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Some P.D.E.

Poisson’s equation −∆u = f in Ω

Helmholtz equation −∆u + ru = f in Ω

Heat equation ut −∆u = f in Ω× (0,T )

Wave equation utt −∆u = f in Ω× (0,T )

The domain Ω ⊂ Rd with d ≥ 2, which is of class C 0,1, with
boundary ∂Ω

−∆u = −
∑d

i=1 uxi xi
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Elliptic P.D.E.
Model Equation

Consider

−∇ · (k∇u) + ru = f in Ω

where k is positive (bounded away from zero) and r is nonnegative

−∆u = −∇ · ∇u



Introduction Elliptic P.D.E. Weak Formulation Abstract Setting Mathematical Model

Elliptic P.D.E.
Boundary Conditions

Dirichlet type
u|∂Ω = g

Neumann type
−k∇u · n|∂Ω = h

Robin type
−k∇u · n|∂Ω = γ(us − u|∂Ω)

One can also have mixed boundary conditions
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Weak Formulation

To derive a weak formulation for

−∇ · (k∇u) + ru = f in Ω

multiply the equation by a test function v and integrate over Ω
(integrating by parts)

∫
Ω

[−∇ · (k∇u) + ru]v dx = −
∫
∂Ω

k∇u · nv ds

+

∫
Ω
k∇u · ∇v + ruv dx

=

∫
Ω
fv dx
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Weak Formulation
Notation

Set

a(u, v) =

∫
Ω
k∇u∇v + ruv dx

(u, v) =

∫
Ω
uv dx

〈f , v〉Ω =

∫
Ω
fv dx

〈u, v〉∂Ω =

∫
∂Ω

uv ds
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Weak Formulation
Spaces

L2(Ω) - space of functions which are square integrable on Ω∫
Ω
|u|2 dx <∞

with inner product (u, v) and norm

‖v‖0 =
√

(v , v)
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Weak Formulation
Spaces

H1(Ω) - space of square integrable functions on Ω with first weak
derivatives that are square integrable

H1(Ω) = {v ∈ L2(Ω) : ∇v ∈ L2(Ω)}

with inner product (∇u,∇v) + (u, v) and norm

‖v‖1 =
√

(∇v ,∇v) + (v , v)
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Weak Formulation
Spaces

H1
0 (Ω) - space of H1(Ω) functions that have trace zero on the

boundary
H1

0 (Ω) = {v ∈ H1
0 (Ω) : u|∂Ω = 0}

H1/2(∂Ω) - is the trace space of H1(Ω) with dual H−1/2(∂Ω)

H−1(Ω) - is the dual of H1
0 (Ω)
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Weak Formulation
The Dirichlet Problem

−∇ · (k∇u) + ru = f in Ω

u|∂Ω = 0 on ∂Ω

Given f ∈ H−1(Ω) find u ∈ H1
0 (Ω) such that

a(u, v) = 〈f , v〉Ω for all v ∈ H1
0 (Ω)
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Weak Formulation
The Neumann Problem

−∇ · (k∇u) + ru = f in Ω

−k∇u · n|∂Ω = h on ∂Ω

Given f ∈ H∗(Ω) and h ∈ H−1/2(∂Ω) find u ∈ H1(Ω) such that

a(u, v) = 〈f , v〉Ω − 〈h, v〉∂Ω for all v ∈ H1(Ω)
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Abstract Setting
The Lax Milgram Lemma

V - a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖

a : V × V 7→ R a continuous bilinear form, i.e., there exists a
number M such that

|a(u, v)| ≤ M‖u‖V ‖v‖V for all u, v ∈ V

a is V -elliptic, i.e., there exists a number α > 0 such that

α‖u‖2
V ≤ a(u, u) for all u ∈ V

F : V 7→ R is a continuous linear form, i.e.

|F (v)| ≤ ‖F‖V ∗‖v‖V
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Abstract Setting
The Lax Milgram Lemma

Then, find u ∈ V such that

a(u, v) = F (v) for all v ∈ V

has a unique solution, furthermore the solution satisfies the
following a priori estimate

‖u‖V ≤
1

α
‖F‖V ∗
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Abstract Setting
Banach Nečas Babuška

U - a Banach space

V - a reflexive Banach space

a : U × V 7→ R a continuous bilinear form, i.e., there exists a
number M such that

|a(u, v)| ≤ M‖u‖U‖v‖V for all u ∈ U, v ∈ V

a satisfies the inf − sup condition, i.e., there exists a number α > 0
such that

inf
u∈U

sup
v∈V

a(u, v)

‖u‖U‖v‖V
≥ α

a(u, v) = 0 for all u ∈ U =⇒ v = 0
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F : V 7→ R is a continuous linear form, i.e.

|F (v)| ≤ ‖F‖V ∗‖v‖V for all v ∈ V

Then, find u ∈ U such that

a(u, v) = F (v) for all v ∈ V

has u unique solution, furthermore the solution satisfies the
following a priori estimate

‖u‖U ≤
1

α
‖F‖V ∗



Introduction Elliptic P.D.E. Weak Formulation Abstract Setting Mathematical Model

Abstract Setting
Banach Nečas Babuška
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Variational Problem

The solution of the problem find u ∈ V such that

a(u, v) = F (v) for all v ∈ V

is the minimizer of

J(u) =
1

2
a(u, u)− F (u)
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Constrained Variational Problem

The solution of the problem find u ∈ V such that

a(u, v) = F (v) for all v ∈ V

subject to the constraint

b(u, µ) = G (µ) for all µ ∈ M

is the saddle point of the Lagrange function

L(u, λ) = J(u) + [b(u, λ)− G (λ)]
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Mixed Problem
Ladyzhenskaya Babuska Brezzi

Find u ∈ V and λ ∈ M such that

a(u, v) + b(v , λ) = F (v) for all v ∈ V

b(u, µ) = G (µ) for all µ ∈ M

Solutions satisfy the saddle property

L(u, µ) ≤ L(u, λ) ≤ L(v , λ) for all v ∈ V , µ ∈ M
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Mixed Problem
Ladyzhenskaya Babuska Brezzi

Assume the forms a and b are continuous, i.e., there exists
numbers A and B such that

|a(u, v)| ≤ A‖u‖V ‖v‖V for all u, v ∈ V

|b(v , µ)| ≤ B‖u‖V ‖µ‖M for all v ∈ V , µ ∈ M

Assume the functionals F and G are bounded, i.e.,

|F (v)| ≤ ‖F‖V ∗‖v‖V for all v ∈ V

|G (µ)| ≤ ‖G‖M∗‖µ‖M for all µ ∈ M
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Mixed Problem
Ladyzhenskaya Babuska Brezzi

Assume a is coercive, i.e., there exists a number α > 0 such that

α‖u‖2
V ≤ a(u, u) for all u ∈ V with b(u, µ) = 0, for all µ ∈ M

and that b satisfies the inf − sup condition, i.e., there exists a
beta > 0

inf
µ∈M

sup
v∈V

b(v , µ)

‖v‖V ‖µ‖M
≥ β

Then the mixed problem has a unique solution
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Examples
Poisson’s Equation Primal Formulation

−∆u = −∇ · ∇u = f

can be written as
∇u = σ

−∇ · σ = f

This yields the saddle point problem, find
(σ, u) ∈ (L2(Ω))d × H1

0 (Ω) such that

(σ, τ)− (τ,∇u) = 0 for all τ ∈ (L2(Ω))d

−(σ,∇v) = −(f , v) for all v ∈ H1
0 (Ω)
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Examples
Poisson’s Equation Dual Formulation

−∆u = −∇ · ∇u = f

can be written as
∇u = σ

−∇ · σ = f

This yields the saddle point problem, find
(σ, u) ∈ H(div,Ω)× L2(Ω) such that

(σ, τ) + (∇ · τ, u) = 0 for all τ ∈ H(div,Ω)

(∇ · σ, v) = −(f , v) for all v ∈ L2(Ω)

where
H(div,Ω) = {τ ∈ (L2(Ω))d : ∇ · τ ∈ L2(Ω)}
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Examples
Stokes Equations

−∆u −∇p = f in Ω

∇ · u = 0 in Ω

u|∂Ω = 0 on ∂Ω

Find (u, p) ∈ (H1
0 (Ω))d × L2

0(Ω) such that

(∇u : ∇v) + (∇ · v , p) = (f , v) for all v ∈ (H1
0 (Ω))d

(∇ · u, q) = 0 for all q ∈ L2
0(Ω)

where
L2

0(Ω) = {q ∈ L2(Ω) : (q, 1) = 0}
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Examples
Navier Stokes Equations

−∆u + u · ∇u −∇p = f in Ω

∇ · u = 0 in Ω

u|∂Ω = 0 on ∂Ω

Find (u, p) ∈ (H1
0 (Ω))d × L2

0(Ω) such that

(∇u : ∇v) + (u · ∇u, v) + (∇ · v , p) = (f , v) for all v ∈ (H1
0 (Ω))d

(∇ · u, q) = 0 for all q ∈ L2
0(Ω)
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Examples
Navier Stokes Equations

−∆u + u · ∇u −∇p = f in Ω

∇ · u = 0 in Ω

u|∂Ω = 0 on ∂Ω

Find (u, p) ∈ (H1
0 (Ω))d × L2

0(Ω) such that

(∇u : ∇v) + (u · ∇u, v) + (∇ · v , p) = (f , v) for all v ∈ (H1
0 (Ω))d

(∇ · u, q) = 0 for all q ∈ L2
0(Ω)
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Porormechanics

Poromechanics is the science of energy, motion, and forces and
their effect on porous material and in particular the mechanical
behavior (swelling and shrinking) of fluid-saturated porous media.
Poromechanics and electro-poromechanics are complex coupled,
multiscale, phenomena, where the swelling and shrinking of an
elastic (or viscoelastic, viscoplastic, or plastic) deforming porous
medium is coupled to the electro-chemo-thermo-mechanical
response of the medium and the fluid.
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Porormechanics

Modeling and predicting the mechanical (or the
electro-chemo-thermo-mechanical) behavior of fluid-infiltrated
porous media is of great importance since many natural
substances, e.g., rocks, soils, and biological tissues, as well as man
made materials such as foams, gels, concrete, and ceramics can be
considered as elastic porous media.
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Application Areas
Geomechanics

Clays, shales, damage shrinkage of concrete



Introduction Elliptic P.D.E. Weak Formulation Abstract Setting Mathematical Model

Application Areas
Biomechanics

Hydrated tissues, bones, corneal swelling, hydrogels, intervertebral
discs
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Application Areas
Pharmacology

Water-solute drug carriers, biodegradable drug delivery-systems



Introduction Elliptic P.D.E. Weak Formulation Abstract Setting Mathematical Model

Application Areas
Material Science

Polymeric materials, crosslinked porous structures, foams, gels, and
ceramics
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Application Areas
Material Science

High-tech material
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Models

Rigid — Non-rigid

Saturated — Unsaturated

Fully Dynamic — Quasistatic — Steady

Incompressible — Slightly Compressible

Secondary Consolidation
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History and Motivation

F. H. King. Observations and experiments on the fluctuations
in the level and rate of movement of ground water on the
experiment station farm and at Whitewater, Wisconsin, Ninth
Annual Report of the Agricultural Experiment Station of the
University of Wisconsin, 1892.

D. W. Simpson. Triggered earthquakes, Ann. Rev. Earth
Planet. Sci., 1986.

E. A. Roeloffs. Persistent water level changes in a well near
parkfield, california, due to local and distant earthquakes, J.
Geophys. Res., 1998.
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Mathematical Model
Basic Quantities

Stress

τ = µ
(
∇u +∇uT

)
+

(
λ∗

∂

∂t
∇ · u + λ∇ · u− αp

)
I

= 2µε(u) +

(
λ∗

∂

∂t
∇ · u + λ∇ · u− αp

)
I

u displacement
p pressure
µ λ Lamé coefficients
λ∗ coefficient of secondary consolidation
α Biot-Willis constant (couples pressure and deformation)
ε Strain
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Mathematical Model
Basic Quantities

Fluid content
η = c0p + α∇ · u

Fluid flux, Darcy’s law
q = −κ∇p

c0 combined porosity and compressibility
κ hydraulic conductivity
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Mathematical Model
Conservation Laws

Balance of momentum

ρ
∂2

∂t2
u−∇ · τ = F(x , t)

Mass conservation

∂

∂t
η −∇ · q = G (x , t)

ρ density
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Mathematical Model
The P.D.E.

Fully dynamic poroelasticity

ρ
∂2

∂t2
u−λ∗∇

(
∂

∂t
∇ · u

)
−(λ+µ)∇(∇·u)−µ∇·(∇u)+α∇p = F(x , t)

∂

∂t
(c0p + α∇ · u)−∇ · (κ∇p) = G (x , t)

Quasistatic poroelasticity

−(λ+ µ)∇(∇ · u)− µ∇ · (∇u) + α∇p = F(x , t)

∂

∂t
(c0p + α∇ · u)−∇ · (κ∇p) = G (x , t)

In Ω× (0,T )
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Mathematical Model
Boundary Conditions

u = uc on Γc × (0,T )

[
(λ+ µ)∇ · uI + µ∇u

]
n− βαpnχtf = g on Γt × (0,T )

p = pd on Γd × (0,T )

− ∂

∂t

(
(1− β)αu · n

)
χtf + κ∇p · n = j on Γf × (0,T )

Γ = Γc ∪ Γt , Γc ∩ Γt = ∅, also Γ = Γd ∪ Γf , Γd ∩ Γf = ∅, and
χtf = χΓt∩Γf
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Mathematical Model
Initial Conditions

c0p + α∇ · u = v0 on Ω at t = 0

(1− β)αu · n = v1 on Γtf at t = 0
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Mixed Formulation

Quasistatic poroelasticity

−(λ+ µ)∇(∇ · u)− µ∇ · (∇u) + α∇p = F(x , t)

∂

∂t
(c0p + α∇ · u)−∇ · (z) = G (x , t)

κ−1z−∇p = 0

In Ω× (0,T )
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