Saddle Point Problems and Mixed Formutaions

 Applications in Fluids, Elasticity, and PoroelasticityA. J. Meir
Department of Mathematics and Statistics Auburn University

US-Africa Workshop on Mathematical Modeling of Biological Systems
Dec. 12-Dec. 14, 2011

This project is supported by a grant from the NSF

Outline

(1) Introduction Weak Formulation Abstract Setting Mathematical Model

Outline

(1) Introduction
(2) Elliptic P.D.E. 4. Abstract Setting Mathematical Model

Outline

(1) Introduction
(2) Elliptic P.D.E.
(3) Weak Formulation

4 Abstract Setting
(5) Mathematical Model

Outline

(1) Introduction
(2) Elliptic P.D.E.
(3) Weak Formulation
(4) Abstract Setting 5) Mathematical Model

Outline

(1) Introduction
(2) Elliptic P.D.E.
(3) Weak Formulation
(4) Abstract Setting
(5) Mathematical Model

Some P.D.E.

- Poisson's equation

$$
-\Delta u=f \quad \text { in } \Omega
$$

\square
Helmholtz equation
Heat equation
Wave equation

The domain $\Omega \subset \mathbb{R}^{d}$ with $d \geq 2$, which is of class $C^{0,1}$, with boundary $\partial \Omega$

Some P.D.E.

- Poisson's equation $-\Delta u=f$ in Ω
- Helmholtz equation
$-\Delta u+r u=f$
in Ω

The domain $\Omega \subset \mathbb{R}^{d}$ with $d \geq 2$, which is of class $C^{0,1}$, with boundary $\partial \Omega$

$$
-\Delta u=-\sum_{i=1}^{d} u_{x_{i} x_{i}}
$$

Some P.D.E.

- Poisson's equation

$$
-\Delta u=f
$$

$$
\text { in } \Omega
$$

- Helmholtz equation
$-\Delta u+r u=f$ in Ω
- Heat equation

$$
u_{t}-\Delta u=f \quad \text { in } \Omega \times(0, T)
$$

The domain $\Omega \subset \mathbb{R}^{d}$ with $d \geq 2$, which is of class $C^{0,1}$, with boundary $\partial \Omega$

$$
-\Delta u=-\sum_{i=1}^{d} u_{x_{i} x_{i}}
$$

Some P.D.E.

- Poisson's equation

$$
-\Delta u=f
$$

$$
\text { in } \Omega
$$

- Helmholtz equation

$$
-\Delta u+r u=f
$$

$$
\text { in } \Omega
$$

- Heat equation

$$
u_{t}-\Delta u=f \quad \text { in } \Omega \times(0, T)
$$

- Wave equation

$$
u_{t t}-\Delta u=f \quad \text { in } \Omega \times(0, T)
$$

The domain $\Omega \subset \mathbb{R}^{d}$ with $d \geq 2$, which is of class $C^{0,1}$, with boundary $\partial \Omega$

$$
-\Delta u=-\sum_{i=1}^{d} u_{x_{i} x_{i}}
$$

Some P.D.E.

- Poisson's equation

$$
-\Delta u=f
$$

$$
\text { in } \Omega
$$

- Helmholtz equation

$$
-\Delta u+r u=f
$$

$$
\text { in } \Omega
$$

- Heat equation

$$
u_{t}-\Delta u=f \quad \text { in } \Omega \times(0, T)
$$

- Wave equation

$$
u_{t t}-\Delta u=f \quad \text { in } \Omega \times(0, T)
$$

The domain $\Omega \subset \mathbb{R}^{d}$ with $d \geq 2$, which is of class $C^{0,1}$, with boundary $\partial \Omega$

$$
-\Delta u=-\sum_{i=1}^{d} u_{x_{i} x_{i}}
$$

Elliptic P.D.E.
 Model Equation

Consider

$$
-\nabla \cdot(k \nabla u)+r u=f \quad \text { in } \Omega
$$

where k is positive (bounded away from zero) and r is nonnegative

Elliptic P.D.E.

Boundary Conditions

Dirichlet type

$$
\left.u\right|_{\partial \Omega}=g
$$

Neumann type

One can also have mixed boundary conditions

Elliptic P.D.E.
 Boundary Conditions

Dirichlet type

$$
\left.u\right|_{\partial \Omega}=g
$$

Neumann type

$$
-\left.k \nabla u \cdot \mathbf{n}\right|_{\partial \Omega}=h
$$

Elliptic P.D.E.

Boundary Conditions

Dirichlet type

$$
\left.u\right|_{\partial \Omega}=g
$$

Neumann type

$$
-\left.k \nabla u \cdot \mathbf{n}\right|_{\partial \Omega}=h
$$

Robin type

$$
-\left.k \nabla u \cdot \mathbf{n}\right|_{\partial \Omega}=\gamma\left(u_{s}-\left.u\right|_{\partial \Omega}\right)
$$

Elliptic P.D.E.
 Boundary Conditions

Dirichlet type

$$
\left.u\right|_{\partial \Omega}=g
$$

Neumann type

$$
-\left.k \nabla u \cdot \mathbf{n}\right|_{\partial \Omega}=h
$$

Robin type

$$
-\left.k \nabla u \cdot \mathbf{n}\right|_{\partial \Omega}=\gamma\left(u_{s}-\left.u\right|_{\partial \Omega}\right)
$$

One can also have mixed boundary conditions

Weak Formulation

To derive a weak formulation for

$$
-\nabla \cdot(k \nabla u)+r u=f \quad \text { in } \Omega
$$

multiply the equation by a test function v and integrate over Ω (integrating by parts)

Weak Formulation

To derive a weak formulation for

$$
-\nabla \cdot(k \nabla u)+r u=f \quad \text { in } \Omega
$$

multiply the equation by a test function v and integrate over Ω (integrating by parts)

$$
\begin{aligned}
\int_{\Omega}[-\nabla \cdot(k \nabla u)+r u] v d x= & -\int_{\partial \Omega} k \nabla u \cdot \mathbf{n} v d s \\
& +\int_{\Omega} k \nabla u \cdot \nabla v+r u v d x \\
= & \int_{\Omega} f v d x
\end{aligned}
$$

Weak Formulation

Notation
Set

$$
\begin{gathered}
a(u, v)=\int_{\Omega} k \nabla u \nabla v+r u v d x \\
(u, v)=\int_{\Omega} u v d x \\
\langle f, v\rangle_{\Omega}=\int_{\Omega} f v d x \\
\langle u, v\rangle_{\partial \Omega}=\int_{\partial \Omega} u v d s
\end{gathered}
$$

Weak Formulation

$L^{2}(\Omega)$ - space of functions which are square integrable on Ω

$$
\int_{\Omega}|u|^{2} d x<\infty
$$

with inner product (u, v) and norm

$$
\|v\|_{0}=\sqrt{(v, v)}
$$

Weak Formulation

Spaces
$H^{1}(\Omega)$ - space of square integrable functions on Ω with first weak derivatives that are square integrable

$$
H^{1}(\Omega)=\left\{v \in L^{2}(\Omega): \nabla v \in L^{2}(\Omega)\right\}
$$

with inner product $(\nabla u, \nabla v)+(u, v)$ and norm

$$
\|v\|_{1}=\sqrt{(\nabla v, \nabla v)+(v, v)}
$$

Weak Formulation

$H_{0}^{1}(\Omega)$ - space of $H^{1}(\Omega)$ functions that have trace zero on the boundary

$$
H_{0}^{1}(\Omega)=\left\{v \in H_{0}^{1}(\Omega):\left.u\right|_{\partial \Omega}=0\right\}
$$

Weak Formulation
 Spaces

$H_{0}^{1}(\Omega)$ - space of $H^{1}(\Omega)$ functions that have trace zero on the boundary

$$
H_{0}^{1}(\Omega)=\left\{v \in H_{0}^{1}(\Omega):\left.u\right|_{\partial \Omega}=0\right\}
$$

$H^{1 / 2}(\partial \Omega)$ - is the trace space of $H^{1}(\Omega)$ with dual $H^{-1 / 2}(\partial \Omega)$

Weak Formulation

Spaces
$H_{0}^{1}(\Omega)$ - space of $H^{1}(\Omega)$ functions that have trace zero on the boundary

$$
H_{0}^{1}(\Omega)=\left\{v \in H_{0}^{1}(\Omega):\left.u\right|_{\partial \Omega}=0\right\}
$$

$H^{1 / 2}(\partial \Omega)$ - is the trace space of $H^{1}(\Omega)$ with dual $H^{-1 / 2}(\partial \Omega)$
$H^{-1}(\Omega)$ - is the dual of $H_{0}^{1}(\Omega)$

Weak Formulation

The Dirichlet Problem

$$
\begin{gathered}
-\nabla \cdot(k \nabla u)+r u=f \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Weak Formulation

The Dirichlet Problem

$$
\begin{gathered}
-\nabla \cdot(k \nabla u)+r u=f \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Given f
find u
such that

$$
a(u, v)=\langle f, v\rangle_{\Omega} \quad \text { for all } v
$$

Weak Formulation

The Dirichlet Problem

$$
\begin{gathered}
-\nabla \cdot(k \nabla u)+r u=f \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Given $f \in H^{-1}(\Omega)$ find $u \in H_{0}^{1}(\Omega)$ such that

$$
a(u, v)=\langle f, v\rangle_{\Omega} \quad \text { for all } v \in H_{0}^{1}(\Omega)
$$

Weak Formulation

The Neumann Problem

$$
\begin{gathered}
-\nabla \cdot(k \nabla u)+r u=f \quad \text { in } \Omega \\
-\left.k \nabla u \cdot \mathbf{n}\right|_{\partial \Omega}=h \quad \text { on } \partial \Omega
\end{gathered}
$$

Weak Formulation

The Neumann Problem

$$
\begin{array}{cc}
-\nabla \cdot(k \nabla u)+r u=f & \text { in } \Omega \\
-\left.k \nabla u \cdot \mathbf{n}\right|_{\partial \Omega}=h & \text { on } \partial \Omega
\end{array}
$$

Given $f \in H^{*}(\Omega)$ and $h \in H^{-1 / 2}(\partial \Omega)$ find $u \in H^{1}(\Omega)$ such that

$$
a(u, v)=\langle f, v\rangle_{\Omega}-\langle h, v\rangle_{\partial \Omega} \quad \text { for all } v \in H^{1}(\Omega)
$$

Weak Formulation

The Neumann Problem

$$
\begin{array}{cc}
-\nabla \cdot(k \nabla u)+r u=f & \text { in } \Omega \\
-\left.k \nabla u \cdot \mathbf{n}\right|_{\partial \Omega}=h & \text { on } \partial \Omega
\end{array}
$$

Given $f \in H^{*}(\Omega)$ and $h \in H^{-1 / 2}(\partial \Omega)$ find $u \in H^{1}(\Omega)$ such that

$$
a(u, v)=\langle f, v\rangle_{\Omega}-\langle h, v\rangle_{\partial \Omega} \quad \text { for all } v \in H^{1}(\Omega)
$$

Abstract Setting The Lax Milgram Lemma

V - a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ number M such that

Abstract Setting
 The Lax Milgram Lemma

V - a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$
$a: V \times V \mapsto \mathbb{R}$ a continuous bilinear form, i.e., there exists a number M such that

$$
|a(u, v)| \leq M\|u\|_{v}\|v\|_{v} \quad \text { for all } u, v \in V
$$

Abstract Setting

The Lax Milgram Lemma
V - a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$
$a: V \times V \mapsto \mathbb{R}$ a continuous bilinear form, i.e., there exists a number M such that

$$
|a(u, v)| \leq M\|u\|_{V}\|v\|_{V} \quad \text { for all } u, v \in V
$$

a is V-elliptic, i.e., there exists a number $\alpha>0$ such that

$$
\alpha\|u\|_{V}^{2} \leq a(u, u) \quad \text { for all } u \in V
$$

Abstract Setting

The Lax Milgram Lemma
V - a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$
a : $V \times V \mapsto \mathbb{R}$ a continuous bilinear form, i.e., there exists a number M such that

$$
|a(u, v)| \leq M\|u\|_{V}\|v\|_{V} \quad \text { for all } u, v \in V
$$

a is V-elliptic, i.e., there exists a number $\alpha>0$ such that

$$
\alpha\|u\|_{V}^{2} \leq a(u, u) \quad \text { for all } u \in V
$$

$F: V \mapsto \mathbb{R}$ is a continuous linear form, i.e.

$$
|F(v)| \leq\|F\|_{V^{*}}\|v\|_{V}
$$

Abstract Setting

The Lax Milgram Lemma

Then, find $u \in V$ such that

$$
a(u, v)=F(v) \quad \text { for all } v \in V
$$

has a unique solution, furthermore the solution satisfies the following a priori estimate

$$
\|u\|_{V} \leq \frac{1}{\alpha}\|F\|_{V^{*}}
$$

Abstract Setting
 Banach Nečas Babuška

U - a Banach space

V - a reflexive Banach space
number M such that
a satisfies the inf - sup condition, i.e., there exists a number $\alpha>0$

Abstract Setting

Banach Nečas Babuška
U - a Banach space
V - a reflexive Banach space
a : $U \times V \mapsto \mathbb{R}$ a continuous bilinear form, i.e., there exists a number M such that

$$
|a(u, v)| \leq M\left\|_{u}\right\|_{u}\|v\|_{V} \quad \text { for all } u \in U, v \in V
$$

Abstract Setting

Banach Nečas Babuška
U - a Banach space
V - a reflexive Banach space
a : $U \times V \mapsto \mathbb{R}$ a continuous bilinear form, i.e., there exists a number M such that

$$
|a(u, v)| \leq M\|u\|_{u}\|v\|_{V} \quad \text { for all } u \in U, v \in V
$$

a satisfies the inf - sup condition, i.e., there exists a number $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{U}\|v\|_{V}} \geq \alpha
$$

Abstract Setting

Banach Nečas Babuška
U - a Banach space
V - a reflexive Banach space
a : $U \times V \mapsto \mathbb{R}$ a continuous bilinear form, i.e., there exists a number M such that

$$
|a(u, v)| \leq M\left\|_{u}\right\|_{u}\|v\|_{V} \quad \text { for all } u \in U, v \in V
$$

a satisfies the inf - sup condition, i.e., there exists a number $\alpha>0$ such that

$$
\inf _{u \in U} \sup _{v \in V} \frac{a(u, v)}{\|u\|_{U}\|v\|_{V}} \geq \alpha
$$

$$
a(u, v)=0 \quad \text { for all } u \in U \Longrightarrow v=0
$$

Abstract Setting
 Banach Nečas Babuška

$F: V \mapsto \mathbb{R}$ is a continuous linear form, i.e.

$$
|F(v)| \leq\|F\|_{V^{*}}\|v\|_{V} \quad \text { for all } v \in V
$$

Then, find $u \in U$ such that
has u unique solution, furthermore the solution satisfies the following a priori estimate

Abstract Setting
 Banach Nečas Babuška

$F: V \mapsto \mathbb{R}$ is a continuous linear form, i.e.

$$
|F(v)| \leq\|F\|_{V^{*}}\|v\|_{V} \quad \text { for all } v \in V
$$

Then, find $u \in U$ such that

$$
a(u, v)=F(v) \quad \text { for all } v \in V
$$

has u unique solution, furthermore the solution satisfies the following a priori estimate

$$
\|u\|_{u} \leq \frac{1}{\alpha}\|F\|_{V^{*}}
$$

Variational Problem

The solution of the problem find $u \in V$ such that

$$
a(u, v)=F(v) \quad \text { for all } v \in V
$$

is the minimizer of

$$
J(u)=\frac{1}{2} a(u, u)-F(u)
$$

Constrained Variational Problem

The solution of the problem find $u \in V$ such that

$$
a(u, v)=F(v) \quad \text { for all } v \in V
$$

subject to the constraint

$$
b(u, \mu)=G(\mu) \quad \text { for all } \mu \in M
$$

is the saddle point of the Lagrange function

$$
L(u, \lambda)=J(u)+[b(u, \lambda)-G(\lambda)]
$$

Mixed Problem

Ladyzhenskaya Babuska Brezzi

Find $u \in V$ and $\lambda \in M$ such that

$$
\begin{array}{lll}
a(u, v)+b(v, \lambda) & =F(v) & \text { for all } v \in V \\
b(u, \mu) & =G(\mu) & \text { for all } \mu \in M
\end{array}
$$

Mixed Problem

Ladyzhenskaya Babuska Brezzi

Find $u \in V$ and $\lambda \in M$ such that

$$
\begin{array}{lll}
a(u, v)+b(v, \lambda)=F(v) & \text { for all } v \in V \\
b(u, \mu) & =G(\mu) & \text { for all } \mu \in M
\end{array}
$$

Solutions satisfy the saddle property

$$
L(u, \mu) \leq L(u, \lambda) \leq L(v, \lambda) \quad \text { for all } v \in V, \mu \in M
$$

Mixed Problem

Ladyzhenskaya Babuska Brezzi

Assume the forms a and b are continuous, i.e., there exists numbers A and B such that

$$
|a(u, v)| \leq A\|u\| v\|v\|_{V} \quad \text { for all } u, v \in V
$$

$$
|b(v, \mu)| \leq B\|u\|_{v}\|\mu\|_{M} \quad \text { for all } v \in V, \mu \in M
$$

Mixed Problem

Ladyzhenskaya Babuska Brezzi

Assume the forms a and b are continuous, i.e., there exists numbers A and B such that

$$
|a(u, v)| \leq A\|u\| v\|v\|_{v} \quad \text { for all } u, v \in V
$$

$$
|b(v, \mu)| \leq B\|u\|_{v}\|\mu\|_{M} \quad \text { for all } v \in V, \mu \in M
$$

Assume the functionals F and G are bounded, i.e.,

$$
|F(v)| \leq\|F\|_{v^{*}}\|v\|_{v} \quad \text { for all } v \in V
$$

$$
|G(\mu)| \leq\|G\|_{M^{*}}\|\mu\|_{M} \quad \text { for all } \mu \in M
$$

Mixed Problem

Ladyzhenskaya Babuska Brezzi

Assume a is coercive, i.e., there exists a number $\alpha>0$ such that $\alpha\|u\|_{V}^{2} \leq a(u, u) \quad$ for all $u \in V \quad$ with $b(u, \mu)=0, \quad$ for all $\mu \in M$

Mixed Problem

Ladyzhenskaya Babuska Brezzi

Assume a is coercive, i.e., there exists a number $\alpha>0$ such that $\alpha\|u\|_{V}^{2} \leq a(u, u) \quad$ for all $u \in V \quad$ with $b(u, \mu)=0, \quad$ for all $\mu \in M$ and that b satisfies the inf - sup condition, i.e., there exists a beta >0

$$
\inf _{\mu \in M_{v}} \sup _{v \in V} \frac{b(v, \mu)}{\|v\|_{V}\|\mu\|_{M}} \geq \beta
$$

Mixed Problem

Ladyzhenskaya Babuska Brezzi

Assume a is coercive, i.e., there exists a number $\alpha>0$ such that $\alpha\|u\|_{V}^{2} \leq a(u, u) \quad$ for all $u \in V \quad$ with $b(u, \mu)=0, \quad$ for all $\mu \in M$
and that b satisfies the inf - sup condition, i.e., there exists a beta >0

$$
\inf _{\mu \in M} \sup _{v \in V} \frac{b(v, \mu)}{\|v\|_{V}\|\mu\|_{M}} \geq \beta
$$

Then the mixed problem has a unique solution

Examples

Poisson's Equation Primal Formulation

$$
-\Delta u=-\nabla \cdot \nabla u=f
$$

can be written as

This yields the saddle point problem, find $(\sigma, u) \in\left(L^{2}(\Omega)\right)^{d} \times H_{n}^{1}(\Omega)$ such that

Examples

Poisson's Equation Primal Formulation

$$
-\Delta u=-\nabla \cdot \nabla u=f
$$

can be written as

$$
\begin{aligned}
\nabla u & =\sigma \\
-\nabla \cdot \sigma & =f
\end{aligned}
$$

> This yields the saddle point problem, find $(\sigma, u) \in\left(L^{2}(\Omega)\right)^{d} \times H_{0}^{1}(\Omega)$ such that

Examples
 Poisson's Equation Primal Formulation

$$
-\Delta u=-\nabla \cdot \nabla u=f
$$

can be written as

$$
\begin{aligned}
\nabla u & =\sigma \\
-\nabla \cdot \sigma & =f
\end{aligned}
$$

This yields the saddle point problem, find $(\sigma, u) \in\left(L^{2}(\Omega)\right)^{d} \times H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{lll}
(\sigma, \tau)-(\tau, \nabla u) & =0 & \text { for all } \tau \in\left(L^{2}(\Omega)\right. \\
-(\sigma, \nabla v) & =-(f, v) & \text { for all } v \in H_{0}^{1}(\Omega)
\end{array}
$$

Examples

Poisson's Equation Dual Formulation

$$
-\Delta u=-\nabla \cdot \nabla u=f
$$

can be written as

$$
\nabla u=\sigma
$$

$$
-\nabla \cdot \sigma=f
$$

This yields the saddle point problem, find $(\sigma, u) \in H(\operatorname{div}, \Omega) \times L^{2}(\Omega)$ such that

Examples

Poisson's Equation Dual Formulation

$$
-\Delta u=-\nabla \cdot \nabla u=f
$$

can be written as

$$
\begin{aligned}
\nabla u & =\sigma \\
-\nabla \cdot \sigma & =f
\end{aligned}
$$

This yields the saddle point problem, find $(\sigma, u) \in H(\operatorname{div}, \Omega) \times L^{2}(\Omega)$ such that

$$
\begin{array}{lll}
(\sigma, \tau)+(\nabla \cdot \tau, u) & =0 & \text { for all } \tau \in H(\operatorname{div}, \Omega) \\
(\nabla \cdot \sigma, v) & =-(f, v) & \text { for all } v \in L^{2}(\Omega)
\end{array}
$$

Examples

Poisson's Equation Dual Formulation

$$
-\Delta u=-\nabla \cdot \nabla u=f
$$

can be written as

$$
\begin{aligned}
\nabla u & =\sigma \\
-\nabla \cdot \sigma & =f
\end{aligned}
$$

This yields the saddle point problem, find $(\sigma, u) \in H(\operatorname{div}, \Omega) \times L^{2}(\Omega)$ such that

$$
\begin{array}{lll}
(\sigma, \tau)+(\nabla \cdot \tau, u) & =0 & \text { for all } \tau \in H(\operatorname{div}, \Omega) \\
(\nabla \cdot \sigma, v) & =-(f, v) & \text { for all } v \in L^{2}(\Omega)
\end{array}
$$

where

$$
H(\operatorname{div}, \Omega)=\left\{\tau \in\left(L^{2}(\Omega)\right)^{d}: \nabla \cdot \tau \in L^{2}(\Omega)\right\}
$$

Examples

Stokes Equations

$$
-\Delta u-\nabla p=f \quad \text { in } \Omega
$$

$$
\begin{array}{cc}
\nabla \cdot u=0 & \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 & \text { on } \partial \Omega
\end{array}
$$

Examples

Stokes Equations

$$
\begin{gathered}
-\Delta u-\nabla p=f \quad \text { in } \Omega \\
\nabla \cdot u=0 \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Find $(u, p) \in\left(H_{0}^{1}(\Omega)\right)^{d} \times L_{0}^{2}(\Omega)$ such that

$$
\begin{array}{lll}
(\nabla u: \nabla v)+(\nabla \cdot v, p) & =(f, v) & \text { for all } v \in\left(H_{0}^{1}(\Omega)\right)^{d} \\
(\nabla \cdot u, q) & =0 & \text { for all } q \in L_{0}^{2}(\Omega)
\end{array}
$$

Examples

Stokes Equations

$$
\begin{gathered}
-\Delta u-\nabla p=f \quad \text { in } \Omega \\
\nabla \cdot u=0 \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Find $(u, p) \in\left(H_{0}^{1}(\Omega)\right)^{d} \times L_{0}^{2}(\Omega)$ such that

$$
\begin{array}{lll}
(\nabla u: \nabla v)+(\nabla \cdot v, p) & =(f, v) & \text { for all } v \in\left(H_{0}^{1}(\Omega)\right)^{d} \\
(\nabla \cdot u, q) & =0 & \text { for all } q \in L_{0}^{2}(\Omega)
\end{array}
$$

where

$$
L_{0}^{2}(\Omega)=\left\{q \in L^{2}(\Omega):(q, 1)=0\right\}
$$

Examples

Navier Stokes Equations

$$
\begin{gathered}
-\Delta u+u \cdot \nabla u-\nabla p=f \quad \text { in } \Omega \\
\nabla \cdot u=0 \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Examples

Navier Stokes Equations

$$
\begin{gathered}
-\Delta u+u \cdot \nabla u-\nabla p=f \quad \text { in } \Omega \\
\nabla \cdot u=0 \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

Find $(u, p) \in\left(H_{0}^{1}(\Omega)\right)^{d} \times L_{0}^{2}(\Omega)$ such that

$$
\begin{array}{lll}
(\nabla u: \nabla v)+(u \cdot \nabla u, v)+(\nabla \cdot v, p) & =(f, v) & \text { for all } v \in\left(H_{0}^{1}(\Omega)\right)^{d} \\
(\nabla \cdot u, q) & =0 & \text { for all } q \in L_{0}^{2}(\Omega)
\end{array}
$$

Porormechanics

Poromechanics is the science of energy, motion, and forces and their effect on porous material and in particular the mechanical behavior (swelling and shrinking) of fluid-saturated porous media. Poromechanics and electro-poromechanics are complex coupled, multiscale, phenomena, where the swelling and shrinking of an elastic (or viscoelastic, viscoplastic, or plastic) deforming porous medium is coupled to the electro-chemo-thermo-mechanical response of the medium and the fluid.

Porormechanics

Modeling and predicting the mechanical (or the electro-chemo-thermo-mechanical) behavior of fluid-infiltrated porous media is of great importance since many natural substances, e.g., rocks, soils, and biological tissues, as well as man made materials such as foams, gels, concrete, and ceramics can be considered as elastic porous media.

Application Areas Geomechanics

Clays, shales, damage shrinkage of concrete

Application Areas

 BiomechanicsHydrated tissues, bones, corneal swelling, hydrogels, intervertebral discs

© ADAM, Inc.

Application Areas Pharmacology

Water-solute drug carriers, biodegradable drug delivery-systems

Application Areas Material Science

Polymeric materials, crosslinked porous structures, foams, gels, and ceramics

Application Areas Material Science

High-tech material

Models

> - Rigid - Non-rigid
> - Saturated - Unsaturated
> - Fully Dynamic - Quasistatic - Steady
> - Incompressible - Slightly Compressible
> - Secondary Consolidation

Models

- Rigid - Non-rigid
- Saturated - Unsaturated
- Fully Dynamic — Quasistatic — Steady
- Incompressible - Slightly Compressible
- Secondary Consolidation

Models

- Rigid - Non-rigid
- Saturated - Unsaturated

Fully Dynamic - Quasistatic - Steady Incompressible - Slightly Compressible Secondarv Consolidation

Models

- Rigid - Non-rigid
- Saturated - Unsaturated
- Fully Dynamic - Quasistatic - Steady

Secondary Consolidation

Models

- Rigid - Non-rigid
- Saturated - Unsaturated
- Fully Dynamic - Quasistatic - Steady
- Incompressible - Slightly Compressible

Models

- Rigid - Non-rigid
- Saturated - Unsaturated
- Fully Dynamic — Quasistatic - Steady
- Incompressible - Slightly Compressible
- Secondary Consolidation

History and Motivation

F. H. King. Observations and experiments on the fluctuations
in the level and rate of movement of ground water on the experiment station farm and at Whitewater, Wisconsin, Ninth Annual Report of the Agricultural Experiment Station of the University of Wisconsin, 1892
D. W. Simpson. Triggered earthquakes, Ann. Rev. Earth Planet. Sci., 1986.

ᄃ A Rocloffs. Dersistent water level changes in a well near parkfield, california, due to local and distant earthquakes, J. Geophys. Res., 1998

History and Motivation

- F. H. King. Observations and experiments on the fluctuations in the level and rate of movement of ground water on the experiment station farm and at Whitewater, Wisconsin, Ninth Annual Report of the Agricultural Experiment Station of the University of Wisconsin, 1892.

History and Motivation

- F. H. King. Observations and experiments on the fluctuations in the level and rate of movement of ground water on the experiment station farm and at Whitewater, Wisconsin, Ninth Annual Report of the Agricultural Experiment Station of the University of Wisconsin, 1892.
- D. W. Simpson. Triggered earthquakes, Ann. Rev. Earth Planet. Sci., 1986.

History and Motivation

- F. H. King. Observations and experiments on the fluctuations in the level and rate of movement of ground water on the experiment station farm and at Whitewater, Wisconsin, Ninth Annual Report of the Agricultural Experiment Station of the University of Wisconsin, 1892.
- D. W. Simpson. Triggered earthquakes, Ann. Rev. Earth Planet. Sci., 1986.
- E. A. Roeloffs. Persistent water level changes in a well near parkfield, california, due to local and distant earthquakes, J. Geophys. Res., 1998.

Mathematical Model

Stress

$$
\begin{aligned}
\tau & =\mu\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)+\left(\lambda^{*} \frac{\partial}{\partial t} \nabla \cdot \mathbf{u}+\lambda \nabla \cdot \mathbf{u}-\alpha p\right) \\
& =2 \mu \varepsilon(\mathbf{u})+\left(\lambda^{*} \frac{\partial}{\partial t} \nabla \cdot \mathbf{u}+\lambda \nabla \cdot \mathbf{u}-\alpha p\right)
\end{aligned}
$$

u displacement
p pressure
$\mu \lambda$ Lamé coefficients
λ^{*} coefficient of secondary consolidation
α Biot-Willis constant (couples pressure and deformation)
ε Strain

Mathematical Model

Fluid content

$$
\eta=c_{0} p+\alpha \nabla \cdot \mathbf{u}
$$

Fluid flux, Darcy's law

$$
\mathbf{q}=-\kappa \nabla p
$$

c_{0} combined porosity and compressibility κ hydraulic conductivity

Mathematical Model

Balance of momentum

$$
\rho \frac{\partial^{2}}{\partial t^{2}} \mathbf{u}-\nabla \cdot \tau=\mathbf{F}(x, t)
$$

Mass conservation

$$
\frac{\partial}{\partial t} \eta-\nabla \cdot \mathbf{q}=G(x, t)
$$

ρ density

Mathematical Model

The P.D.E.

Fully dynamic poroelasticity

$$
\begin{gathered}
\rho \frac{\partial^{2}}{\partial t^{2}} \mathbf{u}-\lambda^{*} \nabla\left(\frac{\partial}{\partial t} \nabla \cdot \mathbf{u}\right)-(\lambda+\mu) \nabla(\nabla \cdot \mathbf{u})-\mu \nabla \cdot(\nabla \mathbf{u})+\alpha \nabla p=\mathbf{F}(x, t) \\
\frac{\partial}{\partial t}\left(c_{0} p+\alpha \nabla \cdot \mathbf{u}\right)-\nabla \cdot(\kappa \nabla p)=G(x, t)
\end{gathered}
$$

Quasistatic poroelasticity

$$
\begin{gathered}
-(\lambda+\mu) \nabla(\nabla \cdot \mathbf{u})-\mu \nabla \cdot(\nabla \mathbf{u})+\alpha \nabla p=\mathbf{F}(x, t) \\
\frac{\partial}{\partial t}\left(c_{0} p+\alpha \nabla \cdot \mathbf{u}\right)-\nabla \cdot(\kappa \nabla p)=G(x, t)
\end{gathered}
$$

$\ln \Omega \times(0, T)$

Mathematical Model

$$
\begin{gathered}
\mathbf{u}=\mathbf{u}_{c} \text { on } \Gamma_{c} \times(0, T) \\
{[(\lambda+\mu) \nabla \cdot \mathbf{u} /+\mu \nabla \mathbf{u}] \mathbf{n}-\beta \alpha p \mathbf{n} \chi_{t f}=\mathbf{g} \quad \text { on } \quad \Gamma_{t} \times(0, T)} \\
p=p_{d} \quad \text { on } \Gamma_{d} \times(0, T) \\
-\frac{\partial}{\partial t}((1-\beta) \alpha \mathbf{u} \cdot \mathbf{n}) \chi_{t f}+\kappa \nabla p \cdot \mathbf{n}=j \quad \text { on } \quad \Gamma_{f} \times(0, T) \\
\Gamma=\bar{\Gamma}_{c} \cup \bar{\Gamma}_{t}, \Gamma_{c} \cap \Gamma_{t}=\emptyset, \text { also } \Gamma=\bar{\Gamma}_{d} \cup \bar{\Gamma}_{f}, \Gamma_{d} \cap \Gamma_{f}=\emptyset, \text { and } \\
\chi_{t f}=\chi_{\Gamma_{t} \cap \Gamma_{f}}
\end{gathered}
$$

Mathematical Model

$$
\begin{aligned}
& c_{0} p+\alpha \nabla \cdot \mathbf{u}=v_{0} \quad \text { on } \quad \Omega \quad \text { at } \quad t=0 \\
& (1-\beta) \alpha \mathbf{u} \cdot \mathbf{n}=v_{1} \quad \text { on } \quad \Gamma_{t f} \quad \text { at } t=0
\end{aligned}
$$

Mixed Formulation

Quasistatic poroelasticity

$$
\begin{gathered}
-(\lambda+\mu) \nabla(\nabla \cdot \mathbf{u})-\mu \nabla \cdot(\nabla \mathbf{u})+\alpha \nabla p=\mathbf{F}(x, t) \\
\frac{\partial}{\partial t}\left(c_{0} p+\alpha \nabla \cdot \mathbf{u}\right)-\nabla \cdot(\mathbf{z})=G(x, t) \\
\kappa^{-1} \mathbf{z}-\nabla p=0
\end{gathered}
$$

$\ln \Omega \times(0, T)$

