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Abstract. In this paper we establish a general theoretical framework for Tur-
ing diffusion-driven instability for reaction-diffusion systems on time-dependent
evolving domains. The main result is that Turing diffusion-driven instability
for reaction-diffusion systems on evolving domains is characterised by Lya-
punov exponents of the evolution family associated with the linearised system
(obtained by linearising the original system along a spatially independent so-
lution). This framework allows for the inclusion of the analysis of the long-
time behavior of the solutions of reaction-diffusion systems. Applications to
two special types of evolving domains are considered: (i) time-dependent do-
mains which evolve to a final limiting fixed domain and (ii) time-dependent
domains which are eventually time periodic. Reaction-diffusion systems have
been widely proposed as plausible mechanisms for pattern formation in mor-
phogenesis.

1. Introduction. Reaction-diffusion equations (RDEs) have been widely proposed
as plausible models of pattern forming processes in developmental biology [27]. On
fixed domains, Turing [38] derived the conditions under which a linearised reaction-
diffusion system admits a linearly stable spatially homogeneous steady state in the
absence of diffusion and yet, becomes unstable under appropriate conditions in the
presence of diffusion to yield a spatially varying inhomogeneous steady state. This
process is now well-known as diffusively-driven instability and is of particular in-
terest in developmental biological pattern formation as a means of initiating self
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organisation from a virtually homogeneous background. Turing patterns were first
observed by Castets et al. [2] in a chloride-ionic-malonic-acid (CIMA) reaction and
Ouyang and Swinney [32] were the first to observe a Turing diffusion-driven insta-
bility from a spatially uniform state to a patterned state. Although the number
of actual chemical reactions which produce Turing patterns is small, the idea of
diffusion-driven instability, extended by Meinhardt [11] to the paradigm-shifting
patterning principle of short-range activation, long-range inhibition, has stimulated
much biological research in pattern formation. Recently, Shiferaw and Karma [35]
proposed a Turing model to describe the interactions between the voltage and cal-
cium in paced cardiac cells. The results of their research provide a striking example
of a Turing diffusion-driven instability in a biological context where the morphogens
could be identified, as well as a potential link between dynamical instability on sub-
cellular scales and life-threatening cardiac disorders.

On fixed domains, the properties of the autonomous Turing diffusively-driven in-
stability conditions require that the reaction kinetics should be of activator-inhibitor
form with the inhibitor diffusing faster, typically much faster, than the activator.
This gives rise to the standard paradigm of pattern formation via short-range activa-
tion and long-range inhibition. Most applications of Turing’s theory have assumed
fixed domains; in the context of developmental biology, this requires the tacit as-
sumption that pattern forming processes occur on a different timescale to that of
domain growth. However, recent studies show that domain growth typically dic-
tates the nature of the pattern that evolves as the domain grows leading to a much
greater robustness of pattern compared to the array of patterning that can take
place on a fixed domain. This is illustrated by Kondo and Asai [13] who predicted
mode doubling in pigmentation patterns of the angelfish Pomacanthus as it grows.
Further examples of studies of RDEs illustrating the role of domain growth can be
found in papers by Varea et al. [39], Chaplain et al. [3], Liaw, et al. [14],
Painter, et al. [28], Crampin et al. [6, 5], Oster and Bressloff [31], Madzvamuse,
et al. [22, 21], Madzvamuse [20] and for a review see Plaza et al. [29].

In particular, the latter presented a framework to investigate the role of curvature
and growth in pattern formation and selection via the Turing diffusion-driven insta-
bility. The corresponding Turing analysis on growing domains was not attempted.
Instead, they analysed equations that allow the separation of the geometrical spa-
tial effects from those due to domain growth with the assumption of isotropic linear
growth. In all their simulations they observed that the selection of the final pat-
tern was dictated by the interplay of the curvature and domain growth given fixed
model parameter values. Transient patterns were shown to be robustly selected
due to the effects of either curvature and/or domain growth, in complete agreement
with previous results obtained in computational studies by Crampin et al. [6, 5]
and Madzvamuse et al. [22, 20].

As a first step in performing a Turing diffusion-driven instability analysis, we
consider the case where RDEs on a growing domain can be transformed into RDEs
on a fixed domain, but with time-dependence in the diffusion and dilution terms [6].
These nonautonomous terms however typically invalidate standard linear stability
analysis via plane wave decompositions, even with the common simplification that
the domain growth is assumed to be isotropic, whereby the domain expands at
the same rate in all directions at all times. From a mathematical point of view,
stability conditions on fixed domains are typically derived from the calculation of the
eigenvalues of a time-independent matrix governing the dynamics of perturbations
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in the linear regime. Slow growth induces initially small but time-dependent and
cumulative changes in such matrices. However, eigenvalues can, in general, be very
sensitive to matrix perturbations [12]. By using asymptotic theory, Madzvamuse
et al. [16] derived and presented a generalisation of the Turing diffusively-driven
instability conditions for RDEs on slowly, isotropic growing domains. Only for the
case of slowly growing isotropic domains, it was discovered that these conditions are
a function of the model parameters in the reaction terms and the growth dynamics.

Despite the above-mentioned studies and the simplifying assumption of slow and
isotropic growth of the domain, the analysis presented in [16] is only valid on the
slowest timescale found in the model. It is not valid for asymptotically large time,
i.e. times much greater than any other timescale in the model. In this paper
we aim to establish a general theoretical framework for studying Turing diffusion-
driven instability on time-dependent growing domains which allows for the inclusion
of long time behaviour of the solutions. We will also consider the special cases that
the time-dependent domains has a finite limiting fixed domain or a time-dependent
period growing domain. The main focus of this paper is to lay down foundations
for future research on deriving Turing diffusion-driven instability conditions for
time-dependent domains in terms of the reaction kinetics as well as the model
kinetic parameter values. It should however be understood that it is the exception
that, as in the case of an activator-inhibitor system on a fixed domain, there exists
simple algebraic relationships in terms of model parameters for Turing diffusion-
driven instability. This feature relies on the fact that the stability analysis leads
to eigenvalues problems, where the associated kinetic system reduces to quadratic
(possibly cubic) equations. Floquet exponents or more complex systems require
serendipitous creativity at a case-by-case level or the use of numerical methods.
This is not unique to Turing diffusion-driven instability, but inherited feature from
the underlying linear algebra and well-known for systems of ordinary and partial
differential equations.

To carry out our studies, we apply the general evolution semigroup or evolu-
tion family theory developed in [1], [4] and [34]. Roughly, Turing diffusion-driven
instability of RDEs on a growing domain near a spatially homogeneous solution
(if it exists) is characterized by Lyapunov exponents of the evolution family asso-
ciated with the linearized equation at the spatially homogeneous solution, which
are analog of eigenvalues of the linearized equation at an equilibrium solution of
RDEs on a fixed domain. In fact, if the reaction-diffusion system has a limiting
system, this characterization reduces to statements about eigenvalues. Moreover,
in another special case, periodically oscillating domains, Lyapunov exponents are
identical with the real parts of the classical Floquet or characteristic exponents.
Our analysis allows for the inclusion to study limiting systems, i.e. when domain
growth saturates to a final fixed domain. This scenario is biologically plausible since
most species grow to a finite limiting size as opposed to an infinite domain size. For
this case, sufficient diffusion-driven instability conditions are provided in terms of
model parameters. The key difference between these results and those obtained on
fixed domain is that the diffusion coefficient is scaled by the limiting domain growth
profile.

In heart physiology, Turing diffusion-driven instability mediated by voltage and
calcium diffusion in paced cardiac cells has been recently studied by Shiferaw and
Karma [35]. It turns out that the coupling between the voltage across the cell mem-
brane and the release of the calcium from the intracellular stores is a key ingredient



4 GEORG HETZER, ANOTIDA MADZVAMUSE, AND WENXIAN SHEN

of heart function and this interaction could be modelled by use of reaction-diffusion
models. In this paper, we have extended Turing diffusion-driven instability analysis
to periodic continuously deforming domains, with period say, T . For this case, we
state under what conditions diffusion-driven instability occurs. To our knowledge,
this is the first time such a result has been stated and proved. The explicit depen-
dence of these conditions on model parameters is, if not impossible, very hard to
find in general.

Hence, our paper is organised as follows: in Section 2 we establish some basic
setting for the study of the RDEs on continuously growing domains. First, we trans-
form the partial differential equations to a nonautonomous system of RDEs on a
fixed domain and provide some examples which show that the induced systems can
have time-independent boundary conditions as well as time-dependent boundary
conditions. We then establish some fundamental properties of some linear system
associated to the induced system on the fixed domain and some fundamental prop-
erties of the induced system. Finally we collect some basic facts about abstract
evolution families. Section 3 introduces the definition of Turing diffusion-driven
instability on time-dependent domains and explore criteria for such instability. We
consider the applications of the general results established in Section 3 to time-
varying domains which grow either to a finite limit or change periodically, and state
precisely when Turing diffusion-driven instability occurs in Section 4. Finally, we
conclude, interpret and discuss the implications of our findings in Section 5.

2. Basic Setting. Consider the following non-dimensionalised system of RDEs on
the smooth time-dependent evolving domain Ωt ⊂ Rn [22, 18, 16],





∂u
∂t +∇ · (βu) = ∇2u + γf(u, v), x ∈ Ωt, t > s

∂v
∂t +∇ · (βv) = dc∇2v + γg(u, v), x ∈ Ωt, t > s

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ωt, t > s

(1)

where s ≥ 0, (u, v) =
(
u(t,x), v(t, x)

) ∈ R2, f(u, v) and g(u, v) are nonlinear reac-
tion kinetics (for example, f(u, v) = a − u + u2v, and g(u, v) = b − u2v [11, 33]),
β = (β1, β2, · · · , βn)T is the chemical flow velocity, ν(·) = (ν1(·), ν2(·), · · · , νn(·))T

is the unit outer normal vector of ∂Ωt, and γ represents the scaling positive param-
eter and dc is a positive diffusion coefficient.

In this section, we establish some basic setting for the study of the Turing
diffusion-driven instability of (1). We first transform (1) to a forward nonau-
tonomous system of reaction-diffusion equations [16] on a fixed domain and provide
some examples which show that the induced systems can have time-independent
boundary condition as well as time-dependent boundary condition. We then estab-
lish some fundamental properties of some linear system associated to the induced
system on the fixed domain and some fundamental properties of the induced system.
Finally we collect some basic facts about abstract evolution families.

2.1. Induced system on fixed domain. Let Ω0 ⊂ Rn be a fixed or computational
domain. Assume that there is a smooth family of C3-diffeomorphisms At : Ω0 →
Ωt, x = At(y) := x̂(t, y) which transforms the closure of the fixed domain Ω0 to
the closure of the time-dependent domain Ωt with At(∂Ω0) = ∂Ωt and the inverse
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transformation y = ŷ(t, x). We refrain from stating specific hypotheses about the
domains here, which will be expressed in terms of y later. Let

(
û(t,y), v̂(t,y)

)
=

(
u(t, x̂(t, y)), v(t, x̂(t,y))

)
,

and

β̂(t,y) = β
(
t, x̂(t,y)

)
.

Then

∂u

∂t
=

∂û

∂t
+

n∑

j=1

∂û

∂yj

∂yj

∂t
, (2)

∂u

∂xi
=

n∑

j=1

∂û

∂yj

∂yj

∂xi
, i = 1, 2, · · · , n, (3)

∂2u

∂x2
i

=
n∑

k,j=1

∂2û

∂yj∂yk

∂yj

∂xi

∂yk

∂xi
+

n∑

j=1

∂û

∂yj

∂2yj

∂x2
i

, i = 1, 2, · · · , n, and (4)

∇ · β =
n∑

i,j=1

∂β̂i

∂yj

∂yj

∂xi
. (5)

Hence (1) becomes




∂û
∂t =

∑n
j,k=1 aj,k(t, y) ∂2û

∂yj∂yk
+

∑n
j=1

(
bj(t,y)− cj(t,y)

)
∂û
∂yj

+c0(t,y)û + γf(û, v̂), y ∈ Ω0, t > s

∂v̂
∂t = dc

∑n
j,k=1 aj,k(t,y) ∂2v̂

∂yj∂yk
+

∑n
j=1

(
dc bj(t,y)− cj(t,y)

)
∂v̂
∂yj

+c0(t,y)v̂ + γg(û, v̂), y ∈ Ω0, t > s

∑n
j=1 ej(t,y) ∂û

∂yj
=

∑n
j=1 ej(t, y) ∂v̂

∂yj
= 0, y ∈ ∂Ω0, t > s,

(6)

where s ≥ 0,

aj,k(t,y) =
n∑

i=1

∂yj

∂xi

∂yk

∂xi
, k = 1, 2, · · · , n, (7)

bj(t,y) =
n∑

i=1

∂2yj

∂x2
i

, j = 1, 2, · · · , n, (8)

cj(t,y) =
∂yj

∂t
+

n∑

i=1

β̂i
∂yj

∂xi
, j = 1, 2, · · · , n, (9)

c0(t,y) = −
n∑

i,j=1

∂β̂i

∂yj

∂yj

∂xi
, and (10)

ej(t,y) =
n∑

i=1

∂yj

∂xi
νi(x̂(t,y)), j = 1, 2, · · · , n. (11)

System (6) in general depends on t and is defined for t ≥ 0 only. It is then called
forward nonautonomous. In the following, we assume that
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(H1) There are α0 > 0 and M0 > 0 such that

α0‖ξ‖2 ≤
n∑

j,k=1

aj,k(t, y)ξiξj ≤ M0‖ξ‖2

for any t ≥ 0, y ∈ Ω0, and ξ = (ξ1, · · · , ξn)T ∈ Rn.

(H2) e(t,y) · ν̂(y) ≥ β0 > 0 for some β0 > 0 and all t ≥ 0, y ∈ ∂Ω0, where ν̂(·) is
the unit outer normal vector of ∂Ω0.

(H3) Ω0 ⊂ Rn is a bounded C3 domain, and aj,k, bj, cj, c0 (j, k = 1, 2, · · · , n)
are C1 bounded functions on [0,∞) × Ω̄0 and ej (j = 1, 2, · · · , n) are C2 bounded
functions on [0,∞)× ∂Ω0.

2.2. Examples.

Example 1. Time-independent homogeneous Neumann boundary conditions. Ob-
serve that a special case that is widely used is that of uniform isotropic growth,
i.e.,

x = ρ(t)y. (12)

In such a case, we have

aj,k(t, y) =

{
1

ρ(t)2 if j = k,

0 if j 6= k,

bj(t, y) ≡ 0 for j = 1, 2, · · · , n,

cj(t, y) = −ρ
′
(t)

ρ(t)
yj +

β̂j(t, y)
ρ(t)

, j = 1, 2, · · · , n,

c0(t, y) = −
n∑

j=1

1
ρ(t)

∂β̂j(t, y)
∂yj

, and

ej(t, y) =
νj(yρ(t))

ρ(t)
, j = 1, 2, · · · , n.

Assuming further that the flow velocity is given by β = ∂x
∂t it follows that

cj(t,y) = 0, and c0(t,y) = n
ρ
′
(t)

ρ(t)
. (13)

Example 2. Time-independent homogeneous Neumann boundary conditions. Let
us assume that domain growth is uniform isotropic and linear given by x = ρ(t)y
as before. Assuming further that the flow velocity is different from the mesh (or
domain) velocity β 6= ∂x

∂t , then we can assume for example a constant chemical flow
velocity

β̂(t, y) = β(t, x̂(t, y)) = β ∈ Rn,

and as a result convection-reaction-diffusion equations are obtained without ad-
vection. For these type of growths, it follows that the boundary conditions are
time-independent homogeneous Neumann.
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Example 3. Time-dependent homogeneous Neumann boundary conditions. Let us
assume non-uniform growth of the form

xi = ρi(t)yi, where ρi(0) = 1, i = 1, · · · , n,

satisfying ρi(t) 6= ρj(t) for i 6= j. Let the chemical flow velocity be given by [16]

βj = αj + rj(t) + Aj,p(t)xp + Sj,p(t)xp + Bj,p,q(t)xpxq

where
• αj represents constant velocity,
• rj(t) represents body translations (no growth),
• Aj,p(t) is antisymmetric and represents a rigid body rotation,
• Sj,p(t) is symmetric representing spatially linear growth,
• Bj,p,q(t) and all higher order terms represents nonlinear growth.

Clearly it follows that β 6= ∂x
∂t and more importantly, time-dependendent homoge-

neous Neumann boundary conditions are obtained.

2.3. Fundamental properties of linear systems. In this subsection, we estab-
lish some fundamental properties of the following forward nonautonomous linear
system,





∂û
∂t =

∑n
j,k=1 aj,k(t,y) ∂2û

∂yj∂yk
+

∑n
j=1

(
bj(t,y)− cj(t,y)

)
∂û
∂yj

+c0(t,y)û + d11(t, y)û + d12(t,y)v̂, y ∈ Ω0, t > s

∂v̂
∂t = dc

∑n
j,k=1 aj,k(t,y) ∂2v̂

∂yj∂yk
+

∑n
j=1

(
dc bj(t,y)− cj(t, y)

)
∂v̂
∂yj

+c0(t,y)v̂ + d21(t,y)û + d22(t,y)v̂, y ∈ Ω0, t > s

∑n
j=1 ej(t, y) ∂û

∂yj
=

∑n
j=1 ej(t,y) ∂v̂

∂yj
= 0, y ∈ ∂Ω0, t > s,

(14)

where s ≥ 0, aj,k, bj , cj , c0, and ej are as in (6). Note that if dij ≡ 0 for i, j = 1, 2,
then (14) is the linear part of (6).

Throughout this subsection, assume (H1)-(H3) and d11, d12, d21, d22 are C1

bounded functions on [0,∞) × Ω̄0. For a given Banach space, we denote ‖ · ‖X as
the norm in X. For given Banach spaces X and Y , L(X, Y ) denotes the space of
bounded linear operators from X to Y and ‖ · ‖X,Y is the norm in L(X,Y ). We
may write ‖ · ‖Lp(Ω0)×Lp(Ω0) as ‖ · ‖p and write ‖ · ‖Lp(Ω0)×Lp(Ω0),Lq(Ω0)×Lq(Ω0) as
‖ · ‖p,q.

The following theorem then follows from the theory developed in [1] (see [1,
Theorem 14.5]).

Theorem 2.1. Let 1 < p < ∞ and s ≥ 0.
(1) (14) has a Lp(Ω0)×Lp(Ω0) solution (û(t, ·; s, u0, v0), v̂(t, ·; s, u0, v0)) for t > s

with (û(s, ·; s, u0, v0), v̂(s, ·; s, u0, v0)) = (u0(·), v0(·)) ∈ Lp(Ω0)× Lp(Ω0). Put
Up(t, s)(u0, v0) = (û(t, ·; s, u0, v0), v̂(t, ·; s, u0, v0))) for t ≥ s and (u0, v0) ∈
Lp(Ω0)× Lp(Ω0).

(2) There are M > 0 and ω ∈ R such that

‖Up(t, s)‖p ≤ Meω(t−s) ∀t ≥ s.

(3) For any 1 < p ≤ q < ∞ and t ≥ s ≥ 0,

Up(t, s)|(Lp(Ω0)×Lp(Ω0))∩(Lq(Ω0)×Lq(Ω0)) = Uq(t, s)|(Lp(Ω0)×Lp(Ω0))∩(Lq(Ω0)×Lq(Ω0)).
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Theorem 2.2. If p > 2n, then Up(t, s)
(
Lp(Ω0) × Lp(Ω0)

) ⊂ Lq(Ω0) × Lq(Ω0) for
every t > s and q > p. Moreover for any given T > 0, there are C > 0 and
0 < θ < 1 such that

‖Up(t, s)‖p,q ≤ C

(t− s)θ
∀t > s, t− s ≤ T.

Proof. First, let Xθ (0 < θ < 1) be an interpolation space of Lp(Ω0)× Lp(Ω0) and
W 2,p(Ω0) ×W 2,p(Ω0). By the arguments of [1, Theorem 7.1], there is C > 0 such
that

‖Up(t, s)‖Lp(Ω0)×Lp(Ω0),Xθ×Xθ ≤ C

(t− s)θ
∀t > s, t− s ≤ T.

Now let 0 < θ < 1 be such that Lq(Ω0) × Lq(Ω0) ⊂ Xθ (such θ exists because
p > 2n). Then

‖Up(t, s)‖p,q ≤ C

(t− s)θ
∀t > s, t− s ≤ T.

To indicate the dependence of Up(t, s) on the coefficients of (14), put

a = (aj,k, bj , cj , c0, d11, d12, d21, d22, ej)

and
Ua

p (t, s) = Up(t, s).
We make the following assumption.

(H3)
′

aj,k, bj , cj , c0, ej satisfy (H3) and d11, d12, d21, d22 are C1 bounded functions
on [0,∞)× Ω0.

For given
a = (aj,k, bj , cj , c0, d11, d12, d21, d22, ej) and ã = (ãj,k, b̃j , c̃j , c̃0, d̃11, d̃12, d̃21, d̃22, ẽj),
we define d(a, ã) by

d(a, ã) =
n∑

j,k=1

‖aj,k − ãj,k‖C1([0,∞)×Ω0)+

+
n∑

j=1

[
‖bj − b̃j‖C1([0,∞)×Ω0) + ‖cj − c̃j‖C1([0,∞)×Ω0)

]
+ ‖c0 − c̃0‖C1([0,∞)×Ω0)

+
2∑

i,j=1

‖dij − d̃ij‖C1([0,∞)×Ω0) +
n∑

j=1

‖ej − ẽj‖C2([0,∞)×∂Ω0).

In the following, Xθ (0 < θ < 1) denotes an interpolation space of Lp(Ω0)×Lp(Ω0)
and W 2,p(Ω0)×W 2,p(Ω0) (0 < θ < 1).

Theorem 2.3. For any 1 < p < ∞, the following hold.
(1) [0,∞)× [0,∞) 3 (t, s) 7→ Ua

p (t+ s, s) ∈ L(Lp(Ω0)×Lp(Ω0), Lp(Ω0)×Lp(Ω0))
is strongly continuous. Moreover, for any 0 < δn with δn → 0 as n →∞,

‖Ua
p (δn + t + s, s)(u, v)− Ua

p (t + s, s)(u, v)‖p → 0

as n → ∞ uniformly in s ≥ 0, t in bounded subsets of [0,∞), and (u, v) in
bounded subsets of Xθ.

(2) If d(an, a) → 0, then ‖Ua
p (t + s, s)−Uan

p (t + s, s)‖p → 0 as n →∞ uniformly
in s ∈ [0,∞) and t in compact subsets of (0,∞).
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Proof. (1) It follows from [34, Theorem 2.2] and [34, Example 2.9].
(2) It follows from [34, Proposition 2.6] and the arguments of [34, Example

2.9].

2.4. Fundamental properties of nonlinear systems. In this subsection, we es-
tablish some fundamental properties of (6). Throughout this subsection, we assume
(H1)-(H3). We also assume

(H4) f and g are C2 functions. |f(u, v)|, |g(u, v)| ≤ M1(|u|p0 + |v|p0) + M2 and
|∂uf(u, v)|,|∂vf(u, v)|, |∂ug(u, v)|, |∂vg(u, v)| ≤ M1(|u|p0−1+|v|p0−1|)+M2 for some
M1,M2 > 0 and p0 ≥ 1.

Choose p, q such that p > 2n, q > pp0, and q > q(p0−1)
q−p . Let

X = Lq(Ω0)× Lq(Ω0). (15)

Let a0 = (aj,k, bj , cj , c0, 0, 0, 0, 0, ej) and

U0
p(q)(t, s) = Ua0

p(q)(t, s).

Definition 2.4. For given w0 ∈ X and s ≥ 0, w(t, ·) = (u(t, ·), v(t, ·)) ∈ C([s, s +
T ), X) is a mild solution of (6) on [s, s + T ) with w(s, ·) = w0(·) if

w(t, ·) = U0
q (t, s)w0 +

∫ t

s

U0
p (t, τ)

(
γf

(
u(τ, ·), v(τ, ·)), γg

(
u(τ, ·), v(τ, ·))

)>
dτ

for t ∈ [s, s + T ).

Then we have

Theorem 2.5. For any w0 ∈ X and s ≥ 0, (6) has a unique (local) mild solution
w(t, ·; s, w0) with w(s, ·; s, w0) = w0.

Proof. First, note that for any w = (u, v) ∈ X = Lq(Ω0)×Lq(Ω0), (f(u, v), g(u, v)) ∈
Lp(Ω0)× Lp(Ω0). Moreover, for any r > 0, there is C(r) > 0 such that

‖(f(u, v), g(u, v))− (f(ũ, ṽ), g(ũ, ṽ))‖p ≤ C(r)‖(u− ũ, v − ṽ)‖q

for (u, v), (ũ, ṽ) ∈ X with ‖(u, v)‖q, ‖(ũ, ṽ)‖q ≤ r.
Next, by Theorem 2.2, for any T > 0, there are some 0 < θ < 1 and C > 0 such

that

‖U0
p (t, s)‖p,q ≤ C

(t− s)θ
, ∀t ≥ s, t− s ≤ T.

The theorem then follows from the results in section 3 of [7] similarly as [7, Corollary
3.7].

We remark that in view of more recent results, cf. [8, 9, 15, 41], e.g., Theorem 15.1
of [1] (6) guarantees a unique non-extendable Lq-solution provided that the initial
conditions on the boundary satisfy

n∑

j=1

ej(s,y)
∂û

∂yj
(s, x) =

n∑

j=1

ej(s, y)
∂v̂

∂yj
(s, x) = 0, for y ∈ ∂Ω0.

Moreover, if, say, the initial values belong additionally to W 2,q(Ω0) × W 2,q(Ω0),
then the solution belongs to W 1,q

loc (J ; X) ∩ Lp
loc(J ; W 2,q(Ω0) × W 2,q(Ω0)) with J

denoting the interval of existence.
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2.5. Evolution family and exponential dichotomy. In this subsection, we in-
troduce the definitions of evolution family and exponential dichotomy and present
some important properties. The reader is referred to [4] for detail.

Let Z be a Banach space and L(Z) be the set of all the bounded linear operators
on Z with the operator norm.

Definition 2.6. A family of operators {U(t, s)}t≥s ⊂ L(Z) with s, t ∈ R is called
an evolution family on Z if

(i) U(t, s) = U(t, τ)U(τ, s) and U(s, s) = I for all t ≥ τ ≥ s; and
(ii) (t, s) 7→ U(t, s) is strongly continuous for t ≥ s.

An evolution family {U(t, s)}t≥s on Z is called exponentially bounded if, in addition,

(iii) there exist constants M > 1 and ω > 0 such that

‖U(t, s)‖ ≤ Meω(t−s) for t ≥ s.

Definition 2.7. An exponentially bounded evolution family {U(t, s)}t≥s on Z is
called uniformly exponentially stable if its growth rate, defined by

ω(U) := inf
{

ω
∣∣∣ ∃M = M(ω) such that ‖U(t, s)‖(Z) ≤ Meω(t−s) for all t ≥ s

}
,

is negative.

Definition 2.8. An exponentially bounded evolution family {U(t, s)}t≥s on Z is
said to have an exponential dichotomy (with constants M > 0 and β > 0) if there
exists a projection-valued function P : R → L(Z) such that, for each z ∈ Z, the
function t 7→ P (t)z is continuous and bounded, and, for all t ≥ s, the following
conditions hold:

(i) P (t)U(t, s) = U(t, s)P (s).
(ii) UQ(t, s) is invertible as an operator from ImQ(s) to ImQ(t), where Q(·) =

I − P (·) and UQ(t, s) = Q(t)U(t, s)Q(s).
(iii) ‖UP (t, s)‖ ≤ Me−β(t−s), where UP (t, s) = P (t)U(t, s)P (s).
(iv) ‖UQ(t, s)−1‖ ≤ Me−β(t−s).

Observe that in Definition 2.8, if P (·) ≡ I, then {U(t, s)}t≥s is exponentially
stable. In that case, we say {U(t, s)}t≥s admits a trivial exponential dichotomy.
Otherwise, we say that {U(t, s)}t≥s admits a nontrivial exponential dichotomy.

Definition 2.9. Let {U(t, s)}t≥s be an exponentially bounded evolution family on
Z. Define an associated evolution semigroup {Et}t≥0 on C0(R; Z) as follows:

(Etf)(θ) = U(θ, θ − t)f(θ − t), t ≥ 0, θ ∈ R.

{Et}t≥0 is called the evolution semigroup associated with {U(t, s)}t≥s.

Theorem 2.10. Let {U(t, s)}t≥s be an exponentially bounded evolution family on
Z and {Et}t≥0 be the associated semigroup on C0(R; Z). Then {U(t, s)}t≥s has
exponential dichotomy if and only if I − Et is invertible for some/all t > 0.

Proof. See [4, Theorems 3.12 and 3.17].

Theorem 2.11. If a strongly continuous, exponentially bounded evolution fam-
ily {U(t, s)}t≥s on Z has an exponential dichotomy on Z, then, for each τ > 0,
there exists an ε > 0 such that {V (t, s)}t≥s has an exponential dichotomy whenever



TURING INSTABILITY ON TIME DEPENDENT DOMAINS 11

{V (t, s)}t≥s is a strongly continuous, exponentially bounded evolution family such
that

sup
s∈R

‖V (τ + s, s)− U(τ + s, s)‖L(Z) ≤ ε.

Proof. See [4, Theorem 5.23].

3. Turing Diffusion-Driven Instability. We are now in a position to introduce
in this section the definition of Turing diffusion-driven instability on time-dependent
domains and explore criteria for such instability.

We will study the Turing diffusion-driven instability for (1) on time-dependent
domain Ωt by studying the Turing diffusion-driven instability for (6) on the fixed
domain Ω0. Roughly speaking, Turing diffusion-driven instability occurs in (6)
means that (6) has a spatially independent solution which is stable in the absence
of diffusion, but unstable in the presence of diffusion (see Definition 3.2). Note that
in order that (6) has a spatially independent solution, it is necessary that c0(t, y)
in (6) is independent of y. To study Turing diffusion-driven instability on growing
domains, we therefore make the following assumption:

(H5) c0(t,y) ≡ c0(t), i.e. c0(t,y) is independent of y.

This assumption is biologically relevant for the case of an isotropic, uniformly
growing or evolving domain (see Madzvamuse, et al. [16] for specific details). Ob-
serve also that equation (5) shows for the case c0 ≡ 0 that this condition is equivalent
to the flow field β being incompressible in Ωt for t ≥ 0 [17].

In the rest of this subsection, we assume (H1)-(H5) hold. We then have that
solutions of the following system of ordinary differential equations





dû
dt = c0(t)û + γf(û, v̂), t > s,

dv̂
dt = c0(t)v̂ + γg(û, v̂), t > s,

(16)

are also solutions of (6), where s ≥ 0.
Assume that (16) with s = 0 has a global bounded solution (u∗(t), v∗(t)) (i.e. it

exists for all t > 0 and is bounded on [0,∞)). To study the stability of (u∗(t), v∗(t))
in the absence of diffusion as well as in the presence of diffusion, we consider the
linearization of (16) at (u∗(t), v∗(t)),





dû
dt =

(
c0(t) + γfu(u∗(t), v∗(t))

)
û + γfv(u∗(t), v∗(t))v̂, t > s,

dv̂
dt = γgu(u∗(t), v∗(t))û +

(
c0(t) + γgv(u∗(t), v∗(t))

)
v̂, t > s,

(17)
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and the linearization of (6) at (u∗(t), v∗(t)),




∂û
∂t =

∑n
j,k=1 aj,k(t,y) ∂2û

∂yj∂yk
+

∑n
j=1

(
bj(t,y)− cj(t,y)

)
∂û
∂yj

+
(
c0(t) + γfu(u∗(t), v∗(t))

)
û + γfv(u∗(t), v∗(t))v̂, y ∈ Ω0, t > s

∂v̂
∂t = dc

∑n
j,k=1 aj,k(t, y) ∂2v̂

∂yj∂yk
+

∑n
j=1

(
dc bj(t,y)− cj(t, y)

)
∂v̂
∂yj

+γgu(u∗(t), v∗(t))û +
(
c0(t) + γgv(u∗(t), v∗(t))

)
v̂, y ∈ Ω0, t > s

∑n
j=1 ej(t,y) ∂û

∂yj
=

∑n
j=1 ej(t,y) ∂v̂

∂yj
= 0, y ∈ ∂Ω0, t > s,

(18)
where s ≥ 0, and fu, fv, gu and gv represent partial derivatives with respect to u
and v, respectively.

It follows from the classical theory for ordinary differential equations that for any
s ≥ 0 and (u0, v0) ∈ R2, (17) has a unique global solution (û(t; s, u0, v0), v̂(t; s, u0, v0))
satisfying the initial condition (û(s; s, u0, v0), v̂(s; s, u0, v0)) = (u0, v0). Put

φ(t, s)(u0, v0) =
(
û(t; s, u0, v0), v̂(t; s, u0, v0)

)
. (19)

By Theorem 2.1, for any s ≥ 0 and (u0, v0) ∈ X (X is as in (15)), there is
a unique solution (û(t, x; s, u0, v0), v̂(t, x; s, u0, v0)) of (18) with (û(s, x; s, u0, v0),
v̂(s,x; s, u0, v0)) = (u0(x), v0(x)).

Similarly put

Φ(t, s)(u0, v0) =
(
û(t, x; s, u0, v0), v̂(t, x; s, u0, v0)

)
(20)

for (u0, v0) ∈ X.

3.1. Definitions. Let X be as in (15), Φ(t, s) : X → X be as in (20), and φ(t, s) :
R2 → R2 be as in (19). In the following, ‖ · ‖ denotes either the norm in R2 or the
norm in X. It should be easy to recognize from the context which norm is meant
by ‖ · ‖.
Definition 3.1. (1) (u∗(t), v∗(t)) is called a linearly stable solution of (16) if

there are M > 0 and T > 0 such that for any s ≥ 0 and (u0, v0) ∈ R2,

‖φ(t, s)(u0, v0)‖ ≤ M‖(u0, v0)‖ for t ≥ s + T.

(u∗(t), v∗(t)) is called a linearly exponentially stable solution of (16) if there
are M > 0, T > 0, and δ > 0 such that for any s ≥ 0 and (u0, v0) ∈ R2,

‖φ(t, s)(u0, v0)‖ ≤ Me−δ(t−s)‖(u0, v0)‖ for t ≥ s + T.

(u∗(t), v∗(t)) is a linearly unstable solution of (16) if it is not linearly stable.
(2) (u∗(t), v∗(t)) is called a linearly stable solution of (6) if there are M > 0 and

T > 0 such that for any s ≥ 0 and (u0, v0) ∈ X,

‖Φ(t, s)(u0, v0)‖ ≤ M‖(u0, v0)‖ for t ≥ s + T.

(u∗(t), v∗(t)) is called a linearly exponentially stable solution of (6) if there
are M > 0, T > 0, and δ > 0 such that for s ≥ 0 and (u0, v0) ∈ X,

‖Φ(t, s)(u0, v0)‖ ≤ Me−δ(t−s)‖(u0, v0)‖ for t ≥ s + T.

(u∗(t), v∗(t)) is a linearly unstable solution of (6) if it is not linearly stable.
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Remark 1. In Definition 3.1, s ≥ 0 can be replaced by s ≥ S for some S > 0. For
example, assume that (u∗(t), v∗(t)) is a linearly stable solution of (16) in the sense
that there are M > 0, S > 0, and T > 0 such that for any s ≥ S and (u0, v0) ∈ R2,

‖φ(t, s)(u0, v0)‖ ≤ M for t ≥ s + T.

Let M0 = sup0≤s≤S,s≤t≤S ‖φ(t, s)‖. Then for any s ≥ 0 and t ≥ s + S + T ,

‖φ(t, s)(u0, v0)‖





≤ M‖(u0, v0)‖ if s ≥ S,

= ‖φ(t, S)φ(S, s)(u0, v0)‖ ≤ M‖φ(S, s)(u0, v0)‖ ≤ MM0‖(u0, v0)‖
if 0 ≤ s < S.

This implies that for any s ≥ 0 and (u0, v0) ∈ R2,

‖φ(t, s)(u0, v0)‖ ≤ M̃‖(u0, v0)‖ for t ≥ s + T̃

where M̃ = (1 + M0)M and T̃ = S + T , i.e., (u∗(t), v∗(t)) is linearly stable solution
of (16) in the sense of Definition 3.1. Other cases can be argued similarly.

Definition 3.2 (Turing Diffusively-Driven Instability on Evolving Domains). One
says that Turing diffusively-driven instability for (6) near (u∗(t), v∗(t)) occurs, if
(u∗(t), v∗(t)) is linearly exponentially stable in the absence of diffusion and is linearly
unstable when diffusion is present.

Results in [24] and [25] (see also [26]) reveal that (forward) Lyapunov exponents of
proper forward nonautonomous linear parabolic equations provide an important tool
for studying asymptotic dynamics of forward nonautonomous nonlinear parabolic
equations. Similarly, (forward) Lyapunov exponents of (17) and (18) provide a
useful tool for the study of Turing diffusion-driven instability for (6).

Definition 3.3 (Lyapunov Exponent). λ+ = lim supt−s→∞,s→∞
ln ‖φ(t,s)‖

t−s is called
the forward top Lyapunov exponent of {φ(t, s)}t≥s≥0 or (17).

Λ+ = lim supt−s→∞,s→∞
ln ‖Φ(t,s)‖

t−s is called the forward top Lyapunov exponent
of {Φ(t, s)}t≥s≥0 or (18).

3.2. Main results. In this subsection, we explore criteria for Turing diffusion-
driven instability. First, we consider the general case. Let λ+ and Λ+ be the
forward top Lyapunov exponents of (17) and (18), respectively.

Theorem 3.4. (1) If Turing diffusion-driven instability for (6) occurs near (u∗(t), v∗(t)),
then λ+ < 0 and Λ+ ≥ 0.

(2) If λ+ < 0 and Λ+ > 0, then Turing diffusion-driven instability for (6) occurs
near (u∗(t), v∗(t)).

Proof. (1) If Turing diffusion-driven instability occurs near (u∗(t), v∗(t)), then (u∗(t), v∗(t))
is a linearly exponentially stable solution of (16), i.e. there are M > 0, T > 0, and
δ > 0 such that for any (u0, v0) ∈ R2 and s ≥ 0,

‖φ(t, s)(u0, v0)‖ ≤ Me−δ(t−s)‖(u0, v0)‖ for t ≥ s + T,

hence

λ+ = lim sup
t−s→∞,s→∞

ln ‖φ(t, s)‖
t− s

≤ −δ < 0.
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On the other hand, assume that lim supt−s→∞,s→∞
ln ‖Φ(t,s)‖

t−s < 0. Then there
are δ0 > 0, s0 > 0, and T0 > 0 such that

‖Φ(t, s)‖ ≤ e−δ0(t−s) for s ≥ s0, t ≥ s + T0.

Let M0 = 1 + sup0≤s≤s0,s≤t≤s0+T0
‖Φ(t, s)‖, T = s0 + T0, and M = M0e

δ0s0 , then

‖Φ(t, s)‖ = ‖Φ(t, s0) ◦ Φ(s0, s)‖ ≤ M0e
−δ0(t−s0).

for 0 ≤ s ≤ s0 and t ≥ s0 + T0, hence

‖Φ(t, s)(u0, v0)‖ ≤ Me−δ0(t−s)‖(u0, v0)‖ for s ≥ 0, t ≥ s + T, (u0, v0) ∈ X,

which implies that (u∗(t), v∗(t)) is a linearly exponentially stable solution of (6), a
contradiction to Turing diffusion-driven instability occurring.

(2) Suppose that λ+ < 0 and Λ+ > 0. By λ+ < 0 and the arguments in (1),
(u∗(t), v∗(t)) is a linearly exponentially stable solution of (16).

Assume that (u∗(t), v∗(t)) is linearly stable solution of (6). Then there are M > 0
and T > 0 such that for any (u0, v0) ∈ X and s ≥ 0,

‖Φ(t, s)(u0, v0)‖ ≤ M‖(u0, v0)‖ for t ≥ s + T.

This implies

Λ+ = lim sup
t−s→∞,s→∞

ln ‖Φ(t, s)‖
t− s

≤ 0,

which contradicts Λ+ > 0. Therefore, (u∗(t), v∗(t)) is a linearly unstable solution
of (6) and Turing diffusion-driven instability occurs near (u∗(t), v∗(t)).

Remark 2. Suppose that (6) and (16) are actually time-independent systems and
(u∗(t), v∗(t)) ≡ (u∗, v∗) is a constant solution of (16), then (u∗, v∗) is a linearly
exponentially stable solution of (16) if and only if for any λ ∈ σ(JF ), Reλ < 0,
where σ(JF ) is the spectrum of JF and

JF =
(

c0 + γfu(u∗, v∗) γfv(u∗, v∗)
γgu(u∗, v∗) c0 + γgv(u∗, v∗)

)

which is equivalent to λ+ = lim supt−s→∞,s→∞
ln ‖φ(t,s)‖

t−s < 0. (u∗, v∗) is a linearly
unstable solution of (6) if there is an eigenvalue λ of the following eigenvalue problem
with Reλ > 0,





∑n
j,k=1 aj,k(y) ∂2û

∂yj∂yk
+

∑n
j=1

(
bj(y)− cj(y)

)
∂û
∂yj

+(c0 + γfu(u∗, v∗))û + γfv(u∗, v∗)v̂ = λû, y ∈ Ω0

dc

∑n
j,k=1 aj,k(y) ∂2v̂

∂yj∂yk
+

∑n
j=1

(
dc bj(y)− cj(y)

)
∂v̂
∂yj

+γgu(u∗, v∗)û + (c0 + γgv(u∗, v∗))v̂ = λv̂, y ∈ Ω0

∑n
j=1 ej(t,y) ∂û

∂yj
=

∑n
j=1 ej(t,y) ∂v̂

∂yj
= 0, y ∈ ∂Ω0,

(21)

which is equivalent to that

Λ+ = lim sup
t−s→∞,s→∞

ln ‖Φ(t, s)‖
t− s

> 0.
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Next, we consider the case that the coefficients of (6) have limits as t → ∞ in
the proper sense. Let

C1
unif(R,R) =

{
u : R→ R

∣∣∣ u(·), u′(·) are uniformly continuous and bounded on R
}

.

Suppose that there are u∞(·), v∞(·) ∈ C1
unif(R,R), and a∞j,k(t,y), b∞j (t,y),

c∞j (t,y), c∞0 (t), e∞j (t,y) such that

a∞j,k, b∞j , c∞j , c∞0 , e∞j satisfy (H1), (H2), (H3) (22)

with t ≥ 0 in (H1), (H2) being replaced by t ∈ R and [0,∞) in (H3) being replaced
by (−∞,∞),

lim
s→∞

‖u∗(·)− u∞(·)‖C1([s,∞)) = 0, (23)

lim
s→∞

‖v∗(·)− v∞(·)‖C1([s,∞)) = 0 (24)

and
lim

s→∞
‖aj,k(·, ·)− a∞j,k(·, ·)‖C1([s,∞)×Ω0) = 0, (25)

lim
s→∞

‖bj(·, ·)− b∞j (·, ·)‖C1([s,∞)×Ω0) = 0, (26)

lim
s→∞

‖cj(·, ·)− c∞j (·, ·)‖C1([s,∞)×Ω0) = 0, (27)

lim
s→∞

‖c0(·)− c∞0 (·)‖C1([s,∞)) = 0, (28)

lim
s→∞

‖ej(·, ·)− e∞j (·, ·)‖C2([s,∞)×∂Ω0) = 0. (29)

Then
lim

s→∞
‖fu(u∗(·), v∗(·))− fu(u∞(·), v∞(·))‖C1([s,∞)) = 0,

lim
s→∞

‖fv(u∗(·), v∗(·))− fv(u∞(·), v∞(·))‖C1([s,∞)) = 0,

lim
s→∞

‖gu(u∗(·), v∗(·))− gu(u∞(·), v∞(·))‖C1([s,∞)) = 0,

and
lim

s→∞
‖gv(u∗(·), v∗(·))− gv(u∞(·), v∞(·))‖C1([s,∞)) = 0.

Consider



∂û
∂t =

∑n
j,k=1 a∞j,k(t,y) ∂2û

∂yj∂yk
+

∑n
j=1

(
b∞j (t, y)− c∞j (t,y)

)
∂û
∂yj

+(c∞0 (t) + γfu(u∞(t), v∞(t)))û + γfv(u∞(t), v∞(t)))v̂, y ∈ Ω0, t > s

∂v̂
∂t = dc

∑n
j,k=1 a∞j,k(t,y) ∂2v̂

∂yj∂yk
+

∑n
j=1

(
dc b∞j (t,y)− c∞j (t,y)

)
∂v̂
∂yj

+γgu(u∞(t), v∞(t))û + (c∞0 (t) + γgv(u∞(t), v∞(t))))v̂, y ∈ Ω0, t > s

∑n
j=1 e∞j (t,y) ∂û

∂yj
=

∑n
j=1 e∞j (t,y) ∂v̂

∂yj
= 0, y ∈ ∂Ω0, t > s

(30)
and 




dû
dt = (c∞0 (t) + γfu(u∞(t), v∞(t)))û + γfv(u∞(t), v∞(t))v̂, t > s

dv̂
dt = γgu(u∞(t), v∞(t))û + (c∞0 (t) + γgv(u∞(t), v∞(t)))v̂, t > s,

(31)

where s ∈ R. Let

Φ∞(t, s)(u0, v0) = (û(t, ·; s, u0, v0), v̂(t, ·; s, u0, v0))
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where (û(t, ·; s, u0, v0), v̂(t, ·; s, u0, v0)) is the solution of (30) with (û(s, ·; s, u0, v0), v̂(s, ·; s, u0, v0)) =
(u0(·), v0(·)) ∈ X, and let

φ∞(t, s)(u0, v0) = (û(t; s, u0, v0), v̂(t; s, u0, v0))

where (û(t; s, u0, v0), v̂(t; s, u0, v0)) is the solution of (31) with (û(s; s, u0, v0), v̂(s; s, u0, v0)) =
(u0, v0) ∈ R2.

Let

λ∞+ = lim sup
t−s→∞,s→∞

ln ‖φ∞(t, s)‖
t− s

,

Λ∞+ = lim sup
t−s→∞,s→∞

ln ‖Φ∞(t, s)‖
t− s

,

and

λ∞ = lim sup
t−s→∞

ln ‖φ∞(t, s)‖
t− s

and

Λ∞ = lim sup
t−s→∞

ln ‖Φ∞(t, s)‖
t− s

.

λ∞+ and Λ∞+ are the corresponding limiting forward top Lyapunov exponent of (31)
and (30), respectively, and λ∞ and Λ∞ are the corresponding limiting top Lyapunov
exponent of (31) and (30), respectively.

Theorem 3.5. Assume (H1)-(H5) and (22)-(29).
(1) If Turing diffusion-driven instability for (6) occurs near (u∗(t), v∗(t)), then

λ∞+ < 0 and Λ∞+ ≥ 0.
(2) If λ∞+ < 0 and Λ∞+ > 0, then Turing diffusion-driven instability for (6) oc-

curs near (u∗(t), v∗(t)). In particular, if {φ∞(t, s)}t≥s admits a trivial expo-
nential dichotomy and {e−λ0(t−s)Φ∞(t, s)}t≥s admits a nontrivial exponential
dichotomy for some λ0 ≥ 0, then Turing diffusion-driven instability for (6)
occurs near (u∗(t), v∗(t)).

Proof. (1) By Theorem 3.4 (1), we have

λ+ < 0, Λ+ ≥ 0.

We first prove that Λ∞+ ≥ 0. Assume that Λ∞+ < 0. Then for given ε > 0 with
Λ∞+ + ε < 0, there is S > 0 such that

ln ‖Φ∞(t, s)‖
t− s

≤ Λ∞+ + ε < 0 ∀ t− s ≥ S, s ≥ S

and hence
‖Φ∞(t, s)‖ ≤ e(Λ∞+ +ε)(t−s) ∀ t− s ≥ S, s ≥ S.

Let
M =

(
1 + sup

0≤t−s≤S,s≥S
‖Φ∞(t, s)‖)e−(Λ∞+ +ε)S .

Then
‖Φ∞(t, s)‖ ≤ Me(Λ∞+ +ε)(t−s) (32)

for t ≥ s ≥ S.
Define {Φ̃∞(t, s)}t≥s by

Φ̃∞(t, s) =





Φ∞(t, s) if t ≥ s ≥ S,

Φ∞(t, S)e(Λ∞+ +ε)(S−s) if t ≥ S > s,

e(Λ∞+ +ε)(t−s) · Id if S > t ≥ s.
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Then {Φ̃∞(t, s)}t≥s is an exponentially bounded evolution family on X. By (32),

‖Φ̃∞(t, s)‖ ≤ Me(Λ∞+ +ε)(t−s) (33)

for t ≥ s.
By Theorem 2.3 (2),

‖Φ̃∞(t + s, s)− Φ(t + s, s)‖ → 0 (34)

as s →∞ uniformly for t in compact subsets of (0,∞). For any given S∗ > 0, let

Φ̃(t, s; S∗) =





Φ(t, s) if t ≥ s ≥ S∗,
Φ(t, S∗) ◦ Φ̃∞(S∗, s) if t ≥ S∗ > s,

Φ̃∞(t, s) if S∗ > t ≥ s.

By Theorem 2.3 (1), for any δn ≥ 0 with δn → 0 as n → ∞ and any Sn → ∞ as
n →∞, one has

‖Φ(Sn + δn, Sn)Φ̃∞(Sn, Sn + δn − 1)− Φ̃∞(Sn + δn, Sn + δn − 1)‖
= ‖(Φ(Sn + δn, Sn)− Φ∞(Sn + δn, Sn)

)
Φ∞(Sn, Sn + δn − 1)‖

→ 0 (35)

as n →∞. (34) and (35) imply that

‖Φ̃∞(1 + s, s)− Φ̃(1 + s, s;S∗)‖ → 0

as S∗ → ∞ uniformly in s ∈ R. By Theorem 2.11, there are S̃∗ > 0, M̃ > 0 and
λ̃ < 0 such that

‖Φ̃(t, s; S∗)‖ ≤ M̃eλ̃(t−s)

for t ≥ s. This implies that

Λ+ = lim sup
t−s→∞,s→∞

ln ‖Φ(t, s)‖
t− s

≤ λ̃ < 0,

which contradicts with Λ+ ≥ 0. Therefore, Λ∞+ ≥ 0.
Next, we prove that λ∞+ < 0. It follows by similar arguments as above (λ+ plays

the role of Λ∞+ and λ∞+ plays that of Λ+).

(2) First assume that λ∞+ < 0 and Λ∞+ > 0. By the similar arguments as in (1),
we have λ+ < 0. We claim that Λ+ > 0. For otherwise, if Λ+ ≤ 0, define Φ̃(t, s)
and Φ̃∞(t, s) by

Φ̃(t, s) = Φ(t, s)e−ε(t−s) for t ≥ s ≥ 0
and

Φ̃∞(t, s) = Φ∞(t, s)e−ε(t−s) for t ≥ s,

where ε = Λ∞+
2 . Then

Λ̃+ := lim sup
t−s→∞,s→∞

ln ‖Φ̃(t, s)‖
t− s

≤ −ε < 0.

Note that
‖Φ̃(1 + s, s)− Φ̃∞(1 + s, s)‖ → 0

as s →∞. Again, by similar arguments as in (1), we have

Λ̃∞+ := lim sup
t−s→∞,s→∞

ln ‖Φ̃∞(t, s)‖
t− s

= Λ∞+ − ε =
Λ∞+
2

< 0.
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This is a contradiction. Therefore Λ+ > 0. By Theorem 3.4 (2), Turing diffusion-
driven instability for (6) occurs near (u∗(t), v∗(t)).

Next, assume that {φ∞(t, s)}t≥s admits a trivial exponential dichotomy and
{e−λ0(t−s)Φ∞(t, s)}t≥s admits a nontrivial exponential dichotomy for some λ0 ≥ 0.
Then we have λ∞+ < 0 and −λ0 + Λ∞− > 0 (hence Λ∞+ > 0). It then follows
from the above arguments that λ+ < 0 and Λ+ > 0. By Theorem 3.4 (2), Turing
diffusion-driven instability for (6) occurs near (u∗(t), v∗(t)).

Observe that if (30) and (31) are periodic in t, then the limits limt−s→∞
ln ‖Φ∞(t,s)‖

t−s ,

limt−s→∞
ln ‖φ∞(t,s)‖

t−s exist, and λ∞ = λ∞+ = limt−s→∞
ln ‖φ∞(t,s)‖

t−s , Λ∞ = Λ∞+ =

limt−s→∞
ln ‖Φ∞(t,s)‖

t−s . In that case, we have the following corollary.

Corollary 1. Assume (H1)-(H5) and (22)-(29). Assume also that the limit systems
(30) and (31) are periodic in t with period T . Then
(1) If Turing diffusion-driven instability for (6) occurs near (u∗(t), v∗(t)), then

λ∞ < 0, Λ∞ ≥ 0.

(2) If
λ∞ < 0, Λ∞ > 0,

then Turing diffusion-driven instability for (6) occurs near (u∗(t), v∗(t)).

The next section is devoted to a discussion of the case where the limit system
(30) is additionally spatially homogeneous.

Remark 3. By using Lyapunov exponents, we have characterised Turing diffusion-
driven instability for time-dependent domains. However, the explicit dependence
of Lyapunov exponents on model parameters is very difficult to find in general.
Classical Turing conditions in terms of model parameters cannot be expected in a
general setting as outlined in the introduction.

4. Applications. In this section, we discuss the application of the results estab-
lished in Section 3 to the cases that the reaction-diffusion equations on the evolving
domains have convection-free and spatially homogeneous limit equations.

Consider (6). Assume that there are u∞(·), v∞(·) ∈ C1
unif(R,R), and a∞j,k(t,y),

b∞j (t, y), c∞j (t,y), c∞0 (t), e∞j (t, y) satisfying (22)-(29). Furthermore, assume




a∞j,k(t,y) ≡ a∞(t)δjk,

b∞j (t,y) ≡ 0,

c∞j (t,y) ≡ 0,

e∞j (t, y) ≡ e∞(t)ν̂j(y).

(36)

Then (30) becomes



∂û
∂t = a∞(t)∆û + (c∞0 (t) + γfu(u∞(t), v∞(t)))û + γfv(u∞(t), v∞(t)))v̂,

y ∈ Ω0, t > s,

∂v̂
∂t = dca∞(t)∆v̂ + γgu(u∞(t), v∞(t))û + (c∞0 (t) + γgv(u∞(t), v∞(t))))v̂,

y ∈ Ω0, t > s,

∑n
j=1 ν̂j(y) ∂û

∂yj
=

∑n
j=1 ν̂j(y) ∂v̂

∂yj
= 0, y ∈ ∂Ω0, t > s.

(37)
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Let λk and ψk(y) (k = 0, 1, 2, · · · ) be the eigenvalues and eigenfunctions of




∇2ψk = −λkψk, y ∈ Ω0,

(n · ∇ψk) = 0, y ∈ ∂Ω0,

(38)

where λ0 = 0 and λk > 0 for k ≥ 1. For given solution (û(t, y), v̂(t, y)) of (37), let

(û(t, y), v̂(t, y)) =
∞∑

k=0

ψk(y) (ûk(t), v̂k(t)) . (39)

Then (û0(t), v̂0(t)) satisfies




dû0
dt = (c∞0 (t) + γfu(u∞(t), v∞(t)))û0 + γfv(u∞(t), v∞(t))v̂0, t > s,

dv̂0
dt = γgu(u∞(t), v∞(t))û0 + (c∞0 (t) + γgv(u∞(t), v∞(t)))v̂0, t > s,

(40)

and (ûk(t), v̂k(t)) satisfies




dûk

dt = −a∞(t)λkûk + (c∞0 (t) + γfu(u∞(t), v∞(t)))ûk + γfv(u∞(t), v∞(t)))v̂k,

t > s,

dv̂k

dt = −dca∞(t)λkv̂k + γgu(u∞(t), v∞(t))ûk + (c∞0 (t) + γgv(u∞(t), v∞(t))))v̂k,

t > s,

(41)
for k = 1, 2, · · · .

Let

φ∞0 (t, s)(u, v) = (û0(t; s, u, v), v̂0(t; s, u, v))

where (û0(t; s, u, v), v̂0(t; s, u, v)) is the solution of (40) with (û0(s; s, u, v), v̂0(s; s, u, v)) =
(u, v) ∈ R2 and let

φ∞k (t, s)(u, v) = (ûk(t; s, u, v), v̂k(t; s, u, v))

where (ûk(t; s, u, v), v̂k(t; s, u, v)) is the solution of (41) with (ûk(s; s, u, v), v̂k(s; s, u, v)) =
(u, v) ∈ R2. Let

λ∞0,+ = lim sup
t−s→∞,s→∞

ln ‖φ∞0 (t, s)‖
t− s

and

λ∞k,+ = lim sup
t−s→∞,s→∞

ln ‖φ∞k (t, s)‖
t− s

be the forward top Lyapunov exponent of (40) and (41), respectively. Note that
λ∞0,+ = λ∞+ .

Theorem 4.1. Assume (H1)-(H5), (22)-(29), and (36).

(1) If Turing diffusion-driven instability for (6) occurs near (u∗(t), v∗(t)), then
λ∞0,+ < 0 and λ∞k,+ ≥ 0 for some k ≥ 1.

(2) If λ∞0,+ < 0 and λ∞k,+ > 0 for some k ≥ 1, then Turing diffusion-driven
instability for (6) occurs near (u∗(t), v∗(t)).
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Proof. (1) By Theorem 3.5 (1), we have λ∞+ < 0 and Λ∞+ ≥ 0. Hence λ∞0,+ = λ∞+ < 0.
Next we prove that λ∞k,+ ≥ 0 for some k ≥ 1.

Observe that there is M > 0 such that for any given k ≥ 1 and any solution
(ûk(t), v̂k(t)) of (41), the following hold

|ûk(t)| ≤ e−λk

R t
s

a∞(r)dr|ûk(s)|+ M

∫ t

s

e−λk

R t
τ

a∞(r)dr
(|ûk(τ)|+ |v̂k(τ)|)dτ

and

|v̂k(t)| ≤ e−dcλk

R t
s

a∞(r)dr|ûk(s)|+ M

∫ t

s

e−dcλk

R t
τ

a∞(r)dr
(|ûk(τ)|+ |v̂k(τ)|)dτ

for all t ≥ s. Hence

|ûk(t)|+ |v̂k(t)| ≤ e−d∗cλk

R t
s

a∞(r)dr
(|ûk(s)|+

+ |ûk(s)|) + M

∫ t

s

e−d∗cλk

R t
τ

a∞(r)dr
(|ûk(τ)|+ |v̂k(τ)|)dτ

for all t ≥ s, where d∗c = min{1, dc}. It then follows from Gronwall’s inequality that

|ûk(t)|+ |v̂k(t)| ≤ eM(t−s)−d∗cλk

R t
s

a∞(r)dr
(|ûk(s)|+ |ûk(s)|) (42)

for all t ≥ s. Therefore there are λ∗ > 0 and S∗,K∗ > 0 such that for any k ≥ K∗,

|ûk(t)|+ |v̂k(t)| ≤ e−λ∗(t−s)
(|ûk(s)|+ |ûk(s)|) ∀t ≥ s + S∗. (43)

Assume that λ∞k,+ < 0 for every k ≥ 1. Then there are λ∗∗ > 0 and S∗∗ > 0 such
that

|ûk(t)|+ |v̂k(t)| ≤ e−λ∗∗(t−s)
(|ûk(s)|+ |ûk(s)|) ∀t ≥ s + S∗∗ (44)

for 1 ≤ k ≤ K∗. By (43) and (44),

Λ∞+ ≤ −min{λ∗, λ∗∗} < 0.

This is a contradiction. Therefore, λ∞k,+ ≥ 0 for some k ≥ 1.

(2) Note that Λ∞+ ≥ λ∞+,k for any k ≥ 1. If λ∞0,+ < 0 and λ∞k,+ > 0 for some k ≥ 1,
then λ∞+ = λ∞0,+ < 0 and Λ∞+ > 0. By Theorem 3.5 (2), Turing diffusion-driven
instability for (6) occurs near (u∗(t), v∗(t)).

In the following, we consider two special cases, that is, the case that the limit
system is time-periodic and the case that the limit system is time-independent.
First we assume that the limit system is time-periodic, that is, there is T > 0 such
that 




a∞(t + T ) = a∞(t),
c∞0 (t + T ) = c∞0 (t),
(u∞(t + T ), v∞(t + T )) = (u∞(t), v∞(t)).

(45)

Let µ0,1, µ0,2 be the eigenvalues of φ∞0 (T, 0) (i.e. Floquet or characteristic multi-
pliers of (40)) and µ∞k,1 and µ∞k,2 be the eigenvalues of φ∞k (T, 0) (i.e. Floquet or
characteristic multipliers of (41)), respectively.

Corollary 2. Assume the conditions in Theorem 4.1 and (45).
(1) If Turing diffusion-driven instability for (6) occurs near (u∗(t), v∗(t)), then

max{|µ0,1|, |µ0,2|} < 1 and max{|µk,1|, |µk,2|} ≥ 1 for some k ≥ 1.
(2) If max{|µ0,1|, |µ0,2|} < 1 and max{|µk,1|, |µk,2|} > 1 for some k ≥ 1, then

Turing diffusion-driven instability for (6) occurs near (u∗(t), v∗(t)).
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Proof. It follows from Theorem 4.1 and the fact that{
λ+

0 = 1
T ln[max{|µ0,1|, |µ0,2|}],

λ+
k = 1

T ln[max{|µk,1|, |µk,2|}]
for k = 1, 2, · · · .

Next we assume that the limit system is time-independent and c∞0 (t) ≡ 0, that
is, 




a∞(t) ≡ a∞,

c∞0 (t) ≡ 0,

(u∞(t), v∞(t)) ≡ (u∞, v∞).
(46)

Note that under the assumption (36) and a∞(t) ≡ a∞, (u∞(t), v∞(t)) ≡ (u∞, v∞),
it is natural to assume c∞0 (t) ≡ 0.

Remark 4. Conditions (46) hold for the case of linear uniform isotropic logistic
growth [16].

Assuming that conditions (46) hold, we provide explicit necessary and suffi-
cient conditions for the Turing diffusion-driven instability to occurs for (6) near
(u∗(t), v∗(t)). To this end, let

b(λ) = a∞(1 + dc)λ− γ (fu + gv) , (47)

c(λ) = a2
∞dcλ

2 − λ
[
γa∞(dcfu + gv)

]
+ γ2(fugv − fvgu). (48)

Let

p2 = a2
∞dc > 0,

p1 = −γa∞(dcfu + gv),

p0 = c(0). (49)

In the above, the subscripts u, v denote partial differentiation and fu, fv, gu and
gv are evaluated at (u∞, v∞). If p1 < 0 and p2

1 − 4a2
∞dcc(0) > 0, let k2

± be such
that

k2
± =

−p1 ±
√

p2
1 − 4a2∞dcc(0)

2a2∞dc
. (50)

Corollary 3. (1) Assuming conditions in Theorem 4.1 and (46) hold, the neces-
sary conditions for a Turing diffusively-driven instability corresponding to the
system (6) near (u∗(t), v∗(t)) are given by

γ(fu + gv) < 0, (51)

c(0) = γ2(fu gv − fv gu) > 0, (52)

− p1

a∞
= γ(dcfu + gv) > 0, (53)

[
γ(dcfu + gv)

]2

− 4dc

[
γ2(fugv − fvgu)

]
> 0, (54)

where the subscripts u, v denote partial differentiation, with the Jacobian
components and fu, fv, gu and gv are evaluated at (u∞, v∞).

(2) In addition to conditions in (1), if there is some k such that

λk ∈
(
k2
−, k2

+

)
,

then Turing diffusively-driven instability (6) near (u∗(t), v∗(t)) occurs.



22 GEORG HETZER, ANOTIDA MADZVAMUSE, AND WENXIAN SHEN

Proof. (1) Suppose that µ is an eigenvalue of the associated eigenvalue problem of
(37) and

∑∞
k=0 ψk(y)wk is a corresponding eigenfunction. Then

(û, v̂) = eµt
∞∑

k=0

ψk(y)wk (55)

is a solution of (37). By (40) and (41), we have

µIwk = −a∞λkDwk + JF wk, k ≥ 0, (56)

where D =
(

1 0
0 d∞

)
, and I is the identity matrix. If wk is a non-zero vector, then

∣∣∣∣
µ + a∞λk − γfu −γfv

−γgu µ + dca∞λk − γfu

∣∣∣∣ = 0. (57)

It can be shown that the characteristic equation is given by

µ2 + b(λk)µ + c(λk) = 0. (58)

Solving equation (58) yields µ = µ+
k or µ−k , where

2µ±k = −b(λk)±
√

b2(λk)− 4c(λk). (59)

By Theorem 4.1, if Turing diffusively-driven instability (6) near (u∗(t), v∗(t))
occurs, then Re

(
µ+

0

)
< 0 and there is some k ≥ 1 such that Re

(
µ+

k

) ≥ 0.
Observe that in the absence of diffusion, i.e. when k = 0, Re

(
µ+

0

)
< 0 if and

only if

b(0) > 0 =⇒ γ (fu + gv) < 0, (60)

c(0) > 0 =⇒ γ2(fugv − fvgu) > 0, (61)

that is, (51) and (52) hold.
In the presence of diffusion we require that Re

(
µ+

k

) ≥ 0 for some k ≥ 1. It
can be shown easily that the coefficient of µ in the characteristic equation (58) is
positive and is given by

b(λ) = a∞(1 + dc)λk + b(0) > 0.

Hence, if growth occurs, we must have c(λk) ≤ 0 for some k ≥ 1. Expressing c(λk)
as a quadratic polynomial we have

c(λk) = p2λ
2
k + p1λk + p0 (62)

We therefore require that
γa∞(dcfu + gv) > 0, (63)

that is, (53) holds, to guarantee that c(λk) ≤ 0 for some k ≥ 1. For diffusively-driven
instability to occur, we also require that there exists real k2

± such that c(k2
±) = 0

and these can be easily shown to be given by

k2
± =

−p1 ±
√

p2
1 − 4a2∞dcc(0)

2a2∞dc
.

Thus, requiring c(λk) ≤ 0 entails p2
1 − 4a2

∞dcc(0) > 0, thereby yielding the last
condition, that is, (54), or for diffusively-driven instability given by

[
γa∞(dcfu + gv)

]2

− 4a2
∞dc

[
γ2(fugv − fvgu)

]
> 0. (64)

(2) Under the conditions in (1), p1 < 0 and p2
1 − 4a2

∞dcc(0) > 0. If there is
λk ∈ (k2

−, k2
+), then c(λk) < 0. This implies that there is µk > 0 and wk such that
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(û, v̂) = eµktψk(y)wk is a solution of (41). By Theorem 4.1, Turing diffusively-
driven instability (6) near (u∗(t), v∗(t)) occurs.

Remark 5. Note that the above conditions generalize the classic results for fixed
domains [38, 10, 27] in the case of limiting systems. In addition, the inequalities
(51)–(54) define a time-independent domain in parameter space, generalizing the
Turing space.

Remark 6. It is not at all a trivial process to formulate Turing diffusion-driven
instability conditions in terms of reaction kinetics and model parameter values, if
time-dependent domains (periodic or otherwise) are considered and c∞0 (t) 6= 0 and
a∞(t) 6= 0. This will be the subject of future research for scientifically relevant
special cases.

5. Conclusion and Discussions. In biological pattern formation, the theoretical
stability analysis of reaction-diffusion equations (RDEs) on continuously deforming
domains and evolving surfaces has remained largely elusive. Despite a considerable
amount of research in this area, progress has been limited to special types of growth
evolution. For example, as the first step in considering the Turing diffusively-driven
instability analysis on growing domains, the RDEs are transformed into RDEs on
fixed domains, but with time-dependence in the diffusion and dilution terms [5, 29].
These nonautonomous terms however typically invalidate standard linear stability
analysis via plane wave decompositions, even with the common simplification that
the domain growth is assumed to be isotropic. In a recent paper by Madzvamuse
et al. [16] theoretical stability analysis was successfully studied using asymptotic
theory for the case of continuously deforming domains under the assumptions of
slow growth. In that paper, domain-induced Turing diffusion-driven instability con-
ditions were stated and proved when c0(t) ∼ O(ε) for slow, isotropic domain growth.
In this paper we extend significantly these results by considering the long-time be-
haviour of the solutions of the RDEs. One might consider this as the limiting case
for the asymptotic analysis.

By using the general evolution semigroup or evolution family theory [1, 4, 34],
Turing diffusion-driven instability around a spatially homogeneous solution (time-
dependent manifold) is characterized by Lyapunov exponents of the evolution family
associated to the linearized system around the time-dependent manifold. This is
the main result of our paper. In order to state and prove this result, we re-defined
the concept of diffusion-driven instability on time-dependent domains in terms of
Lyapunov exponents. Furthermore, we state precisely under what conditions our
results can be reduced to those already known and derived on fixed domains where
the eigenvalue theory is used. Our analysis allows for the inclusion to study limiting
systems, i.e. when domain growth saturates to a final fixed domain. This scenario
is biologically plausible since most species grow to a finite limiting size as opposed
to an infinite domain size. For this case, we state and prove the corresponding
diffusion-driven instability conditions. The key difference between these results and
those obtained on fixed domain is that the diffusion coefficient is scaled by the
limiting domain growth profile.

Our analysis identifies two important processes closely related which influence the
type of diffusion-driven instability conditions one obtains. These are the diffusion of
the chemical concentrations or molecules and the flow field of the evolving domain.
For the case of linear isotropic growth of the domain, one of these terms vanishes
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and this is the case for linear, exponential and logistic growth functions. If the
diffusion term is nonzero, and the divergence of the flow field is zero, we stated and
proved the conditions for diffusion-driven instability and these are similar to those
obtained on a fixed domain. On the other hand, assuming that both terms are
nonzero, the conditions for diffusion-driven instability may depend on the growth
profile as well as the kinetic parameter values. Although we have not been able to
find a biological example when both terms are nonzero, these conditions have been
shown to hold when domain growth is slow, linear and isotropic [16]. Under these
assumptions, the need for short-range activation and long-range inhibition can be
relaxed. Hence a wider range of biological morphogen pairings have the potential
to induce Turing patterning on a growing domain compared to a fixed domain. It
is now possible to suggest and investigate, for example, activator-activator or short-
range inhibition, long-range activation as paradigms for biological pattern formation
on growing domains.

In heart physiology, the domain changes periodically. We have extended Turing
diffusion-driven instability analysis to periodic continuously deforming domains,
with period say, T . For this case, we state under what conditions diffusion-driven
instability occurs. To our knowledge, this is the first time such a result has been
stated and proved.

This paper has established theoretical foundations to carry out numerical studies
and computational experiments on domains which either saturate to a final limiting
fixed size or grow and contract periodically. In developmental biology, applications
of this theory could be used to study realistic growth profiles whose growth functions
possess a finite limit or have periodic behaviour.
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