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Abstract Stochastic matrix projection models are widely used to model
age- or stage-structured populations with vital rates that fluctuate randomly
over time. Practical applications of these models rest on qualitative proper-
ties such as the existence of a long term population growth rate, asymptotic
log-normality of total population size, and weak ergodicity of population struc-
ture. We show here that these properties are shared by a general stochastic
integral projection model, by using results in (Eveson in D. Phil. Thesis, Uni-
versity of Sussex, 1991, Eveson in Proc. Lond. Math. Soc. 70, 411–440, 1993)
to extend the approach in (Lange and Holmes in J. Appl. Prob. 18, 325–344,
1981). Integral projection models allow individuals to be cross-classified by
multiple attributes, either discrete or continuous, and allow the classification
to change during the life cycle. These features are present in plant populations
with size and age as important predictors of individual fate, populations with a
persistent bank of dormant seeds or eggs, and animal species with complex life
cycles. We also present a case-study based on a 6-year field study of the Illyrian
thistle, Onopordum illyricum, to demonstrate how easily a stochastic integral
model can be parameterized from field data and then applied using familiar
matrix software and methods. Thistle demography is affected by multiple traits
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(size, age and a latent “quality” variable), which would be difficult to accomo-
date in a classical matrix model. We use the model to explore the evolution of
size- and age-dependent flowering using an evolutionarily stable strategy (ESS)
approach. We find close agreement between the observed flowering behavior
and the predicted ESS from the stochastic model, whereas the ESS predicted
from a deterministic version of the model is very different from observed flow-
ering behavior. These results strongly suggest that the flowering strategy in O.
illyricum is an adaptation to random between-year variation in vital rates.

Keywords Stochastic demography · Integral projection models · Structured
populations · Hilbert’s projective metrix · Onopordum illyricum

Mathematics Subject Classification (2000) 92D25 · 60H25 · 37H15 · 47B65

1 Introduction

Matrix projection models are probably the most widely used model for struc-
tured biological populations [3,38,14], especially in data-limited situations
where it is important to have a simple parameter-sparse model. The deter-
ministic model is

n(t + 1) = An(t), (1)

which generalizes the classical Leslie matrix model for an age-structured pop-
ulation. The population vector n(t) lists the numbers of individuals in a finite
set of categories (stages of the life cycle, size classes, etc.) and the (i, j)th entry
in the projection matrix A gives the average per-capita contribution from indi-
viduals in category j at time t to category i at time t + 1, either by survival
or reproduction. Relatively simple matrix models have figured prominently in
management planning for endangered species (e.g. sea turtles [8,27,28], har-
vested salmon stocks [30], plants [36]) and are coming into use for invasive
species management (e.g., [35,46,47]).

Population forecasting and risk assessment require a recognition that survival
and fecundity rates in most natural populations vary greatly over time. Admit-
ting this variability into (1) leads to the stochastic matrix projection model

n(t + 1) = A(t)n(t) (2)

where {A(t), t = 0, 1, 2, . . .} is a stochastic sequence of non-negative matrices.
These models are widely used to estimate extinction risk in threatened and
endangered species (e.g. [3,18,38,36]) and to study the evolution of life histo-
ries in temporally varying environments (e.g. [1,49]).

Applications of model (2) depend on “stable population growth”: properties
associated with the existence of a long-term population growth rate and popu-
lation structure. For the deterministic model (1) with a power-positive matrix
A, the long-term population trend (by the Perron–Frobenius Theorem) is
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lim
t→∞ t−1 log ‖n(t)‖1 = λ (3)

and

lim
t→∞ n(t)/ ‖n(t)‖1 = w/ ‖w‖1 . (4)

Here λ is the dominant eigenvalue of the projection matrix A, w is the corre-
sponding right eigenvector [3,38], and ‖w‖1 denotes the L1 norm

‖w‖1 = ‖(w1, w2, . . . , wn)‖1 =
n∑

i=1

|wi|.

Under suitable assumptions the stochastic model (2) still has (3) with λ almost
surely constant [48]. In addition, a Central Limit Theorem for fluctuations
about the long-term growth rate implies that the total population ‖n(t)‖1 has an
asymptotically lognormal distribution. Instead of (4) there is asymptotic con-
vergence to a joint stationary distribution for A(t) and the population structure
u(t) = n(t)/ ‖n(t)‖1.

A matrix model is based on classifying individuals into a finite set of discrete
categories. This is natural for age-based population modeling, but in many
species the variables that most strongly affect individual demographic perfor-
mance vary continuously. In fact most of the empirical applications of matrix
population models in the standard monograph [3] are based on some contin-
uous measure of individual size. An integral projection model (IPM) allows
individuals to be classified by continuous variables, or by a mix of continuous
and discrete (e.g., size and age). In the simplest case of a single continuous
individual-level variable x ∈ [L, U], the deterministic model is

n(y, t + 1) =
U∫

L

K(y, x)n(x, t)dx (5)

where the kernel K(y, x) gives the contribution of type-x individuals at time t to
type-y individuals at time t + 1. Much of the basic theory for the deterministic
matrix model (1) has recently been extended to a general class of deterministic
IPMs [15]. A stochastic IPM has randomly time-varying kernels; in empirical
applications these are specified typically as K(y, x, θ(t)) where θ(t) is a vector-
valued stochastic process representing variation over time in the environmental
conditions affecting the population.

When individual growth, survival, and birth rates are smooth functions of
continuously varying traits, an IPM is a direct translation of statistical models
for demographic rates [15]. As a result, when multiple individual-level traits
are important an IPM can be parameterized much more parsimoniously than
a matrix model [15]. Many situations that previously required individual-based
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simulations can be handled with an IPM using standard matrix software and
established analytic and numerical methods for structured population mod-
els. Recent applications include [4,5,42,44,43]. An IPM can also be used to
model the dynamics of physiologically structured populations in discrete time.
This may be a useful alternative to the typical PDE models for physiologi-
cally structured populations, or more general continuous-time integral models
[9,10], when a model is being parameterized from individual-level observations
(A. de Roos, personal communication). Because data necessarily come at a dis-
crete set of sampling times, a discrete-time model can be fitted without having
to solve the inverse problem of inferring unmeasured continuous-time rates
from discrete-time observations.

In this paper, our first purpose is to show that the “stable population growth”
properties of stochastic matrix models all continue to hold in a general density-
independent stochastic integral projection model. The basis for our analysis is
Lange and Holmes’s paper [34] on stochastic matrix models. In contrast to previ-
ous treatments [6,7,19] Lange and Holmes avoided matrix-specific calculations
by using compactness arguments and the fact that multiplication by a positive
matrix is a contraction map under Hilbert’s projective metric (defined below).
This resembles Birkhoff’s approach to positive integral operators [2]. Using
recent work of Eveson on the projective metric for positive operators [16,17],
we show that the contractive properties used in [34] also hold for stochastic
IPMs. After that the proofs in [34] apply almost verbatim.

Our second purpose is to demonstrate how the mathematical results can be
used to help understand natural systems. We extend a size-, age- and quality-
dependent IPM for the thistle Onopordum illyricum [15] to include stochastic
variation in demography. This case-study shows how simple it is to completely
parametrize a stochastic IPM from real field data, using standard statistical
software for fitting regression models. We then use the model to explore the
evolution of size- and age-dependent flowering in Onopordum using the evo-
lutionarily stable strategy (ESS) approach. This application also demonstrates
how the mechanics of working with a fitted IPM can be accomplished using
standard matrix methods and software.

The justification for this paper is the utility of the results, rather than any
beauty or depth to the mathematics. Subsequent papers (in preparation) will
focus on numerical methods, applications to population forecasting and risk
assessment (including sensitivity/elasticity analysis and small-fluctuations
approximations), and additional aspects of model construction such as methods
for parameterizing models that include between-year correlations in environ-
mental variables affecting demographic rates.

2 General model and assumptions

The basic premise of an integral projection model is that the state of an individ-
ual during its lifetime follows a Markov chain on some space X, with possibly
time-varying transition probabilities. For example,
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– In many plant populations age and size are both important predictors for
survival, growth and fecundity. If [La, Ua] is the range of possible sizes at
age a and M the maximum possible age, then X would be the set of intervals
�a = [La, Ua], a = 0, 1, 2, . . .M, each sitting in its own copy of the real line.

– If a species has a persistent bank of dormant seeds, we might add to X a
discrete point representing the state of being a dormant seed, a series of
points representing dormant seeds of different ages, a continuous interval
representing seeds buried at different depths, or a set of intervals for a
depth × age classification of buried seeds.

– If individual performance is affected by a second continuous trait—perhaps
a measure of individual condition or local habitat quality – the intervals
[La, Ua] are replaced by rectangles [La, Ua] × [ma, Ma] representing possi-
ble joint values of size and the second trait.

Reproduction is also Markovian: at each time t the number of offspring
produced by an individual and the initial states of offspring are chosen from
probability distributions that depend on the parent’s state at time t but not on
the parent’s prior history. However, an IPM is a population-level mean field
model: it ignores demographic stochasticity and tracks the expected number of
individuals and their state distribution.

A nontechnical statement of our general model is as follows. In the basic
model (5) the individual-level state space is an interval (e.g., a range of possible
values for body size or condition). In our general model the set X of possible
individual states can include any finite set of points {xj}n

j=1, closed intervals
[Lj, Uj], rectangles [Lj, Uj] × [mj, Mj], cubes, etc. The population dynamics are
governed by a set of continuous kernels Ki,j(y, x) representing all possible tran-
sitions (survival, growth, fecundity) within and among the various components
of the state space. The model is made stochastic by introducing an environment
process θ(t) that affects demographic rates. The kernels are then Ki,j(y, x, θ(t)),
which can be (loosely) interpreted as giving the number of state-y individuals in
the ith component of X at time t+1, per state-x individual in the jth component at
time t, when the environment state in year t is θ(t). We assume that the environ-
ment sequence θ(t) is stationary (the probability distribution of different envi-
ronment states is the same each year) and ergodic (the distant future becomes
completely independent of the present). The kernels must be power-positive,
meaning that there is a time interval m such that the m-step kernels represent-
ing the population changes over that time interval are positive on the entire
state space, for any possible values of the environment sequence. As in matrix
models, power-positivity is only possible if post-reproductive stages or states
are removed (those without any chance of reproducing now or in the future)—
the population is modeled as if such individuals are already dead. However,
as in [34] post-reproductives can be included under a suitable power-positivity
assumption on the kernels for potentially reproductive states. Similarly, our
results also hold for “power-smooth” models where the m-step population
dynamics are described by smooth kernels, even if the one-step dynamics
are not. This situation often occurs if some individual-level state variables
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remain constant over an individual’s lifetime. These extensions are explained in
Sect. 3.1, which is unavoidably somewhat technical.

In the rest of this section we give a technical and slightly more general
statement of our model and assumptions. Readers without the necessary back-
ground (measure-theoretic probability and analysis) can go directly from here to
Sect. 4 where we present the conclusions.

The set X of possible individual states is assumed to be a compact met-
ric space; this is general enough for virtually any empirically-based structured
population model [15]. The IPM is defined relative to a measure space (X, B,µ)
where B is the Borel σ -field on X and µ is a finite measure. The state of the
population at time t is given by a nonnegative function n(x, t) in L1(X), the space
of measurable functions f (x) such that

∫
X |f (x)|dµ(x) < ∞ (here and below we

use L1(X) as a shorthand for L1(X, B,µ)). The interpretation of n(x, t) is that∫
A n(x, t)dµ(x) is the number of individuals whose state at time t is in the set A.

The population dynamics are specified by projection kernels Kt(y, x) which
give the expected contribution of a state-x individual at time t to state-y indi-
viduals at time t + 1. The general time-varying IPM is then

n(y, t + 1) =
∫

X

Kt(y, x)n(x, t)dµ(x). (6)

The kernel Kt typically can be decomposed as Kt = Pt + Ft where Pt represents
survival and state transitions by survivors, and Ft represents fecundity, but these
might be decomposed further (e.g., sexual versus vegetative reproduction).

Model (6) is slightly more general than our formulation of deterministic IPMs
in [15] in that the kernels can be defined relative to any finite Borel measure,
but everything in [15] still applies (with minor notation changes) in this setting.
The model could be generalized further by using finite measures to describe the
population state, as in [9,10,20]. However this would cost us the ability to give
conditions for long-term stable growth that are relatively simple to state and
interpret (see in particular the discussion of eigenvector existence and unique-
ness for the “forward process” in Sect. 4.3 of [20]); we return to this issue in the
Discussion.

Compactness of X is not just for convenience. IPMs on an unbounded state
space are more like models for spatial spread on an infinite domain, and can
have travelling wave solutions rather than the convergence to stable structure
typical of matrix population models [15]. A compact state space will typically
result if the model is constrained so that it cannot produce individuals too dis-
similar from those actually observed in the population [15]. For example, the
modeler can truncate the state space and transition kernels at limits placed
several standard deviations beyond the range of observations.

The model (6) is density-independent, because the population state has no
effect on the projection kernel. Density-dependent models would be expected
to behave very differently, typically converging to a stationary distribution for n
rather than a stable pattern of population growth. Hardin et al. [24], extending
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results for unstructured population models in [13], prove that this occurs in
density-dependent integral models representing spatially distributed popula-
tions. However several of their assumptions typically would not hold in models
for populations structured by age, size or individual-level physiological traits.
The results of [24] can probably be extended to more general density-dependent
IPMs, but we leave that for another paper.

Stable population growth requires some assumptions about the projection
kernels.

1. Continuity The kernels are of the form Kt(y, x) = K(y, x, θ(t)) for θ(t)
in a compact metric space �, where K(y, x, θ) is a continuous real-valued
nonnegative function on X × X × �. We write K(θ) as shorthand for the
kernel K(·, ·, θ) and K(θ) for the corresponding operator.

2. Stationarity The sequence of environment states {θ(t), t = . . . , −1, 0, 1, 2,
. . .} is generated by a stationary ergodic stochastic process.

3. Power positivity There exists an integer m > 0 such that

K(θm) ◦ K(θm−1) ◦ · · · ◦ K(θ1) � 0 (7)

whenever θ1, θ2, · · · , θm are all in �. Here “� 0” means that the func-
tion is everywhere positive, and ◦ indicates the composition operator that
corresponds to iteration of (6), i.e.

(K2 ◦ K1)(y, x) =
∫

X

K2(y, z)K1(z, x)dµ(z). (8)

It follows from (7) that

∫

X

K(y, x, θ)dµ(x) > 0 (9)

for all y ∈ X and θ ∈ � (if this were to fail for some y0, θ0, then (7) would
fail if θm = θ0). Invoking compactness and continuity, it follows that there exist
positive constants αi,βi such that

α1 ≤ K(θm) ◦ K(θm−1) ◦ · · · ◦ K(θ1) ≤ α2 (10)

whenever θ1, θ2, . . . , θm are all in �, and

β1 ≤
∫

X

K(y, x, θ)dµ(x) ≤ β2 (11)

for all y ∈ X and θ ∈ �. Equation (10) corresponds to the typical assumption
for stochastic matrix models that the matrices lie almost surely in an ergodic set.
The kernel depends on the choice of measure µ. Careful choice of µ may be
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important in some cases, because it may affect whether or not the kernels are
power-positive. For notational convenience, define � = �m and for ψ ∈ � we
let Q(ψ) and Q(ψ) denote the operator and kernel, respectively, corresponding
to the kernel iterate in (7).

For asymptotic lognormality of the total population size, the environment
process has to “forget its past” quickly enough. Specifically, let Fk

j , j ≤ k be the
σ -algebra generated by (θ(j), θ(j + 1), . . . , θ(k)) and

φ(n) = sup
k

sup
{
|P(B|A)− P(B)| : A ∈ Fk−∞, B ∈ F∞

k+n, P(A) > 0
}

. (12)

If

∞∑

n=1

φ
1/2
n < ∞ (13)

then the environment process is said to be uniform mixing.

3 Contractive properties

In this section, we show that iteration of the model eventually produces uniform
geometric contraction in Hilbert’s projective metric (defined below), which
implies stable population growth. This section is the most technical part of the
paper. It is safe to skip it and go directly to the conclusions and applications
in Sect. 4 and thereafter, unless you want to check the proofs. The conclusions
here are essentially the same as ([34], Sect. 3) for the stochastic matrix model.
However the infinite-dimensional case requires some new arguments that do
not use special properties of Euclidean space such as compactness of the unit
sphere.

Because of compactness and continuity the iteration (6) takes L1(X) into
C(X), the space of bounded continuous functions on X–note that C(X) ⊂ L1(X)
under our assumptions. We can therefore regard the model as a linear opera-
tor on either L1(X) or on C(X). Unless otherwise noted, functions on X are
assumed to lie in C(X) and operators (on spaces of functions mapping X → R)
are assumed to map all of L1(X) into C(X). We always use the sup-norm
‖f‖sup = sup{|f (x)| : x ∈ X} on C(X) and the partial order induced by the cone
C+(X) of nonnegative functions, i.e. f ≥ g means that f − g ∈ C+(X). For this
section, without loss of generality we assume that µ(X)=1.

For the case of interest here, C(X) ordered by C+(X), the projective metric
ρ(f , g) can be defined as follows (see e.g. [17] for the general definition). For
f , g ∈ C(X) let

S(f , g) = sup{(f (x)/g(x) : x ∈ X}, I(f , g) = inf{f (x)/g(x) : x ∈ X}.
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If I(f , g) > 0 and S(f , g) is finite then f and g are called comparable and their
projective distance is defined to be

ρ(f , g) = log
S(f , g)
I(f , g)

. (14)

Actually ρ is just a semi-metric because ρ(f , cf ) = 0 for any positive scalar
c; more generally ρ(cf , dg) = ρ(f , g) if c, d > 0 and f and g are comparable.
However, ρ can induce a genuine metric on subsets that cannot contain two
distinct multiples of the same function. Let C++(X) denote the set of every-
where-positive functions in C(X) and let

� = {f ∈ C++(X) : ‖f‖1 = 1}. (15)

Lemma 1 ρ(f , g) defines a metric on � which is equivalent to ‖f − g‖sup, in the
sense that convergence in either metric implies convergence in the other for a
sequence of functions in �.

Proof This is a conclusion of Theorem 1.2.1 in [17] so we just need to verify
the necessary assumptions. See pp. 412–414 in [17] for the definitions of any
unfamiliar terms. We are working in the space B = C(X) ordered by the cone
V = C+(X). We need to verify that

1. C+(X) is an almost Archimedean cone in C(X).
2. Every pair of elements in � is regularly comparable.
3. � is a subset of a component Cu of C+(X), such that the cone Vu induced

by Cu is normal in the subspace Bu generated by Cu.
4. Vu has nonempty interior in Bu.

The cone C+(X) is normal and therefore almost Archimedean, because
0 ≤ f ≤ g implies that ‖f‖sup ≤ ‖g‖sup. All functions in � have a finite,
positive infimum and supremum, hence all pairs of functions in � are compa-
rable. If f , g ∈ � either they are equal–in which case I(f , g) = S(f , g) = 1–or
else there is an x0 at which one of them is strictly smaller than the other, say
f (x0) < g(x0), so there must also be an x1 at which the reverse is true. In that
case I(f , g) < 1 < S(f , g). Consequently, all f , g ∈ � have I(f , g) ≤ 1 ≤ S(f , g),
which is the definition of being regularly comparable.

For the last two items listed above we choose u(x) ≡ 1. Then

– The component Cu is by definition the set of functions in V comparable to
u, which is C++(X).

– The subspace Bu is the set of functions f ∈ B such that −ru ≤ f ≤ ru for
some r ≥ 0 ([17], p. 412) which is all of C(X).

– The cone induced by Cu is by definition Vu = V ∩ Bu, which is C+(X).

So � ⊂ Cu by definition. Vu = C+(X) is normal in Bu = C(X) as noted above,
and its interior in Bu under the sup-norm is clearly nonempty. �
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There are also some explicit inequalities between ρ and other metrics. For
example, the cone of non-negative functions is normal in both L1(X) and C(X),
so Theorem 3.4.4 of [16] implies that for all f , g ∈ �

‖f − g‖1 ≤ 3(eρ(f ,g) − 1),

‖f − g‖sup ≤ 3 min{‖f‖sup , ‖g‖sup}(eρ(f ,g) − 1). (16)

In the opposite direction, applying Theorem 3.4.1 of [16] to C(X) ordered by
C+(X), we have that if f , g ∈ C++(X) and ‖f − g‖sup < inf(g) then

ρ(f , g) ≤ log
inf(g)+ ‖f − g‖sup

inf(g)− ‖f − g‖sup
. (17)

Contraction properties are based on Lemmas below showing that the normal-
ized population distribution eventually enters and then remains in a compact
set. Define T � n = Tn/ ‖Tn‖1 for n �= 0. The dynamics of the population
structure are then

ut+1 = K(θt)� ut. (18)

Let W = {
n ∈ C+(X) : ‖n‖1 = 1

}
, and

U = {Q(ψ)� w : ψ ∈ �, w ∈ W} = {
K(θm)� K(θm−1)� · · · K(θ1)�
w : θ1, θ2, . . . , θm ∈ �, w ∈ W} .

The population structure n/ ‖n‖1 enters U within m time steps, and remains in
U thereafter. The compact set is Ū, the closure of U in C(X).

Lemma 2 If u ∈ Ū then α1
α2

≤ u(x) ≤ α2
α1

for all x ∈ X.

Proof If u ∈ U then u = Q(ψ)w/ ‖Q(ψ)w‖1 for some ψ ∈ �, w ∈ W. Writing
out

Q(ψ)w(x) =
∫

X

Q(x, z,ψ)w(z)dµ(z)

and using (10) we have that

α1 ≤ Q(ψ)w(x) ≤ α2 (19)

for all x ∈ X. Integrating over X gives

α1 ≤ ‖Q(ψ)w‖1 ≤ α2, (20)

so the lemma holds for all u ∈ U. Convergence in C(X) implies pointwise
convergence, so the lemma also holds for all ū ∈ Ū. �
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Lemma 3 Ū is compact in C(X).

Proof U is pointwise compact by the last lemma, so by the Arzela–Ascoli
Theorem we only need to show that the elements of U are equicontinuous.
Consider the function

M(x, y, z,ψ) = |Q(z, x,ψ)− Q(y, x,ψ)| (21)

on X3 × �. M is continuous on a compact metric space, therefore uniformly
continuous. Let δ(x, y) denote the metric on X and define

f (r) = sup {|Q(z, x,ψ)− Q(y, x,ψ)| : ψ ∈ �, x, y, z ∈ X, δ(y, z) ≤ r} . (22)

Uniform continuity of M implies that f is finite and f (r) → 0 as r → 0.
If u ∈ U we have u = Q(ψ)� w for some ψ ∈ �, w ∈ W. Let ũ = Q(ψ)w so

u = ũ/
∥∥ũ

∥∥
1. Then

∣∣ũ(z)− ũ(y)
∣∣ ≤

∫

X

f (δ(z, y))w(x)dµ(x) = f (δ(z, y)) (23)

so with (20) we have |u(z)− u(y)| ≤ f (δ(z, y))/α1. �
The next Theorem is the main contraction result. The statement is the same

as as Theorem 2 of [34], which is very similar to a previous result of Joel Cohen.

Theorem 1 There exist constants 0 ≤ r < 1 and k1 ≥ 0 such that

ρ(K(θn)� · · · � K(θ1)� u, K(θn)� · · · � K(θ1)� v) ≤ k1rn (24)

for all θ1, θ2, . . . , θn ∈ �, u, v ∈ Ū (for n = 0 the lefthand side of (24) is interpreted
as ρ(u, v)).

Proof By (10) any Q(ψ),ψ ∈ � satisfies the assumptions of Corollary 2.6.1
in [16] with κ (as defined there) being ≤ α2/α1, so there exists a constant
q, 0 ≤ q < 1 such that if u, v are any two comparable elements of C+(X) and
ψ ∈ �, then

ρ(Q(ψ)� u, Q(ψ)� v) ≤ qρ(u, v). (25)

q is called the Birkhoff contraction ratio, and the bound on κ implies that
q ≤ α2−α1

α2+α1
([16], p. 437). Choose any u, v ∈ Ū and any sequence θ1, θ2, . . . from

�. Define

uj = K(θj)� · · · � K(θ1)� u, and vj = K(θj)� · · · � K(θ1)� v.
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For n ≤ m we have S(un, vn) ≤
(
α2
α1

)2
and I(un, vn) ≥

(
α1
α2

)2
by Lemma 2, so

ρ(un, vn) ≤ 4 log α2
α1

. For n > m we can write n = jm + k, so by (25)

ρ(un, vn) ≤ qjρ(uk, vk) ≤ 4qj log
α2

α1
.

These clearly imply (24) with r = q1/m. �
Lemma 4 There exists a constant k2 ≥ 0 such that

‖K(θn) · · · K(θ1)v1‖1

‖K(θn) · · · K(θ1)v2‖1
≤ 1 + k2r m (26)

whenever

vi = K(θm)� · · · � K(θ1)� ui, ui ∈ Ū, θi ∈ �. (27)

If n = 0 then set K(θn) · · · K(θ1)vi = vi, and if m = 0 then set vi = ui. From (27)
it follows that

log
‖K(θn) · · · K(θ1)v1‖1

‖K(θn) · · · K(θ1)v2‖1
≤ k2r m. (28)

Proof By (24) ρ(v1, v2) ≤ k1rm for m ≥ 0, so by (16) ‖v1 − v2‖sup ≤ 3α2
α1

k1r m.
Because the vi are in U, this last inequality and Lemma 2 imply that for some
constant k2 we have v1 ≤ (1 + k2rm)v2. This is Eq. 5 in [34], and the rest of the
proof is identical. �
Lemma 5 Let w1, w2 ≥ 0 be nonzero bounded measurable functions on X. Then
there is a constant k3, depending only on w1 and w2 such that

〈w1, K(θm) · · · K(θ1)u1〉
〈w2, K(θm) · · · K(θ1)u2〉 ≤ k3 (29)

whenever θj ∈ � and u1, u2 ∈ U.

Proof Identical to the proof of Lemma 4 in [34]. �

3.1 Extensions

We mention here two extensions that may be useful in empirical applications.
The first is inclusion of senescent (post-reproductive) individuals in the model.
Suppose that the state space is the union of disjoint compact sets Xr and Xs
representing potentially reproductive and senescent individuals–these could
be 2 copies of X with individuals moving into Xs when they senesce. The
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model is then specified by four component operators Ki,j(θ), i, j ∈ {r, s} with Ki,j
describing Xj → Xi transitions and Kr,s ≡ 0 by definition. Symbolically,

(
nr(t + 1)
ns(t + 1)

)
=

(
Kr,r(θ) 0
Ks,r(θ) Ks,s(θ)

) (
nr(t)
ns(t)

)
(30)

where nr(t) and ns(t) are the state-distribution functions on Xr and Xs. The
corresponding components K(m)

i,j of any m-step operator can be computed by
using “matrix multiplication” to iterate (30).

Model (30) cannot be power-positive because initial conditions with only
senescent individuals lead to extinction. Suppose instead that:

– There is an upper limit to the post-reproductive lifespan, i.e. there exists
some q such that

Ks,s(θq) ◦ Ks,s(θq−1) ◦ · · · ◦ Ks,s(θ1) ≡ 0

for all θ1, θ2, . . . , θq ∈ �.
– There is an m ≥ q such that the m-step kernel components K(m)

r,r (y, x)
and K(m)

s,r (y, x) are both positive on their entire domains for all possible
θ1, θ2, . . . , θm ∈ �. That is: so long as some reproductive individuals are
present initially, n(t) will be positive on all of X for t ≥ m.

Then (again following [34]) the results of this section and the conclusions
stated in the next section still apply to populations started with some indi-
viduals in Xr. We define W = {

n ∈ C+(X) : ‖n‖1 = 1, n ≡ 0 on Xs
}
, and the

constants α1,α2 are defined for the m-step kernel projecting from Xr at time t
to X at time t + m,

K(m)(y, x) =
{

K(m)
r,r (y, x), y ∈ Xr, x ∈ Xr

K(m)
s,r (y, x), y ∈ Xs, x ∈ Xr

. (31)

The contractive properties are derived as above using the fact that the s → r
and s → s components of any m-step operator are identically zero, so only the
uniformly positive kernel (31) contributes to the m-step dynamics.

The second extension is directed at models where some traits have determin-
istic dynamics. For example, the genotype (for Mendelian traits) or breeding
value (for quantitative traits) remains constant across an individual’s lifetime;
changes only occur when parents are replaced by offspring. This is not a prob-
lem for discrete traits (e.g. a finite set of genotypes), but a continuous trait that
remains fixed or changes deterministically over an individual’s lifetime is not
represented by a smooth kernel. These situations may be still handled in our
framework if there is a maximum lifespan M. If parent-to-offspring trait trans-
mission is described by a smooth kernel, then typically the (M + 1)-step iterate
will have a smooth kernel satisfying our assumptions. The conclusions in the
next section then apply to the process observed at times 0, M + 1, 2(M + 1), . . .,
and therefore to the entire process.
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4 Conclusions for the general integral model

With the results of the previous section, plus the straightforward verification
that certain functions are continuous, the rest of [34] now carries over. The
general long-term growth properties of stochastic matrix projection models
therefore also hold for density-independent stochastic IPMs. In this section we
summarize those properties.

The first set of properties concerns the long-run growth and population
structure. Specifically, under the assumptions in Sect. 2 we have (paraphrasing
Chap. 2 of [48])

A. The logarithm of the total population size N(t) = ‖n(t)‖1 has a long-term
growth rate log λs which is constant with probability 1,

log λs = lim
t→∞ t−1 log N(t) = lim

t→∞ t−1E log N(t). (32)

The same is true for any part of the population Nw(t) = 〈w, n(t)〉 where
w ≥ 0 is a nonzero bounded measurable function on X,

B. Starting from any nonzero initial population structure n(x, 0) = n0(x) the
population structure u(t) = n(t)/ ‖n(t)‖1 converges to a time-dependent
stationary random sequence of structure vectors û(t)which is independent
of n0.

C. The joint sequence of environment states and stationary population struc-
tures (θ0, û(0), θ1, û(1), θ2, . . .) is a stationary ergodic process.

D. The long-term growth rate can be computed as the average one-step
growth rate, log λs = E log

∥∥K(θ)û
∥∥

1 where the expectation is with
respect to the joint stationary measure in the last item.1

The intuitive picture behind these properties is that

1. A joint stationary distribution (property C above) must exist due to
compactness (see Lemma 1 in [19] or Chap. 1 Lemma 2.2 in [33]).

2. Because of contraction in the projective metric, two copies of the
population structure process running under the same sequence of
environment states converge exponentially fast onto each other. So
starting from anywhere (copy 1) the population structure converges
onto the stationary process (copy 2). The stationary distribution is
therefore unique, and it must be ergodic because the initial state has
no effect on long-term behavior.

In general, it isn’t or is not possible to find an explicit formula for the stationary
distribution, even if the environment process is simple (e.g., independent and
identically distributed over time). However, the results above ensure that the
long-run properties of interest really do exist and that they can be estimated by

1 In [48] properties C and D are only stated as holding under the assumption that the environment
process is a countable state Markov chain, but the arguments in [34] show that they hold for any
stationary ergodic environment.
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simulation: start anywhere, iterate the model for a long time, and discard initial
transients.

The other important property is the asymptotic lognormal distribution of
population size. As with matrix models, this occurs unless the environment
process has long-memory autocorrelation. The intuitive picture behind this
property is that the log of total population size is approximately a random walk.
In the unstructured model n(t+1) = λ(t)n(t)with no between-year correlations
in the growth rates λ(t), log n(t) really is a random walk so its distribution is
asymptotically Normal by the Central Limit Theorem. In a structured popula-
tion this is not quite true because the population structure induces correlations
between the population growth rates at successive times. But because of prop-
erty B, the structure-induced autocorrelations decay rapidly. The random walk
approximation is then valid over time scales longer than the correlation time
of population structure, unless there are long-memory correlations in the envi-
ronment process that by themselves induce long-memory correlations in the
population growth rate.

The conclusion (equivalent to Theorem 9 in [34]) is:
E. If the environment process θ(t) is uniformly mixing (as defined above in

Eq. (13)), then the asymptotic distribution of the total population size or
any part of the population is lognormal, i.e.

(log N(t)− t log λs) /
√

t ⇒ Normal(0, σ 2) (33)

for some σ ≥ 0, where ⇒ denotes convergence in distribution and N(t) is
defined in item A above.

Uniform mixing holds if the environment process is an ergodic finite-state
Markov chain, but this is not necessarily true for ergodic Markov chains on
general state spaces [37]. A range of results similar to (33) could be stated
under weaker assumptions about the mixing rate of the environment process,
leading to less detailed conclusions about the convergence rate in (33). Central
Limit Theorems for general stationary processes involve scaling by the standard
deviation of partial sums. Using these in place of the Central Limit Theorm for
uniform-mixing processes would produce generalizations of Ishitani’s Central
Limit Theorem for subadditive processes [29], as observed in [21]. These would
in turn imply results like (33), but without an explicit expression for the denom-
inator on the left-hand side.

5 Stochastic IPM for O. illyricum

We turn now to the second purpose of this paper: demonstrating how the results
of the previous section make the stochastic integral model a practical option—
often with significant advantages—for applications that until now have been
addressed using stochastic matrix models or individual-based simulations. One
advantage—shared by deterministic IPMs and discussed at length in [15]—is
that IPMs are more parsimonious and require less data for parameterization
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than a matrix model when individual demographic performance is affected by
multiple continuous traits. Another advantage—specific to stochastic models
and illustrated here—is the ease with which stochastic variability can be mod-
eled and estimated from empirical data, just by including “year” as a categorical
predictor variable in regression models for demographic rates.

Our case-study to illustrate these points is a stochastic IPM for the Illyrian
thistle, Onopordum illyricum, based on a six-year field study [41]. As in [41]
and [15] we will use the model to understand the selective forces responsible
for this plant’s flowering “strategy”—the functional relationship between plant
age, size, and flowering probability. Previously this question had to be addressed
through an individual-based simulation model for the population dynamics and
the evolution of parameters characterizing the flowering strategy [41]. Here, we
show how statistical analysis of the field data translates directly into a stochastic
IPM for the population, and how the general properties derived in the previous
section make it straightforward to use the model for identifying evolution-
arily stable (ESS) flowering strategies. The field study and data analysis have
been described in detail [41] so we repeat here only the information needed to
understand how the data are used to construct an IPM.

5.1 Field study

Onopordum illyricum is a monocarpic perennial (reproduction is fatal), which
reproduces only by seed. These form a seed bank (up to 190 seeds m−2) with a
typical half-life of 2–3 years. There were two study sites in southern France, a
horse- and cattle-grazed pasture near Viols-en-Laval, and a sheep-grazed semi-
arid steppe habitat in the Plaine du Crau. Twenty 1 × 2 m quadrats were placed
at random within a 40×40m area of high plant density at each site. Sampling ran
from August 1987 to August 1992, which included the complete lifetime of the
1987 seedling cohort. Plants were censused four times yearly (August, Novem-
ber, March and May) to monitor their growth, survival, and seed production.
At each census the location and diameters (the longest and its perpendicular)
were recorded for each plant in the quadrats. The log-transformed maximum of
the November, March and May rosette areas was used as the measure of plant
size x. Additional visits were made each summer to collect all flowering heads
within the study quadrats. All apparently viable seeds were counted and then
scattered randomly in their quadrat of origin.

5.2 Data analysis

Statistical models were fitted using data from both study sites, with site effects
included when significant. For simplicity we present results from only one site,
Plaine du Crau. Most analyses only used the data from 1988 to 1991, because
sizes were not recorded in 1987 and death could not be distinguished from
seasonal disappearance in 1992. The final models and parameter estimates are
summarized in Table 1.
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Table 1 Statistical models and parameter estimates describing the individual-level demography of
Onopordum illyricum

Demographic process Model

Growth 1988: ȳ = 0.38 + 1.19x + 0.48a − 0.026x2 − 0.084ax
1989: ȳ = 1.82 + 0.97x + 0.48a − 0.026x2 − 0.084ax
1990: ȳ = 2.37 + 0.94x + 0.48a − 0.026x2 − 0.084ax
1991: ȳ = 0.39 + 1.23x + 0.48a − 0.026x2 − 0.084ax

Variance about the growth curve σ 2 = 38.5 exp(−0.69ȳ)
n = 656, P < 0.0001

Survival probability 1988: Logit(s) = −2.52 + q + 1.30x − 1.27a
1989: Logit(s) = −3.57 + q + 1.30x − 1.27a
1990: Logit(s) = −0.52 + q + 1.30x − 1.27a
1991: Logit(s) = −2.90 + q + 1.30x − 1.27a
n = 1397, P < 0.0001

Flowering probability Logit(pf ) = −24.01 + 2.91x + 0.84a
n = 721, P < 0.0001

Fecundity (seeds per flowering plant) fn = exp(−11.84 + 2.27x)
n = 49, P < 0.0001

Distribution of seedling size Gaussian with mean=1.06, variance=3.37 truncated
at zero n = 389

Distribution of seedling quality Gaussian with mean zero and standard deviation
σs = 1.30

The models are functions of log rosette area x, age a and individual quality q. The predicted values
are the conditional mean (ȳ) and variance (σ 2) of log size next year given current size, survival
probability s, flowering probability pf , and fecundity fn

Because we have only 4 years of data, we use a “fixed effects” approach
to modeling between-year environmental variability. That is, statistical mod-
els for demographic rates were fitted with “year” as a categorical independent
variable treated as unordered. A demographic model fitted this way implies 4
year-specific demographic models that result from holding “year” constant at
one level—these are the year-specific regression equations presented in Table 1.
These equations are components of the survival-growth kernel P, so they imply
4 year-specific kernels P(y, x, θ), θ ∈ {1, 2, 3, 4}, as described below.

In contrast, we use a “random effects” approach to analyze between-
individual variability because we have repeated observations on many indi-
vidual plants. That is, rather than fitting a series of individual-specific models,
we estimate the distribution of parameter values across individuals (specifically,
the mean and variance of the intercept parameter in a logistic regression model
for survival).

Seedling size was well described by a normal distribution truncated at zero
(see Fig. 1a in [15]). The mean of the seedling size distribution varied from
year to year (P < 0.001). However this had little effect on the model predic-
tions and so for consistency with our earlier analysis this was ignored. Annual
changes in plant size were described by a complicated regression model with
site × size × year (P < 0.0001) and age × size (P < 0.02) interaction terms, and
a quadratic size term (P < 0.001).
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Fig. 1 Output from the Onopordum model, showing a the stationary distribution of plant sizes
(line) and the observed distribution of plant sizes (grey bars), b the stationary distribution of size at
flowering (line) and observed distribution of size at flower (grey bars), c the stationary age distribu-
tion, d the stationary distribution of individual survival intercepts (bold curve) and the distribution
of survival intercepts in recruits (light curve), and e a time series of total population sizes and the
observed average population size (horizontal solid line). Stationary distributions were estimated
by running the model for 5,000 years and averaging with the first 1,000 years discarded

Survival probability was modeled as a mixed logistic regression with size, age,
site, and year as independent variables and a Gaussian distribution of individ-
ual-specific intercepts. Plant size was the most important predictor of survival
(P < 0.0001), and the next most important was the site by year interaction
(P < 0.0001). Plant age was also highly significant (P < 0.0001), and there
was significant between-individual heterogeneity in the intercept (P < 0.002).
Survival probability increases with plant size and decreases with age. The stan-
dard deviation of the intercept distribution σs, quantifies the variability among
individuals. This variability may reflect differences in the local competitive envi-
ronment, abiotic conditions, genetic differences or other properties that remain
constant over an individual’s life.

Flowering probability was modeled by standard logistic regression because
there was no evidence of between-individual variation (P > 0.1). Flowering
probability increased with plant size (P < 0.0001) and age (P < 0.008), but
site effects were not significant (P > 0.1). Seed production is strongly size-
dependent (P < 0.0002) and highly variable, although year effects were not
significant (P > 0.05).

Intraspecific competition with neighbors had very little influence on growth
and survival. In contrast, despite seed production being highly variable (0 – 2,750
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per quadrat), the number of recruits was remarkably constant and independent
of seed production the previous year (P > 0.2). Our density-dependent model
therefore assumes that population growth is limited by microsite availability.

In summary, growth, survival and the probability of flowering are all size-
and age-dependent. In addition growth, survival and fecundity vary from year
to year and there is substantial variation between individuals in survival that is
not related to size, age or year. Per-capita seed production by flowering plants
is strongly size-dependent, but does not fluctuate from year to year—variation
in fecundity is driven by variation in the probability that a plant of a given size
“now” will survive the winter and flower “next year”.

5.3 General structure of the Onopordum model

The demographic models imply an IPM in which individuals are cross-classified
by size, age and individual quality (expressed by the intercept parameter in the
logistic regression for survival). Size and quality are continuous variables, and
age is discrete. The individual state space X therefore is a union of rectangles
�a defined by the possible size (x) and quality (q) ranges for an individual of
age a.

Survival-growth transitions send�a → �a+1 and are represented by kernels
Pa,q(y, x) where x and y are log-transformed rosette area:

na+1(y, q, t + 1) =
Ua∫

La

Pa,q(y, x, t)na(x, q, t)dx, a = 1, 2, . . . , M − 1. (34)

Note that there is no integration over q on the right-hand side because q is con-
stant over the lifetime (by assumption). The kernels Pa,q are derived from the
fitted demographic models for survival, flowering and growth. In the notation
of Table 1,

Pa,q(y, x, t) = s(x, a, q, t)(1 − pf (x, a))g(y, x, a, t). (35)

That is, to reach size y from size x the individual must survive, not flower
(because flowering is fatal), and change size from x → y. Formulas for s and
pf are given in Table 1, and the growth kernel g is given by the conditional
size distribution from Table 1: y ∼ Normal with mean ȳ(x, a, t) and variance
σ 2 = 38.5 exp(−0.69ȳ).

We presume that offspring size and quality variation are primarily caused by
fine-scale variation in properties of the microsite where the individual becomes
established. Therefore, the model assumes complete “mixing at birth”[15]—
the distribution of offspring size and quality are the same for all parent plants.
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Fecundity goes from all components to those with a = 0,

n0(y, q, t+1)=pe(t)ϕ0(y)α(q)




∑

a

∫∫

�a

fn(x)pf (x, a)s(x, a, q′, t)na(x, q′, t)dxdq′



 ,

(36)

where ϕ0 is the probability density for offspring size and α is the probability
density for offspring quality, as specified in Table 1. The bracketed sum in (36)
is the total seed production by all parents, and this is multiplied by the offspring
size × quality distribution ϕ0(y)α(q) and the establishment probability pe(t) to
give the distribution of new recruits. Equation (36) implicitly defines the set
of fecundity kernels pe(t)Fa(y, x, q, q′, t), each corresponding to one term in the
sum, which specify the per-capita number of new offspring of quality q produced
by age-a parents of quality q′.

The between-year variability in survival, growth and fecundity is modeled
by sampling at random from the 4 year-specific survival-growth and fecundity
kernels estimated from the field study. That is, for each year t we randomly draw
θ(t) ∈ {1, 2, 3, 4} with equal probabilities, and set

Pa,q(y, x, t) = Pa,q(y, x, θ(t)), Fa(y, x, q, q′, t) = Fa(y, x, q, q′, θ(t)).

This corresponds to the matrix selection approach to constructing stochastic
matrix models ([3,38] Sect. 14.5.3), and can be regarded as a nonparametric
bootstrap from the set of estimated kernels.

To complete the model we need to specify the seedling establishment prob-
ability pe(t). This is the one stage of the life cycle where there is density-
dependence, so for the purpose finding ESS flowering strategies we need to
consider both a resident population with one flowering strategy, and a rare
invading population with a different flowering strategy but otherwise identical
to the resident.

In the field study, total seedling recruitment each year was found to be inde-
pendent of population size the previous year. So in the model the total number
of new recruits each year, R(t), is a sequence of values drawn independently
at random from the estimated numbers of recruits in each year of the field
study. Because invaders and residents differ only in their flowering strategy, all
seedlings compete on an equal footing for the available microsites. Thus pe(t)
for both resident and invader is given by R(t) divided by the total seed produc-
tion. In an ESS analysis we regard the invader as being so rare that the “total
seed production” is really the resident’s total seed production Sr(t). So for both
resident and invader

pe(t) = R(t + 1)/Sr(t) (37)
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where the resident’s seed production Sr(t) is given by the sum in (36) computed
for the resident population using the resident’s flowering parameters.

Equation (37) is density dependent because Sr(t) depends on the number of
residents as well as on their age×size×quality distribution. Because the num-
ber of residents and their state-distribution depend on the resident’s flowering
strategy, (37) imposes a feedback between flowering strategy and fecundity that
affects the selective pressures acting on the population. So although resident
and invader fecundity are equally affected by between-seedling competition
each year, the density dependence cannot be ignored when we use the model
to predict ESS flowering strategies.

However, the model for the invader is a density-independent IPM in which
the “environment” process is θi(t) = (R(t + 1), nr(t), θ(t)), where nr(t) is the
state distribution function of the resident population in year t. The year-type
θ(t) ∈ {1, 2, 3, 4} affects the invader’s survival-growth kernel, and R(t + 1) and
nr(t) jointly determine the establishment probability pe(t). In Appendix A we
show that θi(t) satisfies our general assumptions about the environment process.
The invader population therefore has a long-term growth rate λs, whose value
determines whether or not invasion is successful. The ESS flowering strategy is
defined by the property that no invader with a different strategy can achieve
λs > 1.

Our computer implementation of the model is described in Appendix B.
On the computer the IPM is implemented using matrix operations, but this is
just a way of computing integrals and does not discretize the life cycle as in a
conventional matrix population model. The computer implementation assumes
a finite maximum age of M = 7 years. The maximum age observed in the field
was 5 years, but the study was terminated after the last individual from the
initial cohort died and some plants might live longer. With a maximum age of
7 years, the kernels for 8-year transitions satisfy our general assumptions even
though the year-to-year survival, Eq. (34), is not described by a smooth kernel
in (x, q)-space because q is constant over time (see Sect. 3.1 and the Discussion
regarding this kind of situation).

6 Results for O. illyricum

6.1 Resident population

The density-dependent model for the resident population provides an accu-
rate description of the bimodal distribution of sizes observed in the population
(Fig. 1a) and the distribution of flowering sizes (Fig. 1b). It predicts that the pop-
ulation will dominated by new recruits (Fig. 1c), and shows that there is a change
in the distribution of survival intercepts relative to new recruits (Fig. 1d). This
shift reflects the increased survival of individuals with larger survival intercepts.
The model also provides a reasonable description of the average population
density (Fig. 1e).
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6.2 ESS flowering strategies

We are interested in how the probability of flowering varies with plant size
and age. This relationship is described by a logistic regression (Table 1) with
intercept β0 and slope coefficients for the effect of plant size and age, βa and
βs, respectively. As in Rees et al. [41], when all three parameters are allowed
to vary the predicted strategy is a sharp threshold: all plants of a given age
should flower with probability 0 or 1, depending on whether their size is below
or above a threshold that decreases with age. The observed size-dependence
of flowering is gradual, representing possibly a constraint or else a decision
that depends on plant size at some time between censuses [41]. We therefore
imposed gradual size dependence by holding the size slope fixed at its estimated
value and allowing the intercept, β0, and age slope, βa to evolve (see [4]).

Previous analyses have shown that ignoring temporal variation in the envi-
ronment results in predicted ESS flowering strategies that are very different
from that observed in the field [41] and that this difference is statistically highly
significant [15].

To estimate the ESS for the stochastic model we first simulated a sequence of
values for the resident population and environment process (θ(t), R(t+1), nr(t)),
and then used these to compute the seed establishment probabilities, equation
(37). Having done this we computed the invader’s kernels for each year, and
then numerically maximized the invader’s long term growth rate log (λs) using
the Nelder–Mead simplex algorithm. The flowering strategy (β0,βa) that maxi-
mizes the invader’s long term growth rate then becomes the new resident. This
process is repeated until successive values of max (λs) converge on 1 to some
specified tolerance (0.0001), showing that no other strategy can increase when
rare. The final flowering strategy (β0,βa) is then taken to be the putative ESS.

The results (Fig. 2a) show that there is good agreement between the observed
flowering strategy and the predicted ESS from the stochastic model, with the
ESS having a slightly lower flowering probability for all sizes observed in the
field. This comparison is overly rigorous, as it ignores uncertainty in the pre-
dicted ESS caused by uncertainty in the values of other model parameters. Even
so, the predicted ESS is within the range of statistical uncertainty on the actual
flowering strategy. In contrast, even when we allow for estimation errors in
the other demographic processes, the ESS flowering strategy predicted by the
deterministic IPM is significantly different from the actual strategy (P < 0.01,
[15]). There is however a small discrepancy between the ESS flowering strategy
found here and that found previously [41] using individual-based simulations.
This difference is largely a result of the earlier study using a different fecun-
dity function, resulting in the gains made from flowering larger accruing more
slowly and so selecting for flowering at smaller sizes or earlier. The previous
fecundity model was based on an indirect measure of fecundity, the area of flow-
ering receptacle matured, while our current model uses direct measurements
of individual plant size and seed production.

To confirm that the stochastic ESS identified using the numerical procedure
described above was in fact an ESS we constructed the landscape of invasion
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Fig. 2 a Estimated actual relationship and predicted ESS relationship between rosette area (on
log scale) and flowering probability in Onopordum. The solid and dotted curves show the esti-
mated relationship between size and flowering probability for an individual of age 3, surrounded
by pointwise 95% confidence bands, based on flowering data from the field study. The confidence
bands are the pointwise 2.5 and 97.5 percentiles from 5,000 draws of flowering model parameters
from the multivariate Normal distribution implied by the variance–covariance matrix of parameter
estimates for the fitted model. The dashed curve shows the ESS flowering probability predicted
by the constant-environment IPM described in [15]. The dash-dot curve shows the predicted ESS
from the stochastic-environment IPM described in this paper. The ESS predicted using a stochas-
tic-environment IPM with the fecundity function used in [41] overplots almost exactly on top of
the estimated flowering probability (solid curve). b Invasion fitness as a function of the parameters
defining the invader’s flowering strategy in Onopordum. Invasion fitness is the value of λs for
an invader assuming the resident uses the predicted ESS flowering strategy (β0,βa). The curves
marked 0.5 and 0.99 are contours of invasion fitness. The filled point shows the value of (β0,βa)
estimated from flowering data in the field study, and the surrounding ellipses are the 95 and 99%
confidence regions, calculated using the standard quadratic approximation to the likelihood (i.e.,
assuming that the likelihood is χ2 distributed with 3 degrees of freedom). The open point is the
predicted ESS flowering strategy. The estimated ESS necessarily has the highest invasion fitness,
because it is defined by the property of having the highest invasion fitness against itself, but the
fitness achieved by the estimated actual strategy is within 1% of the maximum

fitness λs for mutant flowering strategies invading the putative ESS (Fig. 2b).
This landscape shows that the ESS was uninvadable, as all mutants have λs < 1.
As the age-dependence of the flowering strategy becomes stronger, so the fit-
ness landscape becomes shallower. This suggests that age and size-dependent
flowering strategies are to some extend exchangeable, as a range of strategies
with similar fitness can be constructed by quite different combinations of size-
and age-dependence (Fig. 2b).

7 Discussion

Our general results in this paper are “the skeleton of a fairly general theory for
random rates”([48], p. 33) in density-independent integral projection models.
As is the case for matrix projection models these general results are essential for
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substantive applications [3,48], such as our analysis here of flowering strategies
in O. illyricum.

The deterministic Onopordum model developed in [15] illustrates how com-
plex demographic transitions involving size, age and quality dependence can
be directly translated into an IPM and the resulting model used to address
evolutionary questions. In this paper, we have extended that model to include
yearly variation in the model parameters. For an IPM this is relatively straight-
forward, because terms describing yearly variation in parameters of the survival
and fecundity kernels can be fitted and tested for statistical significance using
standard regression methods and statistical software. This greatly facilitates the
construction of stochastic models, in particular relative to the lengthy proce-
dures for fitting a conventional stochastic matrix model to the same type of data
(see Chap. 8 in [38]).

The comparison of the ESS predictions of constant and stochastic models
(Fig. 2a) clearly demonstrates that including environmental variability improves
the predictive ability of the model. However, in order to understand how sto-
chasticity shapes the ESS it is necessary to understand how different forms of
stochasticity influence the ESS and to separate the effects of changes in mean
demographic rates—caused by non-linear averaging—from variance effects
caused by non-equilibrium dynamics [42]. Effects of non-equilibrium dynamics
result from different flowering strategies being intrinsically favored in different
years (fluctuating selection) and from the fitness of different flowering strate-
gies fluctuating as a result of variation in population structure. These effects can
operate in different directions and so in order to assess the role of stochastic var-
iation each must be quantified; for an example of this type of analysis, see [42].

Some kind of stationarity assumption is required for the existence of long-
term properties such as an asymptotic growth rate. Two types of assumptions
have been used for stochastic matrix models:

1. The matrix sequence is an ergodic Markov chain or a function of an ergodic
Markov chain.

2. The matrix sequence is an ergodic stationary stochastic process.

Both of these imply that the distant future becomes independent of the past,
but neither of them implies the other. The first assumption requires that future
values depend directly on only a finite number of past values. The second
allows infinite memory, but requires that any effects of initial transients have
already washed out completely, so that this year and all subsequent years have
the same marginal distribution of environment states. Although finite memory
seems intuitively reasonable, there is evidence that many environmental vari-
ables affecting natural populations have long-memory dependence (reviewed
in [22,23]), which is revealed by slower than exponential decay in the between-
year autocovariance Cov(θ(t), θ(t − τ)) as τ → ∞. This cannot occur in ergodic
Markov chains, so stationarity assumptions such as ours seem to be more real-
istic for modeling natural populations.

Some recent studies have shown, for stochastic matrix models, that both the
between-year [50] and within-year [40] correlations among matrix entries can
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have a significant impact on model predictions—it is not enough to correctly
specify the marginal distribution of each matrix entry. One advantage of the
integral projection framework is that within-year correlations happen “auto-
matically” as a result of variation in underlying parameters. For example, a
higher slope or intercept parameter for growth in a given year will affect indi-
viduals of all sizes. Many correlations among entries in a matrix model are of
this type—a good year is good for everyone, so the matrix entries for growth
are all above average while those for reductions in size are below average.

In this paper, within-year correlations are naturally incorporated by
constructing kernels from each year of the study—analagous to the “matrix
selection” approach for stochastic models where each year’s data is used to
construct a year-specific projection matrix. This approach increases model real-
ism by avoiding distributional assumptions on environmental variability, but
simultaneously makes it difficult to assess the sensitivity of model predictions
to between-year correlations [18] and may overestimate the between-year var-
iance when annual parameters are drawn from a stationary distribution (see
Sect. 6.5 in [45]).

An alternative approach is “element selection” where yearly matrices are
constructed by selecting matrix elements from a fitted joint probability dis-
tribution [38]. For matrix models this can be a complicated procedure—the
variance–covariance matrix for all pairwise correlations between matrix entries
must be estimated, and then values of matrix entries must be simulated from the
joint distribution in a way that satisfies sum constraints (e.g., the total survival
probability for any class of individuals must be ≤ 1 [32]). However, for IPMs
the corresponding approach can be implemented easily by using mixed-effects
models to describe the temporal variation in demography, and constructing
yearly kernels by sampling from the fitted parameter distributions (Rees and
Ellner, in preparation). In this approach between-year parameter correlations
have to be explicitly estimated, and are treated as a parameter of the model
making it straightforward to assess their effects. The same is true in princi-
ple for matrix models, but the large number of possible correlations (between
all (aij(t), akl(t − 1)) pairs) makes it difficult to distinguish between genuinely
significant correlations and type-I errors.

Here and in [15] we have formulated the integral projection model at a level
of generality in between our original Euclidean space version [11,12] and the
fully measure-theoretic versions of Grafen [20] and Diekmann et al. [9,10]. In
all of these approaches, individual state is a Markov process on a state space
general enough to allow cross-classification of individuals by an arbitrary list of
continuous and discrete attributes. Our formulation sacrifices some generality
by assuming that state transitions are specified by smooth kernels rather than
a general transition probability [37]. Our goal was to be general enough for
empirical applications but concrete enough that the assumptions have intui-
tive meaning and can be verified in practice for specific models, if necessary by
brute-force computation (see pp. 416–417 in [15]). The rationale for smoothness
is that everything in the real world is stochastic to some extent, and if the set of
possible states is continuous then so is the stochasticity. It is then reasonable to
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use smooth probability densities to model state transitions. This rationale fails
for continuous attributes that remain fixed over the lifetime, such as individual
quality in our Onopordum model, or that are best modeled as changing deter-
ministically. This is not just a matter of technical difficulties in proofs; it reflects
real phenomena, such as bistability in deterministic trait dynamics, that would
rule out the existence of any long-term properties invariant over all initial condi-
tions and subsequent sample paths. For Onorpordum the situation is rescued by
assuming a finite maximum lifespan and a smooth density for offspring quality,
so smoothness prevails eventually. Even when the data do not mandate using
age as an individual-level state variable, making the model age-structured with a
large maximum age M (and all vital rates actually independent of age) makes it
simple to calculate age-based summary statistics such as the distribution of age
at first reproduction, and M can be increased until numerical values stabilize.
But it would still be useful to identify a slightly more general IPM formulation
that readily accomodates a mix of deterministic and stochastic trait dynamics
without becoming intractable or harder to understand.
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A Appendix: The resident population

Here, we analyze the resident process to show that the invader’s environment
process θi(t) as defined in the text is stationary and ergodic.

The resident dynamics are simplified by the decoupling of total recruitment
from seed production. Combining this with mixing-at-birth, each year’s cohort
of new recruits is a random multiple of the offspring (size × quality) distribu-
tion, i.e. R(t)φ0(y, q) where the number of new recruits R(t) is an iid sequence.
Let P(t) denote the operator on population distributions corresponding to the
environment-dependent survival-growth kernels P(θt). The resident population
dynamics are then

nr(t + 1) = R(t + 1)φ0 + P(t)nr(t). (38)

This is a time-varying linear autoregressive model, but note that it is density-
dependent (in the usual meaning) because the per capita resident fecundity is
inversely proportional to the resident population density. The formal solution
of (38) is

nr(t) = (R(t)+ R(t − 1)P(t − 1)+ R(t − 2)P(t − 1)P(t − 2)

+R(t − 3)P(t − 1)P(t − 2)P(t − 3)+ · · · ) φ0. (39)

The stationary resident process ñr(t) is defined by (39) with the series continued
into the infinite past. To justify this construction, note that there is a maximum
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survival probability p∗, i.e.

∫

X

P(y, x, θ)dµ(y) ≤ p∗ (40)

with p∗ < 1 by compactness. Consequently, the L1 operator norm of any P(t)
is at most p∗. For any realizations of the R and θ processes the series in (39)
is therefore Cauchy in L1(X) and hence convergent. Any partial sum of the
right-hand side in (39) is a well-defined random variable, so the limiting infinite
sum is also measurable. The limit is clearly stationary. It is ergodic because
nr(t) is a function of the ergodic process Z(k) ≡ (R(−k), θ(−k)) at times k =
−t, −t + 1, −t + 2, . . . (see Sect. 9.6 in [31]; Z is ergodic because years are inde-
pendent and identically distributed by assumption). And because the R and
θ processes are both iid, the invader’s environment process with stationary
resident, θi(t) = (R(t + 1), ñr(t), θ(t)), is also ergodic.

B Appendix: Computer implementation of the Onopordum model

All calculations were done in R [39], version 2.1 or above. Integrals were eval-
uated numerically using midpoint rule as in [15], because it is fast enough and
more robust than higher order methods. Applying midpoint rule to the integra-
tion over quality in (36) we get

n0(y, qj, t + 1) = pe(t)ϕ0(y)αj




∑

a,k

Ua∫

La

fn(x)pf (x, a)s(x, a, qk, t)na(x, qk, t)dx



 ,

(41)

where qk is the kth mesh point for numerical integration in q and αj is the
fraction of offspring whose quality lies in the mesh interval containing qj.

We can regard Eqs. (34) and (41) as defining a model in which age and quality
are both discrete while size is continuous, and the one-step dynamics are repre-
sented by a set of smooth kernels; in [15] this was our initial formulation of the
deterministic Onopordum model. The state space for the discrete-q model is the
union of components�a,k for individuals of age a and quality qk, each of which
is an interval [La, Ua] of possible sizes for an age-a individual. Survival-growth
transitions are block-structured: individuals in �a,k either die or else move to
�a+1,k. We therefore used a series of matrices to represent each survival-growth
kernels, stacking them all into a 5-dimensional array P whose entry in location
i, j, a, k, t is hP(t)a,k(xi, xj) where the x’s are the quadrature mesh points and
h = xk+1 −xk. The current population state is stored in a 3-dimensional array N
where N[j, a, k] = na,k(xj, t). This is performed for survival-growth transitions
by computing for each age × quality combination the matrix–vector product
P[·, ·, a, k, t]N[·, a, k], which gives N[·, a + 1, k] at time t+1.
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Births are less structured because offspring size and quality are independent
of parent age, size and quality. We stored values of per-capita total seedling pro-
duction pe(t)fn(xj)pf (xj, a)s(xj, a, qk, t) in an array B(t)with the same structure as
N. The total seedling production is computed as S(t) = h × sum(B(t).N) where
B(t).N is the element-by-element product of B(t) and N. The size × quality
distribution for seedlings is then given by S(t)J(t), where the (j, k)th entry in the
matrix J(t) is the fraction of seedlings of quality-class k and size xj, calculated
from the distributions in Table 1. This gives all the age-0 entries of N at time
t + 1, N[·, 0, ·] = S(t)J(t).

In all calculations we used 50 mesh points for size, 50 for quality, and imposed
a maximum possible age of 7 years as discussed in the text. Increasing the maxi-
mum age had virtually no effect on model output, as very few individuals survive
past age 5 in the model. For all numerical calculations we used 5,000 iterates,
discarding the first 1,000.
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