the world that can print on any substrate,” said Mahjouri-Samani, who dubbed this creation an “additive nanomanufacturing printer.”

This printing method is based on what he deems an “in-situ and on-demand” generation of nanoparticles by pulsed laser ablation of target materials at atmospheric pressure and at room temperature. These nanoparticles flow out of a nozzle creating a stream of nanoparticles. A substrate is then placed under the nozzle on a programmable X-Y-Z stage where these nanoparticles can be laser sintered (compacted into a solid mass) and crystallized in real-time to form desired patterns and devices.

“Overall, our additive nanomanufacturing process is capable of printing a wide range of dry, contamination-free, multi-layered, and intrinsically pure structures,” he added. “This approach also offers the flexibility of printing onto different types of substrates, including metals, ceramics, plastics, paper and flexible substrates such as thermoplastic polymers.”

Mahjouri-Samani said the primary purpose of this research effort is “to make a positive impact on humanity. We want planet Earth to be as clean as possible for this generation, and generations to follow,” he added. “If we can develop another way to reduce waste, then we are making a positive difference.”

Media Contact: Joe McAdory, jem0040@auburn.edu, 334.844.3447

BY JOE McADORY

from the left: Michael C. Hamilton, Shuai Shao, Masoud Mahjouri-Samani and Nima Shamsaei.

From the left: Michael C. Hamilton, Shuai Shao, Masoud Mahjouri-Samani and Nima Shamsaei.

Categories: Advanced Systems, Engineering, Manufacturing


Auburn to expand Industry 4.0 research, education, training and innovation capabilities with $7.2M DoD award

9/15/2021 9:52:09 AM      

The Interdisciplinary Center for Advanced Manufacturing Systems (ICAMS) at Auburn University is the recipient of a $7.2 million award from the Department of Defense’s (DoD) Office of Industrial Policy’s Industrial Base Analysis and Sustainment (IBAS) Program to encourage small and medium-sized manufacturers to adopt the advanced technologies associated with Industry 4.0, or smart manufacturing. The award will allow the center to increase efforts to improve the skills of the next generation of engineers and the existing workforce to take full advantage of those technologies in their operations.

“With this award, we are building upon our original mission and expanding our research and services in key areas,” said Gregory Harris, ICAMS director and associate professor in the Samuel Ginn College of Engineering's Department of Industrial and Systems Engineering.

Gregory Purdy, assistant professor of industrial and systems engineering, is a co-principal investigator on the award and an ICAMS collaborating faculty member. He explained that one new focus of the funding will be devoted to the creation of the nation’s first cyber-physical manufacturing range (CpMR) housed on a university campus. The CpMR will provide a testbed to research, test, demonstrate and teach the technologies and processes to significantly improve technology adoption in small and medium-sized manufacturers and overcome the fear of malicious cyber activity in their systems.

“Industry 4.0 driven manufacturing environments are a collection of different equipment and technologies that increase the potential attack surface for malicious cyberattacks,” Purdy explained. “We are trying to understand what vulnerabilities exist in these systems and the potential impacts of a cyberattack on both the process and resulting part. However, it is not feasible to simulate attacks on a production resource that is used day-in and day-out.”

The CpMR solves this dilemma by incorporating modern manufacturing technologies in an Industry 4.0 ecosystem with current generation automation, thereby allowing a safe environment for testing and evaluating malicious cyber activity in an Industry 4.0 smart manufacturing platform.

“It allows students, researchers and other professionals to execute attacks and see what the outcome is in a state-of-the-art machining cell,” Purdy said. “I could unleash the most potent and sophisticated attack that I have and completely make everything go haywire, without endangering a key production resource.”

The new funding will also support the purchase of additional manufacturing equipment to further develop an Industry 4.0 manufacturing environment, including the creation of a digital manufacturing demonstration cell. The manufacturing and metrology cell will demonstrate the full digital manufacturing process flow starting by automatically scanning a subject and creating a point cloud from the 3D scan that is converted into a solid model. This model will be sent to a vertical machining center that will produce the part. A robotic arm will remove the part from the mill and deliver it to a coordinate measurement machine. The automated inspection process will then confirm the part matches the reference design. The digital manufacturing demonstration cell will be able to continuously run a product and show the capability of the connected enterprise.

“This additional equipment is going to make us more capable and allow us the ability to better showcase digital manufacturing demonstrations on site,” Harris explained. “We can show that this artifact can go all the way from design through production with little to no human intervention, really highlighting digital manufacturing capabilities. Manufacturers will be able to relate to that and say, ‘if they can do that with this artifact, I can envision what I’m trying to do using this technology.’”

According to Harris, another of those key areas of service is a “Path to the Plains” partnership with Southern Union State Community College (SU), where SU students can take Auburn University courses while completing their associate degree. The partnership also outlines a plan for a graduate certificate in advanced manufacturing and an advanced manufacturing minor. Additionally, any Auburn undergraduate student will be able to obtain a certificate in mechatronics through the partnership with SU. Participating students will be assisted by scholarships to support their educational success.

“The ability at ICAMS to create tailored programs upon request from industry allows local industries to adapt to changing industry trends much more easily using existing personnel,” said Lewis Payton, ICAMS associate director and professor of practice in the Department of Industrial and Systems Engineering. “Auburn students in the new manufacturing minor will also be graduating with hands-on experience using industrial grade equipment. ICAMS is poised to become the premier fabrication and teaching laboratory in the Southeast, including future expansion into the area of die fabrication and repair.”

Other ICAMS services that will be introduced or enhanced with this recent award include:

  • An annual call for undergraduate and graduate research proposals to be evaluated and awarded to those that expand the demonstration, education training and research capabilities of ICAMS.
  • Research into inspection technologies to understand how to provide real-time quality data as feedback to adjust equipment controls to continuously improve control limits and reduce the possibility of a defective product.
  • The creation of a smart cyber-physical sensing, modeling and control digital twin infrastructure with augmented and mixed reality.
  • The extension of annual survey research for three additional years, for a total of a five-year study into technology adoption amid small and medium-sized manufacturers. 

“ICAMS represents a major, transformational change in the areas of outreach, innovation and education at Auburn University,” Payton said. “By early in 2022, ICAMS will be the most capable prototyping laboratory within the state of Alabama for innovation, creating a unique opportunity for companies and for student design teams across the campus.” 

Adele Ratcliff, director of the DoD IBAS program which is funding the effort, commended the ICAMS project’s goal of reducing the barriers against Industry 4.0 technologies being implemented in small and medium manufacturing company operations.

“The ICAMS comprehensive approach of providing technical support, project planning, skilled workers and a way to test new technology’s real-life impact on production flows is a forward-leaning model that has been proven to overcome technology-adoption hesitancy in companies of all sizes,” Ratcliff said. “Larger manufacturers have the resources to fund these risk reduction activities on their own. By partnering with small and medium manufacturers, ICAMS allows these companies to have confidence that their technology implementation projects will provide valuable process and capability improvements with limited operational risk.” 

ICAMS, which launched in 2018, has formed and strengthened relationships with the city of Auburn Industrial Development Board and the Alabama Community College System. Through these relationships, ICAMS has doubled its facility footprint from 10,000 square-feet to 20,000 square-feet, providing adequate space for its dedicated operations, and utilized the space to educate and train students and industry personnel to use the advanced manufacturing technologies and capabilities to benefit the DoD and its supporting manufacturing sector.

Media Contact: Cassie Montgomery, cmontgomery@auburn.edu, 334.844.3668

BY CASSIE MONTGOMERY

ICAMS collaborating faculty members and graduate students in lab

ICAMS collaborating faculty members and graduate students.

Categories: Advanced Systems, Engineering, Manufacturing


Research to revolutionize wireless engineering earns $320,000 grant

8/27/2021 4:27:05 PM      

Recent advances in deep learning stimulated a wave of research that were applied to various problems within wireless communications and networking.

However, the wireless research community has not addressed one of the critical challenges in this arena – how to facilitate the acquisition of sufficient data in order to train and validate complex learning models.

Shiwen Mao, professor and Earl C. Williams Eminent Scholar in Electrical and Computer Engineering, hopes to bridge this gap.

Mao’s work, “Data Augmentation and Adaptive Learning for Next Generation Wireless Spectrum Systems,” was awarded $320,000 by the National Science Foundation in hopes of devising innovative approaches that enable wireless researchers and practitioners to acquire data more efficiently, at a reduced cost and utilize existing data more effectively.

Mao is the principal investigator on a team that includes researchers from Temple University and California State University-Sacramento with total funding of $1.2 million.

Findings from this project are expected to fuel future breakthroughs in wireless technology research by making deep learning models more widely applicable.

“Machine learning has been very successful in many disciplines, but as wireless engineers, we want to bring machine learning in to address problems,” Mao said. “For example, how do you use the spectrum? How do you design wireless protocols for your cell phone, or home Wi-Fi, and make them more efficient? What we want to do is apply deep learning and artificial intelligence to address these spectrum-related problems.”

But for machines to learn, ever-elusive data must be captured. Preliminary investigations are making progress, however. The team used conditional generative adversarial network (CGAN) to augment the originally small dataset with new labeled data of the same distribution for automatic modulation recognition with a focus on real features on hardware and the impact of channels.

“Our preliminary study verifies that our proposed approach can effectively generate synthesized in-phase and quadrature (I/Q) data with the same distribution of the original data,” Mao added. “More importantly, our findings validate that the conditional generative adversarial network-based approach can generate high-quality and high-delivery data sets for different modulation schemes at different signal-to-noise levels.”

Mao, who has served at Auburn since 2006, is also director of the Wireless Engineering Research and Education Center.

“Earning an NSF medium grant is a very competitive process,” he added. “This award is a great recognition of our track record and past contributions.”

BY JOE McADORY

Media Contact: Joe McAdory, jem0040@auburn.edu, 334.844.3447

Shiwen Mao

Shiwen Mao

Categories: Advanced Systems, Engineering


Study finds bundling RFID with electronic data interchange increases hospital efficiency, reduces expenses

7/22/2021 8:16:23 AM      

The National Academy of Medicine estimated the U.S. healthcare system wastes an average of $765 billion per year on misplaced or expired supplies.

Research published in Production and Operations Management “The Joint Use of RFID and EDI: Implications for Hospital Performance,” which included authors Kang Bok Lee, EBSCO Associate Professor of Business Analytics at the Harbert College of Business at Auburn University, and Harbert College alum Randy V. Bradley, who is currently Associate Professor in Supply Chain Management at the Haslam College of Business at the University of Tennessee, reveals a key strategy for hospitals to track equipment and supplies and increase performance, while reducing personnel expenses and readmission rates. 

Specifically, the research shows the bundling of radio frequency identification (RFID) with electronic data interchange (EDI) provides a streamlined, all-in-one, technological database that yields greater organizational efficiency. RFID is the use of radio-frequency identification methods to tag and track items while electronic data interchange enhances visibility and communication through the use of electronically transferring information between organizations.Research published in Production and Operations Management “The Joint Use of RFID and EDI: Implications for Hospital Performance,” which included authors Kang Bok Lee, EBSCO Associate Professor of Business Analytics at the Harbert College of Business at Auburn University, and Harbert College alum Randy V. Bradley, who is currently Associate Professor in Supply Chain Management at the Haslam College of Business at the University of Tennessee, reveals a key strategy for hospitals to track equipment and supplies and increase performance, while reducing personnel expenses and readmission rates. 

The best way to understand the benefits is to picture the technologies as bookends around the revenue cycle. RFID sits at the front end, where it can be used to track supplies and equipment. The result is a clean record of resource utilization in care delivery, which is useful on the backend when hospitals transmit claims to government and private insurance payers via EDI.

After examining 3,300 hospitals nationwide, the researchers conducting this study realized RFID/EDI bundles that capture the utilization of supplies, resources, and equipment at the point of care both aids in inventory visibility and creates a clean data stream that facilitates more efficient billing of third parties.

With an organized inventory and streamlined billing process, researchers believe this not only improves an organization’s bottom line by reducing expenditures, but overall patient care as well. Ensuring supplies are readily available – not misplaced – and tracked in real time, facilitates faster diagnostics and ensures timely medical interventions. These factors increase both the efficiency and expediency in which care can be delivered.After examining 3,300 hospitals nationwide, the researchers conducting this study realized RFID/EDI bundles that capture the utilization of supplies, resources, and equipment at the point of care both aids in inventory visibility and creates a clean data stream that facilitates more efficient billing of third parties.

Value-Based Purchasing, a federal program, recently shifted hospital reimbursements to a value-based model, placing a stronger emphasis on healthcare facilities to accurately track and document resources/supplies used in the delivery of care with note that supplies are a hospital’s second-largest expense, accounting for 35 to 45 percent of their operating budget, according to researchers.

The results of the research also led the researchers to conclude hospital administrators should not take a slow, piecemeal, or phased in approach when utilizing RFID and EDI simultaneously. Instead, they should go all in. “We found that hospitals that use RFID alone, or EDI alone, perform worse than hospitals that have neither solution in place,” researchers wrote—but like many good things, the real savings come to those who successfully combine the technologies together for maximum benefit.

Other authors in this study included Terry Esper of Ohio State University, Joonhwan In of Ulsan National Institute of Science and Technology, Bogdan C. Bichescu of the University of Tennessee and Terry A. Byrd (Retired Bray Professor Emeritus) from the Harbert College.

Kang Bok Lee is EBSCO Associate Professor of Business Analytics within Harbert College’s Department of Systems and Technology. He has published in journals such as the Academy of Management, International Journal of Research in Marketing, Physica A and Strategic Management Journal.

Randy V. Bradley is an Associate Professor of Information Systems and Supply Chain Management in the Haslam College of Business at the University of Tennessee. He holds a Ph.D. in Management of Information Technology and Innovation, an M.S. in Management Information Systems, and a B.S. in Computer Engineering, all from Auburn University. As a supply chain and IT strategist and researcher, Bradley's expertise includes digital business transformation, supply chain digitalization, and the strategic application of business analytics and IT in the supply chain.

BY JOE MCADORY

from left: Kang Bok Lee and Randy Bradley

from left: Kang Bok Lee and Randy Bradley

Categories: Advanced Systems, Cyber, Health Sciences


Auburn study: Hospital annual net patient care revenue increases by $1.7 million, on average per unit, through new IT implementation

6/4/2021 10:10:36 AM      

Recently published research from Auburn University’s Harbert College of Business found information technology plays a vital role in enhancing hospital revenue. In their paper, “Does IT Improve Revenue Management in Hospitals?” published in the Journal of the Association for Information Systems, Kangkang Qi and Sumin Han, assistant professors in the college’s Department of Systems and Technology, show implementations of new IT systems not only increase net patient revenue, but also reduce money lost in uncompensated care.

Using data from more than 5,300 health care providers, Qi and Han studied the relationships between clinical and business IT investments and revenue management performance. According to their findings, clinical and business IT implementations lead to short-term and long-term higher revenue generation. The combination of one additional unit of clinical IT implementation and one additional unit of business IT implementation increased a hospital’s annual net patient care revenue by $1.73 million on average.

Another mechanism through which hospitals manage revenue is via controlling uncompensated care for indigent patients who cannot be turned away, or patients who have not fully paid their medical bills. Why is this important? The American Hospital Association stated that hospitals have provided more than $660 billion in uncompensated care to patients since 2000. In contrast, the paper revealed that one more unit of clinical IT and one more unit of business IT adoption decreased uncompensated care ratios by 27.9% and 19.1%, respectively.

Improved information technology services were found to play an integral role in allowing hospitals to identify mechanisms to enhance revenues via billing, budget, scheduling, utilization management, debt collection, human resource and property management systems through improved efficiencies.

With note that U.S. hospitals will spend approximately $120 billion on information technology in the coming years, this Harbert College research finds such investments to be a wise business decision.

 

 

from left: Kangkang Qi and Sumin Han

From left:  Kangkang Qi is an assistant professor of information systems management and Sumin Han is an assistant professor in the Department of Systems and Technology in Auburn’s Raymond J. Harbert College of Business.

Categories: Advanced Systems, Cyber, Health Sciences


Fired up: Auburn University researchers studying how controlled burns could help mitigate effects of wildfires

4/28/2021 10:42:57 AM      

The news is often filled with stories about wildfires and the widespread damage caused when they burn out of control. A combustion expert in Auburn University’s Department of Aerospace Engineering in the Samuel Ginn College of Engineering is studying how the absence of managed control burns could be a significant contributor to this problem.

Assistant Professor David Scarborough and his graduate research assistant, Daniel Stubbs, are conducting studies on the characteristics of wildfire burning and the ways that naturally occurring fuels—largely ground litter vegetation—interact. Their objectives include, among other things, collecting data to support the use of prescribed—or controlled—burning as a means for mitigating the devastation caused by wildland fires. John Kush, a research fellow and forest ecology expert in the School of Forestry and Wildlife Sciences, has also contributed to the ongoing project.

“We are seeking to learn more about how wildfires and the fuels that feed them interact,” Scarborough said. “Forestry researchers are not usually focused on combustion research, so we joined with forestry in this study. We are trying to use our expertise in combustion and fluid dynamics to serve and contribute to a large, important state and regional industry. This project gives us a platform to conduct relevant research and compile valuable data.”

Using their laboratory apparatus—dubbed the Wildland Fire Integrated Research Experiment, or WildFIRE—Scarborough and his team simulate wildland fires under a variety of conditions and fuel compositions. WildFIRE is a laboratory-scale experiment that incorporates high-speed, high-resolution optical diagnostics along with more traditional diagnostics, such as fuel mass consumption, temperature and emissions measurements, to investigate the effects of fuel composition and moisture content, terrain slope and wind speed on the combustion of wildland fuels. WildFIRE is used to obtain important data on such factors as flame height, flame propagation speed, fuel consumption rate, harmful emissions and residual fuel mass to compare with and improve modeling tools that are used to simulate wildfires.

“Our primary focus is on combustion of loblolly pine needles, because this is widespread in Southeastern forests,” Scarborough said. “We are trying to better understand how pine needles burn under a variety of natural conditions. We also employ optical diagnostics to observe flames to visually measure various flame characteristics. By studying these situations under controlled conditions, we are able to gather very accurate data and make predictions about how a wildfire will react under specific situations and conditions.”

Their study has been underway for a number of years. It began around the time of the huge Smoky Mountains wildfire in the Gatlinburg, Tennessee, area in 2016. More recent wildfires in the western United States have spawned further interest within the forestry and fire safety communities, according to Scarborough.

Scarborough noted the economic impact of the forestry industry as the catalyst behind this research: “Forestry is a major part of the Alabama, United States and world economies.”

According to the Alabama Forestry Commission, Alabama forests generate more than $21 billion in revenue annually and provide 122,000 jobs. There are 23 million acres of timberland in Alabama, accounting for 69 percent of the total land area in the state.

Alabama has the third most timberland acreage in the 48 contiguous states, behind only Georgia and Oregon. Wildfire poses significant risks to wildlife, forests, human life and property, not to mention the potential environmental impact in both smoke and harmful, gaseous pollutants, he explained.

“Wildfire was once a common, frequently occurring, natural disturbance initiated most commonly by lightning in numerous ecologically important ecosystems,” Scarborough added. “However, across much of the modern landscape, the fire process has been significantly altered and sometimes eliminated through human intervention. In the absence of fire, leaves, evergreen needles and small sticks accumulate on the forest floor over the period of many years. Furthermore, many invasive woody species such as wax myrtle and yaupon holly grow uncontrolled under the tree canopy.

“Therefore, fire, when it does finally occur, as it most assuredly will, often rages out of control, propagating rapidly with high-heat intensity and long flames as it consumes many years’ worth of accumulated fuel and woody plants.”

Foresters have long known that a practice known as prescribed burning is a valuable and effective fire control application, according to Scarborough, but this practice is not applied as frequently for a number of reasons.

“Prescribed, or controlled, burning is a type of intervention that seeks to provide the benefits of natural wildland fires while minimizing the potential threats to property and other anthropogenic concerns,” Scarborough said. “These prescribed burns, when repeated at frequent intervals, serve to consume the fuel materials on the forest floor while managing invasive species. This, in turn, reduces the amount of potential fuels accumulated on the forest floor.”

Although prescribed fire reduces the risk of damaging wildfire and promotes forest restoration and wildlife habitat, significant regulatory restrictions and public perception pose hurdles to the use of prescribed fire. But better data could help change that.

“The primary reason is that data on wildfire and prescribed burns are difficult to obtain due to the cost and risks posed from fire on the scale at which wildland fires occur,” Scarborough said. “On the opposite end of this spectrum, small-scale laboratory studies fail to include many relevant factors.”

This is where the work of Scarborough and his team is making a valuable contribution. The Wildland Fire Integrated Research Experiment is a wildland fire combustion research facility capable of simulating burn areas up to several square meters, located at Auburn University’s Combustion Physics Laboratory, or AUCPLAB.

“WildFIRE is a unique facility among universities in that it is an intermediate-scale facility bridging the gap between traditional university bench-scale experiments, which are typically within the centimeter scale, and full-scale research fires conducted by governmental laboratories,” Scarborough said.

Burn experiments are conducted by simulating a variety of environmental conditions and incorporating different types of fuel source combinations, he explained.

“Our research provides an intermediate-scale facility designed to obtain data on the combustion and emissions properties of wildland fuels under field-relevant conditions that can be used to validate computer simulations of wildland fires and compare with field wildfire and controlled burn observations,” Scarborough said.

Scarborough noted the ultimate goal of the lab’s research is to develop optical diagnostics that are useful in the study of wildland fires in the field and to provide data that help to validate existing wildfire data on combustion, controlled burning and other characteristics surrounding the nature of wildfires.

Also, their hope is that, by better understanding how wildfires interact with the fuel sources and environmental conditions feeding them, they can help in the development of better ways to mitigate the damage caused by out-of-control wildfires by providing a deeper understanding about the combustion properties of fire and fuels.

BY MITCH EMMONS

flames and pine needles in wildfire research apparatusUsing their laboratory apparatus—dubbed the Wildland Fire Integrated Research Experiment (WildFIRE)—David Scarborough and research team simulate wildland fires under a variety of conditions and fuel compositions.

Categories: Advanced Systems, Energy & the Environment, Engineering


NSF grant to allow Auburn professors to study how nanomaterials disperse in liquids

3/25/2021 2:01:32 PM      

As consumer electronics get smaller, the need for smaller parts, such as batteries, grows. Researchers are actively exploring additive manufacturing techniques to create the necessary smaller parts, but they first need to establish a fundamental understanding of the nanomaterial known as MXenes. 

Virginia Davis, the Dr. Daniel F. and Josephine Breeden Professor of chemical engineering, and Majid Beidaghi, associate professor of materials engineering, are working to evaluate the properties of MXenes with a $328,420 National Science Foundation award for their project “Understanding the Effects of Sheet Size and Salt Addition on Aqueous MXene Dispersions: Phase Behavior, Rheological Properties and Printability.” 

“MXenes are a new material and they have a lot of amazing properties and potential in applications such as batteries, supercapacitors and things that power our everyday devices,” Davis said. “However, in order to enable them to be used in these applications, we have to understand how to process them into different structures.” 

MXenes are a family of 2D crystalline nanomaterials composed of transition metal carbides, nitrides or carbonitrides. One advantage of MXenes is that they can be dispersed in water and processed into devices and structures using fluid phase processing techniques such as direct ink writing, a specialized 3D printing technique. To date, advances in MXene processing have required time-consuming and expensive trial-and-error approaches. 

“Our grant is looking at using fundamental tools for understanding how solids disperse in liquids and to gain new insight as to the behavior of (MXenes) to enable them to be printed into small devices using additive manufacturing,” Davis said. “In this grant we’re particularly looking at MXenes in the context of other 2D or sheet-like nanomaterials. If we can understand those fundamental principles that govern these sheet-like materials, then we can apply it to other new materials that we may discover or make materials we already know about, such as nanoclays, work even better.” 

This topic represents a natural cross-section of Davis’ and Beidaghi’s specialized research areas. Beidaghi has studied MXenes and their potential since he was a post-doctoral research fellow at Drexel University. Davis is interested in understanding how to effectively process nanomaterials and how they flow in liquids. 

“Really it was both of us coming together at Auburn that allowed us to tackle both parts of the problem, the materials chemistry part and the phase behavior part,” Davis said. 

The two plan to collaborate with other researchers to advance the experimental and theoretical methods to study dispersions of nanomaterials.

Media Contact: Cassie Montgomery, cmontgomery@auburn.edu, 334.844.3668

BY CASSIE MONTGOMERY

From the left: Virginia Davis (in lab) and Majid Beidaghi (outdoors)

From the left: Virginia Davis and Majid Beidaghi

Categories: Advanced Systems, Engineering, Manufacturing


Auburn debuts sophisticated new autonomous vehicle research facility

2/17/2021 7:51:35 AM      

Auburn University recently opened the doors to a sophisticated new autonomous vehicle research facility at Auburn’s National Center for Asphalt Technology test track — one of the few facilities of its kind in the nation attached to a test track.

The addition will aid researchers in Auburn University’s GPS and Vehicle Dynamics Laboratory, whose work is frequently conducted outdoors.

The facility provides a garage with multiple bays and lifts for commercial trucks and passenger vehicles, office space for researchers, a conference room and an observation area overlooking NCAT’s 1.7-mile oval test track.

“The fact that we have our own test track where we can run autonomous vehicles and autonomous testing attached to this facility I think is an unbelievably unique asset,” said David Bevly, the Bill and Lana McNair Distinguished Professor of mechanical engineering and co-director of the GAVLAB along with assistant research professor Scott Martin.

Since Bevly joined the Auburn Engineering faculty in 2001, the GAVLAB has built a strong reputation in autonomous vehicle navigation and developed a broad sponsored research portfolio, with projects ranging from the Department of Defense and the Federal Highway Administration to many private industry partners.

With various sponsors visiting each month, the facility’s planned observation area gives the GAVLAB team a high-quality space to demonstrate its research. Bevly’s group has also conducted demonstrations for legislators and the Alabama Department of Transportation.

“It’s a great facility for us as a team, but also allows us to showcase our work,” Bevly said.

With a growing research thrust in transportation engineering, the autonomous research facility also demonstrates Auburn’s commitment to supporting these research initiatives.

“Auburn is a major player in transportation engineering research in the nation,” said Steve Taylor, associate dean for research. “The GAVLAB and our other transportation engineering researchers have brought in nearly $50 million in sponsored research awards over the past three years. This new facility is an exciting development for Auburn and there will be much more to come.”

BY CHRIS ANTHONY

 Media Contact: Jeremy Henderson, jdh0123@auburn.edu, 334-844-3591

Auburn University Autonomous Vehicle Research Facility at the National Center for Asphalt Technology (NCAT) test track

Auburn University's new autonomous vehicle research facility

Categories: Advanced Systems, Transportation, Engineering


Auburn, UCLA faculty teaming up to develop micro-scale magnetic shields

9/30/2020 6:43:08 AM      

An Auburn Engineering faculty member recently received a United States Office of Naval Research subcontract to work on a new technology that will use custom additively manufactured micro-scale shields to help protect electronics from magnetic fields, while also allowing integration of fiber optics for optical communication.

Michael Hamilton, the James B. Davis Professor of electrical and computer engineering and director of the Alabama Micro/Nano Science and Technology Center, will work with Systems Visions, a local company that provides engineering principles to design and develop structures, systems and processes, on new technologies to help shield sensitive superconducting electronic chips from magnetic fields while still allowing for signals to be sent and received through integrated fiber optics.

Hamilton will collaborate on this project with Robert Candler, professor of electrical and computer engineering at the University of California, Los Angeles. Hamilton and Candler graduated in the same class from Auburn University with bachelor’s degrees in electrical engineering in 2000.

“Interestingly enough, Rob is not just my colleague, but my friend who also went to Auburn at the same time I did,” Hamilton said. “We’ve been looking for a project to work on together for a while, so it was nice to find something that lined up both with what he’s working on and with what I’m working on.”

Hamilton said the duo are in phase one of the project with multiple challenges to overcome before a working prototype can be developed. Some challenges include engineering the technology to withstand ultra-cold temperatures around 4 Kelvin (-452 degrees Fahrenheit) and scaling down the integration of the fiber optics to about 10 millionths of a meter in diameter ­ – 10 times smaller than a strand of hair.

“We’re characterizing these magnetic shields and making big strides in the steps toward building those little photonic structures,” Hamilton said. “Another piece of this project is observing how these micro-scale structures behave when we cool them down to a very low temperature and seeing if there’s a way we can engineer the interfaces and materials to perform better when you make it cold.”

Hamilton said he is confident that he and his team will work through the challenges of social distancing in the new normal with COVID-19 and that he is eager to contribute to the advancement of this technology under this subcontract. 

“We’ve actually been really fortunate at Auburn where research can continue,” Hamilton said. “I know there are some places that had to just shut everything down, but we’ve been able to keep things going at a pretty good pace.”

BY VIRGINIA SPEIRS

Media Contact: Chris Anthony, chris.anthony@auburn.edu, 334.844.3447

 

Michael HamiltonMichael Hamilton

Categories: Advanced Systems, Engineering, Manufacturing


Auburn University Interdisciplinary Center for Advanced Manufacturing wins $4.26 million DOD award

9/23/2020 11:13:40 AM      

The Interdisciplinary Center for Advanced Manufacturing Systems, or ICAMS, at Auburn University has received a $4.26 million award from the U.S. Department of Defense to explore the digitalization of manufacturing and become a resource for small and medium manufacturers throughout the country.

“The most significant way ICAMS can make a difference is in helping small and medium manufacturers understand the technologies they should be utilizing and helping them understand the need for adopting Industry 4.0/Smart Manufacturing concepts, therefore really digitalizing the full supply chain,” said Gregory Harris, ICAMS director and associate professor of industrial and systems engineering.

There is a growing digital divide between large manufacturers and the small- to medium-sized manufacturers that make up 85% of the industrial base in the United States. These large, original equipment manufacturers have blended their manufacturing physical and virtual domains into an Industry 4.0 environment, achieving positive productivity results. ICAMS researchers hope to help close this gap, in part by promoting advanced manufacturing principles to create a skilled workforce pipeline that starts in high school and continues through community college and beyond.

“The ideal student coming into this program is somebody who is a cross between a mechanical engineer, an industrial and systems engineer and a computer scientist. It’s a very interdisciplinary environment where, if you’re interested in computers and making things and realizing innovations, you will thrive. That’s the kind of student we’re looking for,” Harris said.  

ICAMS is led by Harris and several additional faculty members from the Department of Industrial and Systems Engineering: assistant professor Peter Liu, assistant professor Konstantinos Mykoniatis, associate professor Lewis Payton and assistant professor Gregory Purdy. The center is also supported through a partnership with the City of Auburn’s Industrial Development Board, which has provided a facility to house large equipment and provide a hands-on learning laboratory for ICAMS students.

“Part of what we’re doing with ICAMS is helping develop the skill base and the skillsets needed so that the community college system and high schools can train students in the new technologies to be potential employees,” he explained. “We’re working with industry to train their current employees in these new capabilities and create a more effective system. Finally, we’re training engineers to be able to go out and help design, build and run these systems, thus ushering in the future of manufacturing.”

BY CASSIE MONTGOMERY

The Interdisciplinary Center for Advanced Manufacturing, or ICAMS, at Auburn University, housed within the Department of InLewis Payton; Greg Purdy; Greg Harris; Peter Liu; and Konstantinos MykoniatisThe Interdisciplinary Center for Advanced Manufacturing, or ICAMS, at Auburn University, housed within the Department of Industrial and Systems Engineering, is led by, from left to right, Lewis Payton, associate research professor; Greg Purdy, assistant professor; Greg Harris, ICAMS director and associate professor; Peter Liu, assistant professor; and Konstantinos Mykoniatis, assistant professor.

Categories: Advanced Systems, Manufacturing