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SIZE-SPECIFIC SENSITIVITY: APPLYING A NEW STRUCTURED
POPULATION MODEL
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Abstract. Matrix population models require the population to be divided into discrete
stage classes. In many cases, especially when classes are defined by a continuous variable,
such as length or mass, there are no natural breakpoints, and the division is artificial. We
introduce the “‘integral projection model,” which eliminates the need for division into
discrete classes, without requiring any additional biological assumptions. Like atraditional
matrix model, the integral projection model provides estimates of the asymptotic growth
rate, stable size distribution, reproductive values, and sensitivities of the growth rate to
changes in vital rates. However, where the matrix model represents the size distributions,
reproductive value, and sensitivities as step functions (constant within a stage class), the
integral projection model yields smooth curves for each of these as a function of individual
size. We describe a method for fitting the model to data, and we apply this method to data
on an endangered plant species, northern monkshood (Aconitum noveboracense), with in-
dividuals classified by stem diameter. The matrix and integral modelsyield similar estimates
of the asymptotic growth rate, but the reproductive values and sensitivities in the matrix
model are sensitive to the choice of stage classes. The integral projection model avoids
this problem and yields size-specific sensitivities that are not affected by stage duration.
These general properties of the integral projection model will make it advantageous for
other populations where there is no natural division of individuals into stage classes.

Key words:  Aconitum noveboracense; continuous population structure; elasticity; integral pro-
jection model; matrix population models without the matrix; population growth rate; sensitivity anal-
ysis; size-specific sensitivity and elasticity; structured population model.

INTRODUCTION of three categories: matrix models, ordinary differential
equation (ODE) models, and partial differential equa-
tion (PDE) models. In this classification, model type
is determined by whether time is discrete (matrix) or
continuous (ODE, PDE), and whether the individual-
level state is treated as a discrete (matrix, ODE) or a
continuous (PDE) variable (Tuljapurkar and Caswell
1997).

Matrix projection models are popular, because they
have relatively simple structure and provide useful in-
formation. The eigenvalues and eigenvectors of the
projection matrix provide estimates of the population
growth rate, the stable age or stage distribution, repro-
ductive value, and the sensitivities of population
growth rate to changes in life history parameters (Cas-
well 1989).
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A structured population model isasummary of rules
specifying how the number and distribution of indi-
viduals within a population changes over time (Tul-
japurkar and Caswell 1997, Gurney and Nisbet 1998).
A population increases or decreases depending on the
rates at which individuals are born, mature, reproduce,
and die. A structured population model ties the pop-
ulation changes to the vital rates of the individuals
comprising the population, under the assumption that
a few state variables are adequate to describe the dif-
ferences among individualsthat affect vital rates. With-
in the class of structured population models there are
many options, such as which vital rates might be den-
sity independent vs. density dependent; and whether
external influences, such as environmental variability

or other species, are incorporated into the model. How-
ever, most structured population models fall into one
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However, whenever a matrix projection or ODE
model is applied to population characterized by a con-
tinuous state variable (e.g., age, mass, or leaf length),
individuals must be divided into a discrete set of clas-
ses. In some cases, the division may be natural (for
example, if there are discrete shifts in habitat or diet
as an individual grows), but often the division is ar-
tificial. If the model has too few classes, biological
realism is sacrificed, because highly dissimilar indi-
viduals are treated as if they were identical. Such mod-
els are al'so prone to misrepresent the transient dynam-
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ics of the population (Crouse et al. 1987, Cochran and
Ellner 1992). Including too many classes can lead to
parameter estimation problems, as each new class re-
quires a new set of parameters to specify its mortality,
fecundity, and state transition rates. Although Vander-
meer (1978) and Moloney (1986) derived algorithms
to determine optimal class boundaries, the errors re-
lated to class boundaries are only minimized, not elim-
inated. The stage classification also affects the inter-
pretation of sensitivities and elasticities. Enright et al.
(1995) found that in matrix modelsfor perennial plants,
decreasing the number of stage classes increased the
apparent importance of survival ratesrelativeto growth
rates.

In partial differential equation (PDE) models, the
individual-level state variables are continuous, and in-
dividuals are not lumped into categories. Therefore,
detailed information on vital rates can be part of the
model, for example, vital rates can depend on sizerath-
er than size-class. Like the matrix models, PDE models
can incorporate a variety of biological situations, in-
cluding density dependence (Bell and Anderson 1967),
and stage- or age-structured populations (Sinko and
Streifer 1967, Metz and Diekmann 1986). The basic
model structure is the same in all cases and can be
expressed by an appropriate version of the Mc-
Kendrick—von Foerster equation (e.g., Goodman 1967,
Keyfitz 1967, Sinko and Streifer 1967, Roughgarden
1979). Wood (1994) has recently developed nonpara-
metric methods for fitting a M cKendrick—von Foerster
equation to population census data, in a way that does
not allow negative population sizes or death rates.
However, in all of these continuous models, growth is
strictly deterministic: two individuals that are the same
size at birth remain the same size until one of them
dies. Adding a diffusion term can accommodate vari-
ation in growth trajectories, but (asin diffusion models
for spatial spread) this implicitly assumes a Gaussian
distribution for the variations in growth increment
among individuals of a given size. It is also difficult
to include stochasticity (environmental or demograph-
ic) in a PDE model, or to use vital rates that are not
in parametric form.

In this paper, we introduce a discrete-time structured
population model, the ‘“‘integral projection model,”
which retains the desirable properties of the matrix
projection model, while avoiding entirely the need to
group individuals into discrete stage classes. Using a
data set on an endangered plant, with stem diameter as
the individual-level state variable, we illustrate how
the model can be fitted to field data. We then show
how the model can be used for all the usual purposes
of amatrix projection model, including sensitivity and
elasticity analysis, and we then compare the results to
those from a traditional model with stage classes. This
case study illustrates how analysis of exactly the same
data using the integral projection model can provide
more detailed and accurate information than an analysis
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using a matrix model. The mathematical properties of
the model (Easterling 1998) are presented elsewhere.
Here we present the model from the perspective of a
user, data set in hand, who wants to compute sensitiv-
ities and elasticities for size-dependent vital rates.

INTEGRAL PrROJECTION MODEL

The integral projection model describes how a pop-
ulation structured by a continuous individual-level
state variable changes in discrete time. Although we
consider a population described by size, the same mod-
el can apply to any continuous variable describing the
state of an individual.

The state of the population is described by the size
distribution n(y, t). Intuitively, n(y, t) is the number
of size-y individuals at time t. Formally, n(y, t) is the
probability density of individual sizey at timet, defined
by the property that the number of individuals between
sizesyandy + dy at timet is given by n(y, t)dy, with
relative error that goes to zero as dy decreases to zero.
Typically, n(y, t) would be a continuous function of y.

Individualsin the population may grow, survive, and
produce new individuals in each time step. Let p(X,
y)dy be the probability that an individual size x at time
tisaive and in the size interval (y, y + dy) at time't
+ 1. Finally, definef(x, y)dy as the number of newborns
attimet + 1inthesizeinterval (y, y + dy) per size-
x individual alive at time t. The integral projection
model for the number of individuals of size y at time
t + 1listhen

nly, t+1) = f [p(xy) + f(x y)In(x, 1) dx

= f k(y, X)n(x, t) dx ()]

with the integration being over the set of all possible
sizes (). The function k(y, X) = p(x, y) + f(x, y) is
called the kernel; this terminology comes from the the-
ory of integral equations and has no biological con-
notations. The kernel is a nonnegative surface repre-
senting all possible transitions from size x to size y,
and is analogous to the projection matrix containing
nonzero entries for survival, growth, and fecundity.
The fecundity function f(x, y) and the survival-
growth function p(x, y) are closely related to the cor-
responding entries in the matrix projection model. The
fecundity entries in a matrix model are typically along
the top row of the matrix, representing the contributions
of each age classto the stage class containing newborns
(e.g., the smallest size class). The analog for the in-
tegral model would be afunction f(X, y) that is positive
for large x (parents) and small y (offspring), and is zero
elsewhere. The function p(x, y) incorporates both
growth and mortality. It corresponds to the survival
and growth entries in a Lefkovitch (1965) matrix, and
it can account for individuals that grow larger or small-
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er. It is important to point out that | p(x, y)dy will
typically be <1, even though p(X, y) is defined as a
probability, because not all individuals survive from
timettotimet + 1.

Implicitly underlying the population-level model of
Eqg. 1 is a stochastic individual-based model, in which
individuals follow Markovian growth trajectories, with
an individual’s chance of death, and the distribution of
offspring number and size, depending on the individ-
ual’s current size. Given the current population state,
as summarized by n(x, t), Eq. 1 gives the expected
population state at time t + 1. Furthermore, because
the operation of integration on the right-hand side of
Eq. 1 is linear in n(x, t), the same equation holds if
n(x, t) is the expected (rather than actual) population
state at time t. Thus, given the population state at some
initial time, Eq. 1 can be iterated to give the expected
population state at all subsequent times. Eq. 1 can
therefore be regarded as an analytic partial solution of
a stochastic individual-based model that lets us com-
pute expected trajectories without actually implement-
ing and simulating the stochastic model. Of course,
exactly the sameis true of the matrix projection model,
except that the Markov chain governing individual
growth trajectories has a discrete, finite state space.

Comparison with other structured models

The integral projection model is similar to partial
differential equation modelsin that the individual state
is continuous, but it differs in having a discrete time
step. The discrete time step allows the integral model
to retain much of the structural and mathematical sim-
plicity of the matrix model. The integral model also
preserves the matrix model’s close correspondence be-
tween the components of the model and the observable
fates of individual s between successive censuses of the
population, which makes it relatively simple to fit the
model to repeat census data. An integral projection
model can also be formulated in continuoustime (Diek-
mann et al. 1998), but the model is mathematically
much more complicated and corresponds less closely
to the kinds of data usually used in constructing a ma-
trix projection model (see Discussion). A discrete time
model can be applied even if growth occurs continu-
ously, as any continuous-time growth model implies a
discrete-time model for the net growth between one
sampling period and the next.

The integral model also has greater flexibility than
partial differential equation (PDE) models in describ-
ing the distribution of size changes over a time step.
Apart from some very mild technical assumptions (Eas-
terling 1998), a user can select any distribution of
growth rates that is necessary to fit the data at hand,
any distribution of initial offspring size, and any func-
tional form for the size dependence of mortality and
fecundity. As in integral models for movement of or-
ganisms in space (Kot et al. 1996), going from an in-
tegral model to a PDE model requires some additional
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assumptions (see, e.g., Turchin [1998]: section 4.2 and
Appendix A.1.2, for the steps involved). An unavoid-
able effect of these assumptionsisto limit the possible
shape for the distribution of size changes conditional
on current size. The most common assumption (e.g.,
most of the models in Metz and Diekmann [1986] and
Gurney and Nisbet [1998]) is that growth trajectories
are deterministic. This would be analogous to a PDE
model for spatial spread without a diffusion term, so
that particles or individuals that start in the same place
remain together for all time. The assumption of deter-
ministic growth is necessary for the reduction of aPDE
models to a delay differential equation (DDE) model
for a structured population with discrete classes (Gur-
ney and Nisbet 1998). The integral projection model,
therefore, may be a more natural choice than a PDE or
DDE model in situations where the stochastic nature
of individual growth trajectories is an essential aspect
of the population dynamics.

PROPERTIES OF THE INTEGRAL PROJECTION MODEL

The integral projection model shares many of the
features that have made the matrix projection model
popular: estimation of the exponential growth rate, ei-
genvectors representing reproductive value and the sta-
ble size distribution, and formulas for sensitivity and
elasticity analysis (derived in Easterling 1998).

The integral model has a dominant eigenvalue A that
represents the population’s asymptotic growth rate, un-
der biological assumptions that are no more restrictive
than those required in the matrix model. Corresponding
to N are dominant right and left eigenvectors w(x) and
V(x), and, as in the matrix model, these give the stable
size distribution and size-specific reproductive value,
respectively. Note, however, that in the integral model
these ** eigenvectors’” arefunctions of a continuousvar-
iable, individual size x. Methods for computing the
dominant eigenvalue and corresponding eigenvectors
are described in the Appendix, and are straightforward
to code in matrix languages such as Matlab, S-Plus,
GAUSS, or SAS IML.

Because the fecundities and survivorshipsin the in-
tegral projection model are represented by a surface
rather than a matrix, sensitivity analysis for the model
involves determining the sensitivity of the dominant
eigenvalue to changes in the survivorship/fecundity
surface k(y, x) over a small region centered over each
point (y, X). Technically, **small”’ is defined as the limit
as the small region is shrunk to a point at (y, x), with
the sensitivity of \ scaled by the ““area’” of the small
region around (y, X). The definition of sensitivity (and
hence of elasticity) in the integral model thus differs
in an essential way from that in the matrix model. In
the integral model, sensitivity describes the change in
\ resulting from a change in demographic parameters
affecting only individuals at a particular size. Thisonly
affects an individual once (except for the rare event
that an individual stays exactly the same size). In the
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matrix model, sensitivity describes the total effect of
a parameter change applied to all individuals in a size
class. Because an individual may remain in the same
size class more than one year, individuals may ‘‘see”
the parameter change more than once.

With this definition, the sensitivity and elasticity for-
mulas for the integral model are very similar to those
for a matrix model (Caswell 1978). The sensitivity of
the growth rate N to changes in survivorships and fe-
cundities is

2N _ V(Z)w(z,)
ok(zy, 2) (W, V)

S(z,, 2,) = 2
where s (z;, z,) is the sensitivity of A to a small change
in the k(y, X) values near (z;, z,) and (w, v) = [ w(X)V(X)
dx (Easterling 1998). The corresponding elasticity es-
timates are therefore given by

k(z, ) V(z)W(z,)
N

ez, z) = €)
The elasticity function integrates to unity (i.e., | | (z,
z,) dz, dz, = 1), corresponding to the elasticities sum-
ming to unity in the matrix projection model (Easterling
1998). However, the interpretation of the sensitivity
(Eq. 2) is dlightly different here than in the matrix
model. The sensitivity defined in Eq. 2 gives the rate
of increase in \ as the kernel k is increased in a small
disk centered at (z,, z), scaled relative to the size of
the disk. This corresponds roughly to scaling a matrix
model’s sensitivities relative to the widths of the stages
involved in the transition rate being perturbed. Alter-
natively, the fact that the scaling cancels out, when two
sensitivities are compared, means that values obtained
directly from Eqg. 2 can be interpreted as the relative
sensitivity of N to changes in different size-specific
transition rates. Sensitivities and elasticities corre-
sponding to those obtained from a matrix model can
be computed by integrating the ** pointwise’” sensitiv-
ities and elasticities, defined in Egs. 2 and 3, over the
size ranges affected by the change in transition rates.

AN INTEGRAL PrROJECTION MODEL FOR NORTHERN
MONKSHOOD

Our case study species is northern monkshood, Ac-
onitum noveboracense, an herbaceous perennial plant
listed as threatened under the U.S. Endangered Species
Act (Dixon and Cook 1990). Northern monkshood re-
produces by flowering and by vegetative propagation.
Plants may be reduced in size by deer grazing. Dixon
and Cook (1990) conducted annual censuses of marked
individuals at 14 sites in New York, USA, for five
years. Pooled across years, nine of the 14 sites have
estimated growth rates A < 1, while the other five have
growth rates A > 1. Each site has significant year-to-
year variation in growth rate. Plant size, specifically
stem diameter, was used to describe the population,
because size is often better than age when predicting
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plant growth, seed production, and survival (Silver-
town and Lovett Doust 1993).

Typically, this kind of population data would be an-
alyzed with a matrix model, and this has been done by
Dixon and Cook (1990) and Dixon et al. (1997). In
order to do so, individuals were grouped into discrete
size-classes, and the matrix entries represent mean vital
rates for individuals within the class. Even if size class
boundaries represent natural biological delimiters
(such as size at first reproduction), information is lost
when individuals of different sizes are grouped into a
class and treated as if they were identical. Monkshood,
however, is size structured without any clear divisions
into size classes. By analyzing the data using the in-
tegral projection model, we can produce a complete
sensitivity analysis without having to select class
boundaries.

For this case study, we used Dixon and Cook’s
(1990) data from one site that was pooled over three
years to estimate the kernel of the integral projection
model. The stem diameter and number of leaves were
recorded for each marked plant. We used stem diameter
as our measure of plant size. The stem diameter of very
small plants could not be measured without damaging
the plants; for those plants, only the number of leaves
was recorded. We therefore defined the size of small
plants by regressing stem diameter against number of
leaves for all plants, where both could be measured,
with the result that the stem diameter for small plants
was approximated as 0.2 mm X no. leaves. This ap-
proximation simplifies the fitting process, but it is not
a necessary step for the integral projection model.

Estimating the kernel from the fate of marked
individuals

The kernel k(y, X) represents all possible size tran-
sitions, including births of new individuals. For esti-
mating the kernel from data, it is necessary to estimate
separately the survival transitions p(x, y) and the fe-
cundity f(x, y). We now describe a method for esti-
mating these functions from observations of the fate
of individuals, such as our data on northern monks-
hood. The information used to estimate the kernel are
asfollows: the size of each individual at timet; whether
or not the individual survived to timet + 1; the size
of surviving individuals at timet + 1; and the number
of offspring produced by each individual at time t,
along with the size of each offspring.

As a general approach to selecting functional forms
for components of the kernel, we first fitted a linear
model and then tested the linear model against nonlin-
ear alternatives: addition of quadratic and cubic terms,
and B-splines with 3, 4, and 5 degrees of freedom.
Models were fitted using the S-plus Generalized Linear
Model function (MathSoft, Seattle, Washington, USA),
and the significance of nonlinear termswas tested using
the S-plusfunction anova( ) with x?test statistic (Hastie
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Fic. 1. Fitting a survival and growth function to the monkshood data. (a) The survival data are plotted (0, death; 1,
survival), as a function of individual size x (stem diameter in millimeters), along with the logistic regression fitted to the
data. The fitted curve is log(s/(1-s)) = 1.34 + 0.92x (P < 0.001). (b) The data on year-to-year changes in size, along with
the linear regression fit for mean size in year t + 1, as a function of size in year t. The fitted lineisy = 0.37 + 0.73x (P
< 0.001). (c) Histogram of residuals from the linear model in panel (b). (d) Squared growth residuals as a function of
individual size, along with the linear regression fit for the mean squared residual, which is the variance of size in year t +
1, given the size in year t. The fitted lineisy = 0.127 + 0.23x (P < 0.001).

and Pregibon 1992). Parameter estimates are given in
the legends to Figs. 1 and 2.

The growth and survival function p(x, y) was esti-
mated by breaking it into separate growth and survival
components. Survival and growth are separated by
writing p(x, y) in the form p(x, y) = s(X)g(x, y), where
S(X) is the survival probability of a size-x individual
and g(x, y) is the probability of a size-x individual
growing to be size y. Because any individual that sur-
vives must be some size in the next year, we must have

fox y)dy=1

The survival function s(x) was estimated by logistic
regression of survival (one or zero, corresponding to
survival or death, respectively) on size x, asillustrated
in Fig. 1a. The fitted linear model is of the form
log(s(X)/(1-s(X)) = a + bx. The addition of nonlinear
terms was not significant (P > 0.2 in all cases), so this
linear model was retained.

To fit the growth function g(x, y), we first plotted
the relationship between individual sizes at timest and
t + 1 (Fig. 1b). A linear model appears to be adequate
for describing the relationship between size at time t,
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FiG. 2. Fitting a fecundity function to the monkshood data. (&) Number of offspring as a function of individual size x
(stem diameter in millimeters), along with the linear regression for mean number of offspring. The fitted lineisy = 0.034
+ 0.038x (P < 0.001). (b) Offspring size, as afunction of adult size. The linear regression fit (solid line) is for the relationship
between adult size and the mean size of “‘larger” offspring (size > 0.2 mm). The fitted lineisy = —0.30 + 0.57x. (c)
Residuals from the linear model in panel (b). (d) Squared offspring size residuals, as a function of adult size, along with the
linear regression fit for the mean squared residual, which is the variance of offspring size as a function of adult size. The

fitted lineisy = —0.0046 + 0.192x.

and mean size at time t + 1; as with s(x), the linear
model was not rejected against the nonlinear alterna-
tives (P > 0.5 in all cases). The residuals from this
linear model, which represent the random component
of individual growth trgjectories, conform reasonably
well to a normal distribution (Fig. 1c). However, the
variance in size at timet + 1 may also be affected by
size at time t. Residual variance is equal to the mean
square of residuals, so we can estimate the size-de-
pendence of the variance by plotting the squared re-
siduals (from Fig. 1b) vs. size (Fig. 1d). Again, alinear

model appears to be adequate and was not rejected
against the nonlinear alternatives (P > 0.1in all cases).
Combining these pieces, the fitted growth function g(x,
y) says that the new size y of an individual that is
currently size x is distributed as y = o(X)Z + n(x),
where Z is normally distributed with mean of zero,
variance of unity, and the mean size p(x) and the var-
iability o(x) are linear functions of x. That is,

e (y-r()¥20(9?

oy = L
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and the growth and survival component of the kernel
is then represented as follows:

= _ 1 v
P(x,y) = s(x) Voo (X)e -
Note that the use of a Gaussian distribution for the
variability in growth was a data-based decision, and
any other probability distribution could have been used
to model the distribution of the residuals in Fig. 1c,
had that been necessary.

The fecundity function f(x, y) was estimated from
the data in a similar way. Fecundity is split into f(x, y)
= f,00f,(%, y), where the function f,(X) is the mean
number of offspring from asize-xindividual, whilef,(x,
y) is the probability distribution of offspring sizey for
an adult of size x, which has | f,(x, y) dy = 1. In this
case, the term “‘adult’” refers to any individual large
enough to reproduce, i.e., no smaller than the smallest
individual observed to reproduce. The mean number of
offspring was fitted by Poisson linear regression on
adult size (Fig. 2a), and the linear model was not re-
jected against the nonlinear alternatives (P > 0.3 in all
cases). One can view the fecundity data (Fig. 2a) as
follows: plants of size x have some probability of hav-
ing 0, 1, 2, or 3 offspring, and these probabilities vary
with size x. Thus the mean number of offspring for a
size-x plant is

f) =Pr(n=0,X) X0+ Pr(n=1,x) X 1
+Pr(n=2,X) X2+ Pr(n=3,X) X 3.

The datain Fig. 2a do not appear to be linear, because
each data point corresponds to one of the terms on the
right-hand side of this equation (i.e., an actual discrete
number of offspring). The linear regression line is an
estimate of the expected total contribution from each
term to the offspring production in a given year, which
is the quantity that enters into the model. Note that
when estimating the per capita fecundity f,, al indi-
viduals must be included that are alive at the start of
the time step, even if they die between times t and t
+ 1. Just as the survival function s(x) should be fitted
to remain between zero and one, f; should be fitted so
that the number of offspring remains nonnegative for
all adult sizes.

Thedistribution of offspring sizes (Fig. 2b) isstrong-
ly bimodal, with a cluster at size 0.2 (i.e., individuals
with a single leaf that were assigned a stem diameter
of 0.2 mm) and a smaller number of larger offspring.
Sexual reproduction in this population was extremely
rare (indeed not observed over the 3-yr span of our
data set) and was omitted from the model. The size-
0.2 offspring mostly originated as vegetative shoots,
while the larger offspring are mostly fission of an adult
into two smaller individuals (recorded in our data set
as a death plus two births). The offspring size function
f,(x, y), therefore, has two pieces corresponding to these
different modes of reproduction. Size-0.2 offspring
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were represented by a uniform distribution of offspring
sizeintheinterval [0.15, 0.25]. For the larger offspring,
we used the same model as for g(x, y): Gaussian, with
mean and variance depending linearly on adult size x,
fitted in exactly the same way (Fig. 2c, d). Because of
the very small number of larger offspring, the linear
model was selected a priori. The assumption of a
Gaussian offspring size distribution is clearly arbitrary,
given the small sample size. However, it should not be
of great consequence, because production of the larger
offspring is relatively infrequent. These two compo-
nents of f, were weighted according to the proportion
of size-0.2 vs. larger offspring in our data set (11/18
vs. 7/18).

As this example indicates, fitting the integral model
requires some effort and judgement by the user to de-
termine suitable functional forms. Parameter estima-
tion in the matrix model is automatic (once stage
boundaries are chosen), but this ‘‘advantage’” depends
on the often incorrect assumption that all vital rates are
constant within size classes and jump instantly at class
boundaries. If vital rates actually vary smoothly with
size, then the inaccuracy that results from approxi-
mating the smooth variation by a staircase function
with a few large jumps will be far larger than that
resulting from using a regression equation with one
degree of freedom too many or too few in the integral
model. The integral model allows the user to seek an
estimate within the biologically correct set of functions.
Once adata set has been entered on the computer, fitting
the model takes at most several minutes on current
desktop computers (see the Supplementary Material).
It is therefore quite feasible for a user to build several
alternative integral models, for example with different
polynomial orders for mean and variance functions.

In order to predict growth rates and sensitivitiesfrom
the model, we need to determine the limits of integra-
tionin Eq. 1. Theintegration must run over all possible
sizes, not just those observed in the data. We set the
limits of integration based on the variance of growth.
The lower limit of integration was set at the minimum
observed size X.,;,, minus three standard deviations of
the growth increment at X.;,, and the upper limit was
set at the maximum observed size X, plus three stan-
dard deviations of the growth increment at x,,,. Setting
the integration limits outside the data range means that
the kernel must be extrapolated for x values outside
[Xemine Xmad] - OUr solution to this problem was to use the
nearest kernel value within the range of the observed
data, so that

(yv X) If Xmin =SX= Xmax
k(y, X) = Ek(y, Xmin) if x= Xmin
(Y, Xmax) 1 X > Xy
In the same way, y values outside [Xpin, Xma] WEre pro-

jected on the range of observed data. More accurate
extrapolations beyond the range of the data may be
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possible (e.g., linear extrapolation of log k), but such
individual s are uncommon enough that the method used
to extrapolate their vital rates has very little effect on
the model’s predictions.

The estimated fecundity function f(x, y), survival
function p(x, y), and kernel k(y, X) = f(x,y) + p (X, y)
for monkshood are shown in Fig. 3. There are several
features to notice. The straight “‘ridge’” representing
vegetative offspring dominates the fecundity function.
The second, lower ridge represents larger offspring,
which are less common and more variable in size. The
main feature in the survival function is the ridge run-
ning near the diagonal, representing individuas who
survive to the next year, without changing much in size.
The location of the ridge shows that, in general, plants
increase in size, but the amount of growth decreases
as the stem diameter increases. Putting survival and
fecundity together gives a kernel k(y, x) that resembles
a Lefkovitch (1965) matrix for a size-structured pop-
ulation: the large values in the ““top row’ represent
newborns that all enter the smallest size class, and the
ridge of smaller values near the diagonal represents
survival with possible transition to a neighboring size
class.

Matrix projection models for monkshood

For comparison with the integral model analysis, we
constructed a matrix projection model using exactly
the same data. We used five size classes with bound-
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Fic. 3. The fitted kernel for monkshood and its compo-
nents. (a) The survival function p. (b) The fecundity function
f. (c) The kernel k. In the plot of the kernel, the curvature in
the fecundity function’s “‘ridge’ results from the summation
of small individuals' survival and fecundity, both of which
produce small individuals.

aries at the 20th, 40th, 60th, and 80th percentiles of
the size distribution in the data set (0.2, 0.6, 1.154, and
1.702 mm, repectively). Classes included their upper
boundary, e.g., al size-0.2 individuals are in class 1.
The transition matrix resulting from this division is

Size class at time t

0.416 0214 0179 0071 0.087 O
Size dlass 0177 0214 0075 0114 0029 []
attime [0.133 0321 0328 0214 0044
t+1 Thoe2 0036 0313 0429 0.2899

.0265 0.036 0.060 0.200 0.652 @
The top row entries of this matrix (in particular, toward
the left) are primarily survival, rather than fecundity,
which accounts for the fact that this row decreasesfrom
left to right, even though smaller individuals have low-
er fecundity (as in the integral model). For the same
population (but using all years of available data) Dixon
and Cook (1990) constructed a matrix model with five
classes, but different class boundaries: seedling, ju-
venile, small (<2 mm), medium (2—4 mm), and large
(>4 mm). In the Results, we discuss some of the results
from this model. However unlike the matrix in Eq. 4,
the Dixon and Cook (1990) matrix was not constructed
from exactly the same data as our integral projection
model for monkshood.
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FiG. 4. (&) The stable size distribution (———) and relative reproductive value (- - - -) for the integral projection model
fitted to the monkshood data. (b) The distribution of plant sizes (stem diameter in millimeters) in the monkshood data set

used for fitting the integral projection model. (c) The stable size distribution (:

the matrix model given in Eq. 4.

RESULTS
Asymptotic growth rate

The estimated asymptotic growth rate from the fitted
integral model is model \;, = 0.967, nearly identical
to the estimate A,y = 0.969 from the matrix model.
Easterling (1998) obtained similar results for artificial
data sets: the matrix and integral models produce very
similar estimates of \, with very little difference in the
bias or sampling variability of the estimates. For both
integral and matrix models, bootstrap confidence in-
tervals for the growth rate include 1.0 (Easterling
1998), so we cannot conclude that monkshood at this
siteisin decline. The same conclusion was reached by
Dixon and Cook (1990).

) and relative reproductive value (- - - -) for

Stable size distribution and reproductive values

The right and left eigenvectors corresponding to the
dominant eigenvalue \;,, are the stable size distribution
and reproductive value, respectively, for the integral
projection model (Fig. 4a). The predicted stable size
distribution is skewed heavily towards smaller plants,
and is quite similar to the observed size distribution in
the data set used to fit the model, including the spike
of individuals in the size range corresponding to one-
leaf vegetative offspring (Fig. 4b). The reproductive
value curve reflects the fact that monkshood of almost
any size can reproduce vegetatively. However, repro-
ductive value increases monotonically with plant size,
reflecting the fact that larger plants have higher sur-
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the integral projection model fitted to the monkshood data.

vival, higher fecundity, and larger offspring, on amean
basis.

The stable size distribution and relative reproductive
value curve for the matrix model are shown in Fig. 4c.
The stable size distribution is similar to that observed,
and has the same qualitative features as that from the
integral projection model. The reproductive value
curves are qualitatively different, with the matrix mod-
el estimating a far smaller difference in reproductive
value between the smallest and largest individuals. A
possible explanation for this discrepancy is discussed
in the Discussion.

Sensitivity and elasticity analysis

Just as a matrix model has a matrix of sensitivity
values for each matrix entry, the integral model has a
sensitivity surface representing the sensitivity of the
eigenvalue to changes in the kernel (Fig. 5a), and a
corresponding elasticity surface (Fig. 5b), for all sizes.
The sensitivity formula (Eg. 2) shows how the shape
of the sensitivity surface is determined by the stable
size distribution and reproductive value curves. On a
slice through the sensitivity surface along a line of
constant ‘‘ stem diameter at timet + 1, the sensitivity
surface is proportional to the stable age distribution:
there is a sharp peak at the size of one-leaf vegetative
offspring, and a second lower peak near stem diameters
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of 1 mm. On aslice in the perpendicular direction, the
sensitivity surface is proportional to relative reproduc-
tive value, and, therefore, increases sharply with in-
creasing size. The elasticity surface is proportional to
the product of the sensitivity surface and the kernel
(see Eq. 3). Consequently, elasticities are high along
the ridges representing birth and survival of one-leaf
vegetative offspring and survival of larger individuals.

The sensitivity matrix for our 5 X 5 matrix model
for Monkshood (Eq. 4) is

Size class at time t

0.132

Size class H)-lﬂ
at time [0.181

0.069
0.061
0.095

0.139
0.123
0.190
0.224

0.186
0.164
0.254
0.300

0.1590]
0.140D
02170 (5)
0.257

t+1 H).le 0.112
0.264 0138 0277 0370 0.317[

and the elasticity matrix is

Size class at time' t

0,055 0027 0023 0014 0.0130
Size class 0024 0009 0009 0014 0.004]
atime ©032 0017 0068 0063 00107 (6)
t+1 o013 0005 0074 0132 0076

0.008 0004 0017 0076 0.213]

The highest sensitivities are in the lower right of the
matrix representing large plant to large plant transi-
tions. The larger elasticities are also for the transitions
of large plants, in particular for survival of class four
and class five plants. For the matrix model of Dixon
and Cook (1990), for the same population (although
using a different data set), the largest elasticities were
for the survival of small and medium sized plants (stem
diameter 0.2—4 mm).

These discrepancies between models result in part
from the choice of stage boundaries in the matrix mod-
els. Matrix model sensitivity/elasticity values describe
the effect of changing transition rates for an entire size
class of individuals. Corresponding values for the in-
tegral model are obtained by integrating the sensitivity/
elasticity surfaces over size limits corresponding to the
matrix transition rate being changed. Thus the value
from the integral model corresponding to the matrix
model elasticity to transition rate a, is given by

é,-=fij e(x, y) dy dx @

where L, and U, are the lower and upper limits, re-
spectively, of the kth size class in the matrix model.
Using the size class boundaries of our matrix model
(Eq. 4), the integral model reproduces the conclusion
from the matrix model that the highest elasticity is for
the survival of individuals in the largest size category
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a) Integral model

Elasticity

Elasticity

Fic. 6. Comparison of matrix model elasticities g; = (a;/
\)dNoa; for monkshood, with corresponding values from the
integral projection model (Eqg. 7), for our matrix model (Eg.
4) with size class boundaries based on percentiles of the size
distribution. The matrix model has five size classes with
boundaries at 0.2, 0.6, 1.154, and 1.702 mm. (@) Integral
model elasticity values. (b) Matrix model elasticity values.

(Fig. 6). The differences between the matrix and in-
tegral model values in Fig. 6 are mostly due to the
different reproductive value curves (Fig. 4avs.4c). The
integral model predicts a lower relative reproductive
value for small individuals, and therefore assigns lower
sensitivity and elasticity to transitions into the smaller
size classes. Figs. 6a and 5b present the same infor-
mation plotted in two different ways. The apparently
large discrepancy between Figs. 6a and 5b is due to
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a) Integral model

05, .-
04y,
03] .7

0.2

Elasticity

01

2 i t
gass @ s
cize

b) Dixon and Cook mattix model

05, ..

Elasticity

Fic. 7. Comparison of matrix model elasticities g; = (a/
\)oN/oay; for monkshood, with corresponding values from the
integral projection model (Eq. 7) (asin Fig. 6), but with the
size class boundaries from the Dixon and Cook (1990) matrix
model. The matrix model was derived from the same data as
was used to fit the integral model and our matrix model (Eq.
4). The matrix model in this figure has four size classes with
boundaries at 0.2, 2, and 4 mm. The fifth class in the Dixon
and Cook (1990) model is sexually produced seedlings, which
did not occur in our reduced data set. (a) Integral model
elasticity values. (b) Matrix model elasticity values.

the variation in the width of the size classes used in
Fig. 6, which causes wide variation in the area of the
region of integration in Eq. 7. In particular, size class
5 (=1.7 mm) is >4X as wide as any of the other size-
classes, and this, more than anything else, produces the
large value of &;s.



March 2000

Using, instead, the size class boundaries from the
Dixon and Cook matrix model, the integral and matrix
models both assign highest sensitivity to the survival
of small-to-medium size individuals (Fig. 7). Again,
the integral model predicts stronger size dependence
of reproductive value, and assigns correspondingly
lower elasticities to transitions into the smaller size
classes. The differences between Figs. 6 and 7 are strik-
ingly large, but can by reconciled by comparing the
two sets of size class boundaries. In particular, all of
size classes 2, 3, and 4 from Fig. 6 are included in size
class 2 of Fig. 7, which gives size class 2 the bulk of
the total elasticity. The majority of size class 5 from
Fig. 6 is split between size classes 3 and 4 in Fig. 7,
so that the large &5 in Fig. 6 is (approximately) divided
into four pieces (&3, &4 &3 &) in Fig. 7. As these
comparisons illustrate, the final rankings of elasticities
in a matrix model can be driven by the choice of size
classes for constructing the matrix; Figs. 6 and 7 are
equally valid as reduced summaries of the sensitivity
surface, but they would be interpreted very differently
with regard to conservation priorities, based on the size
of individuals. Theintegral model, in contrast, provides
disaggregated information (Fig. 5a, b) that allows a
user to compute elasticities for any projected changes
in transition rates that could result from potential
changes in population management.

DiscussioN
Results of integral projection versus matrix models

The integral projection model is a new tool for an-
alyzing structured population data, and this paper is
only an initial trial at fitting the model to data, and
using the fitted model for some of the usual purposes
of the matrix projection model. In theory, there is a
well-defined set of circumstances in which the integral
projection model can offer decisive advantages over
alternatively structured popul ation models: abetter rep-
resentation of transient dynamics (Easterling 1998),
and all of the useful output from a matrix model, with-
out any artifacts due to the location of artificial class
boundaries. Our monkshood case study emphasi zes that
the class boundary effects are not statistical niceties,
but can have an enormous impact on the interpretation
of the sensitivity analysis and the management prior-
ities that would be implied. Aggregating size-specific
elasticitiesinto class-specific elasticities (viaEq. 7) can
blur potentially significant features, such as the *‘ridg-
es’ in elasticity for vegetative production of one-leaf
individuals (Fig. 5).

Thefindings of Enright et al. (1995) demonstrate that
this problem is quite general. Relative sensitivities and
elasticities within and between species are sensitive to
thelocation of stage class boundaries, and, in particular,
to stage duration (the fraction of the life span typically
spent in each stage). The solutions proposed by Enright
et al. (1995) (i.e., holding stage duration constant, or
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using the same number of stages for all species) min-
imize the effects of stage duration, but do so at the
considerable price of laying down stage boundaries at
locations unrelated to any natural (or management-im-
posed) breakpoints. Like the algorithms of Vandermeer
(1978) and Moloney (1986), these are ways to make
the best of a bad situation. Using an integral projection
model for the sensitivity analysis removes the artifacts
due to stage duration, without introducing new artifacts
due to biologically inappropriate stage boundaries. The
exactly size-specific results from an integral model can
be applied to any size-dependent thresholds for man-
agement effects (e.g., size limits on harvest of indi-
viduals). A user can estimate the effects of alternative
management options more easily and more flexibly
than with a matrix model, which is inherently tied to
the size categories (or combinations of them) used in
constructing the model. Given the critical role of sen-
sitivity analysis results for conservation planning (e.g.,
Crouse et al. 1987, Crowder et al. 1994, Heppell et al.
1994, 2000, Schemske et al. 1994, de Kroon et al.
2000), the additional effort of constructing the integral
projection model will often be outweighed by the po-
tential benefits.

The matrix and integral models also produce very
different estimates of the size-dependent variation in
reproductive value for monkshood. One might expect
that amatrix model will producean ‘‘average’” or ‘‘typ-
ical”’ reproductive value for individuals in a size cat-
egory, but this is not necessarily true. As a simple
example to illustrate what can happen, consider afive-
stage population that is really age structured, with ju-
veniles (ages 1-4) having no fecundity and survival S,
adults (=age 5) having survival S, and per capita fe-
cundity b. To allow analytic calculations we choose b
so that the population is stationary (A = 1); this occurs
if Sy + bSt = 1. Thispopulationisgoverned by aLeslie
matrix L with S's on the subdiagonal, L5 = S, and
Lis = b. If we construct a matrix model by grouping
the population into “small”’ (age 1), ‘‘medium” (age
2-4), and “large’ (=age 5) individuals, the matrix
giving the transition rates for the population at stable
age distribution is

P o bp
S « OE
EP B S

wherea = (§+ )1+ S+ SF),B =S — «. For
these matrices, it is straightforward to show that the 3
X 3 matrix assignsto ‘‘medium’’ individual s the actual
reproductive value of age-2 individuals. So, rather than
producing a ‘‘typical’ reproductive value for medium-
size individuals, the matrix model yields the actual
reproductive value of the smallest individual inthesize
class. This particular example is extreme, but it un-
derscores the point that grouping individuals into size
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classes inevitably entails aggregation errors that will
affect the final patterns.

When to use the integral projection model

The integral projection model has many of the same
properties that have made the matrix projection model
popular: approximation of the population growth rate,
eigenvectors representing reproductive value and stable
size distribution, and sensitivity analysis for changes
in specific vital rates. Given these similarities, a de-
cision of which kind of model to use for data fitting
should be made based on the available data, the study
system, and the goals of the study.

Available data.—The integral and matrix projection
models are both adapted to fitting data on the observed
fate of marked individuals between two census times.
Both models are derived directly from the ““rules” de-
scribing individual changes in state between one time
period and the next, and the ‘‘rules’ describing state-
dependent fecundity (distribution of offspring number
and size). The correspondence between the fitting prob-
lem and the data makes the fitting process relatively
simple. For our monkshood study, the only statistical
tools that we used were least squares and binary re-
gression. Fitting continuous-time structured popul ation
models to discrete-time census data is a far more com-
plex process (see e.g., Wood 1994, Ellner et al. 1997,
Kendall et al. 1999). These models (partial differential
equation, ordinary differential equation, delay differ-
ential equation, or the continuous-time integral projec-
tion model) are based on instantaneous process rates,
whilethe datareveal theresult of those processesacting
over an extended period of time. Fitting these models,
therefore, entails the rarely easy inverse problem of
estimating instantaneous rate equations from finite-
time outcomes (see Wood [1997] for a review).

Study system.—If the study population is structured
by continuous individual-level state variables, without
any natural breakpointsthat can be used to define mean-
ingful stage classes, then continuous-state models (in-
tegral projection or partial differential equation) cor-
respond better to the biological reality than discrete-
state models (matrix projection or ordinary differential
equation). A “‘natural breakpoint’” can be operationally
defined in terms of the relationship between individual -
level state variables and vital rates. If vital rates vary
in a step-like manner (changing quickly over small re-
gions of the individual-level state variables, and re-
maining relatively constant between these regions),
then the “‘step” locations form a natural set of stage
class boundaries. If the state-dependent variation in
vital rates is smooth, the user of a continuous-state
model can accurately represent that fact in the model,
and, moreover, can exploit smoothness by using sta-
tistical techniquesfor optimizing thefit of smooth func-
tions to data (e.g., Wahba 1990, Green and Silverman
1994). Relative to partial differential equation models,
the integral projection model offers greater flexibility
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in describing the distribution of size-dependent growth
increments (see Integral projection model). If this un-
predictable component of individual-state dynamicsis
small, or can be modeled well enough by adding a
suitable diffusion-in-state term to a partial differential
equation, the choice of models would be a matter of
personal preference or convenience in fitting the data.

Goals.—The easiest model to fit and analyze is the
discrete-state, discrete-time case: the matrix projection
model. If that model gives you all that you need, there
is no point in working any harder. The integral model
and the matrix model give very similar estimates for
the growth rates of the monkshood population, which
are similar to Dixon and Cook’s (1990) results, using
a different set of stage boundaries in a matrix model.
Simulation studies on a set of theoretical cases (Eas-
terling 1998) also indicate that a matrix projection
model estimates the population growth rate \, as well
as the integral projection model, and with no greater
bias, even if vital rates vary smoothly with size. Pop-
ulation growth results from the aggregate (hence the
average) net reproductive output of the entire popu-
lation. One might expect that a matrix model will pro-
duce a “‘typical’’ reproductive value for individualsin
a size category (e.g., the mean or something close to
it), but this is not necessarily true. Nevertheless, the
process of first averaging over individuals within clas-
ses to construct a matrix model appears to have little
effect on the estimated growth rate.

However, the eigenvectors (reproductive value and
stable state distribution) are about the state-dependent
differences between individuals, as are the state-de-
pendent sensitivities that are computed from the ei-
genvectors. In these, the difference between a matrix
model and an integral model is clearly displayed.

The integral projection model also gives a more de-
tailed depiction of state-dependent differences in re-
productive value and stable frequency. The stable size
distribution and reproductive value are smooth func-
tions in the integral projection model (Fig. 4), while
they are step functions in the matrix model. The matrix
model only has a single reproductive value for each
class. Sections of the reproductive value curve for
monkshood are very steep in the integral model (e.g.,
sizesranging 0.5-2 mm). The smallest and largest sizes
in this range have very different reproductive values
according to the model, and grouping them into one
size category would lose this information. A larger
matrix may come closer to representing this large
change for individuals of similar sizes, but not without
additional variance in parameter estimates, due to the
reduced sample size in each class.

How to use the integral projection model

Several objectives must be reached before the inte-
gral model becomes a standard part of the experimental
ecologist’s toolkit. First, the merits of alternative ways
of fitting the kernel need to be explored. With a matrix
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model, one must arbitrarily break apart the size distri-
bution, and then use data from each category for pa-
rameter estimation. This has two problems: categori-
zation, and poor estimation of parameters in sparsely
sampled categories. Both of these problems are over-
come with an integral model. However, to construct an
integral model one needs to define the size-dependent
growth and survival functions. There are countless
ways to estimate a probability density from sample
data, and the conditional densities for individual size
and offspring size are the essential components of the
model. While these can be flexible (e.g., splines), any
specific functional form isa construct laid over the real
data, and, when data are sparse, it may be difficult to
decide between alternative functional forms (of course,
asimilar comment appliesto the choice of stage bound-
aries in a matrix model). In such cases, a user’'s best
option would be to build a set of models with alter-
native functional forms, in order to verify that (for
example) results are robust against departures from a
Gaussian approximation to the conditional size distri-
bution.

Second, the integral model should be expanded to
other situations, such as a density-dependent model or
a time-varying model. In principle these are straight-
forward, requiring only the addition of acovariate (e.g.,
density, rainfall) to each of the functions making up
the kernel. In practice, the increased dimension will
increase the data requirements for fitting the kernel.

Finally, the methods need to be readily available to
any potential user with the appropriate data. The fitting
and analysis are straightforward to code in a matrix
language such as Matlab, GAUSS, or SAS IML, but a
typical user may be deterred by the effort involved. As
a step in that direction, Matlab code for the examples
presented here is available, along with a users’ manual
(see the Supplementary Material). It is also possible to
“trick’ existing code for matrix projection modelsinto
producing numerical solutions for the integral model
(we describe how to do this at the end of the Appendix
and provide sample S-plus code in the Supplementary
Material). This approach is computationally inefficient,
but it may be the most attractive option at present for
users who already have experience working with matrix
models.
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APPENDI X
Methods for computing the dominant eigenvalue and eigenvectors may be found in ESA’'s Electronic Data Archive:

Ecological Archives E081-007-A1.

SUPPLEMENTARY MATERIAL
Matlab code for the examples presented, along with a user’s manual, is available in ESA’'s Electronic Data Archive:

Ecological Archives E081-007-S1.



