Numerical Analysis and Methods for PDE II

A. J. Meir
Department of Mathematics and Statistics
Auburn University

US-Africa Advanced Study Institute on Analysis, Dynamical Systems, and Mathematical Modeling of Biological Systems Dec. 2-Dec. 12, 2011

This project is supported by a grant from the NSF

Outline

(1) Existence and Uniqueness
(2) Best Approximation
(3) A 2-d Problem
(4) Implementation - The main ingredients

Weak and Variational Formulations

Define

$$
(u, v)=\int_{0}^{1} u(x) v(x) d x
$$

and

$$
F(v)=\frac{1}{2}\left[\left(v^{\prime}, v^{\prime}\right)+(c v, v)\right]-(\hat{f}, v)
$$

Weak and Variational Formulations - Continued

The weak problem is find $\hat{u} \in V$ such that

$$
\left(\hat{u}^{\prime}, v^{\prime}\right)+(c \hat{u}, v)=(\hat{f}, v) \quad \text { for all } \quad v \in V
$$

The variational problem is find $\hat{u} \in V$ such that

$$
F(\hat{u}) \leq F(v) \quad \text { for all } \quad v \in V
$$

Then $u=\hat{u}+g$ is a weak (or variational) solution of the original problem
If u is sufficiently regular, it is a strong solution, or a classical solution of the p.d.e.

Comments on Existence and Uniqueness

Find $u \in V$ such that

$$
\left(u^{\prime}, v^{\prime}\right)+(c u, v)=(f, v) \quad \text { for all } \quad v \in V
$$

(Note we dropped the hat^notation)

Continuity and Stability of Forms

On V we have an inner product

$$
\langle u, v\rangle=\left(u^{\prime}, v^{\prime}\right)+(c u, v)
$$

or

$$
\langle u, v\rangle=\left(u^{\prime}, v^{\prime}\right)
$$

and a norm

$$
\|v\|=\sqrt{\left(v^{\prime}, v^{\prime}\right)+(c v, v)}
$$

or

$$
\|v\|=\sqrt{\left(v^{\prime}, v^{\prime}\right)}
$$

Continuity and Stability of Forms

Continuity

$$
\left(u^{\prime}, v^{\prime}\right)+(c u, v) \leq C\|u\|\|v\|
$$

and

$$
(f, v) \leq M\|v\|
$$

Stability

$$
\left(v^{\prime}, v^{\prime}\right)+(c v, v) \geq \alpha\|v\|^{2}
$$

Existence and Uniqueness

We can show the weak problem has a unique solution. Proof...

Best Approximation

Given V^{h} the finite element approximation u^{h} of u satisfies

$$
\left\|u-u^{h}\right\|_{H^{1}} \leq C\left\|u-v^{h}-g^{h}\right\|_{H^{1}} \quad \text { for all } v^{h} \in V^{h}
$$

Best Approximation - The Proof

$$
\begin{aligned}
\alpha \| u & -u^{h} \|_{H^{1}}^{2} \leq\left(\left(u-u^{h}\right)^{\prime},\left(u-u^{h}\right)^{\prime}\right)+\left(c\left(u-u^{h}\right), u-u^{h}\right) \\
& =\left(\left(u-u^{h}\right)^{\prime},\left(u-v^{h}-g^{h}\right)^{\prime}\right)+\left(c\left(u-u^{h}\right), u-v^{h}-g^{h}\right) \\
& \leq M\left\|u-u^{h^{\prime}}\right\|_{H^{1}}\left\|u-v^{h}-g^{h}\right\|_{H^{1}} \\
& \\
\| u & -u^{h}\left\|_{H^{1}} \leq C\right\| u-v^{h}-g^{h} \|_{H^{1}} \quad \text { for all } v^{h} \in V^{h}
\end{aligned}
$$

Extensions

- Time dependent problems (finite differences, or discontinuous Galerkin)
- Nonconforming finite elements
- Saddle point problems (mixed formulations, inf-sup)
- First order systems

2-d Problem

Consider

$$
\begin{gathered}
-\Delta u+c u=f \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=g
\end{gathered}
$$

Homogenize the problem, find \hat{g} such that $\left.\hat{g}\right|_{\partial \Omega}=g$
Find \hat{u} such that

$$
\begin{array}{r}
-\Delta \hat{u}+c \hat{u}=\hat{f} \quad \text { in } \Omega \\
\left.\hat{u}\right|_{\partial \Omega}=0
\end{array}
$$

where

$$
\hat{f}=f+\Delta \hat{g}-c \hat{g}
$$

The Domain

Usually require Ω to be of class $C^{0,1}$ or $C^{1,1}$, satisfy the cone condition, and be on one side of the boundary.

Weak Form

Multiply the p.d.e. by a test function v and integrate over Ω

$$
\int_{\Omega}[-\Delta \hat{u}+c \hat{u}] v d x=\int_{\Omega} \hat{f} v d x
$$

v in some appropriate function space ${ }^{1} V$
Integrating by parts we get

$$
\begin{aligned}
\int_{\Omega}(-\Delta \hat{u}+c \hat{u}) v d x & =-\int_{\partial \Omega} \nabla \hat{u} \cdot n v d s+\int_{\Omega} \nabla \hat{u} \cdot \nabla v+c \hat{u} v d x \\
& =\int_{\Omega} \nabla \hat{u} \cdot \nabla v+c \hat{u} v d x
\end{aligned}
$$

$$
{ }^{1} \text { Here } V=H_{0}^{1}(\Omega)
$$

Weak and Variational Formulations

Set

$$
(u, v)=\int_{\Omega} u v d x
$$

and

$$
F(v)=\frac{1}{2}[(\nabla v, \nabla v)+(c v, v)]-(\hat{f}, v)
$$

Weak and Variational Formulations - Continued

The weak problem is find $\hat{u} \in V$ such that

$$
(\nabla \hat{u}, \nabla v)+(c \hat{u}, v)=(\hat{f}, v) \quad \text { for all } \quad v \in V
$$

The variational problem is find $\hat{u} \in V$ such that

$$
F(\hat{u}) \leq F(v) \quad \text { for all } \quad v \in V
$$

Then $u=\hat{u}+\hat{g}$ is a solution of the original problem

Discrete Problem

Construct a finite dimensional space ${ }^{1} V^{h} \subset V$
Solve the discrete weak (or variational) problem find $\hat{u}^{h} \in V^{h}$ such that

$$
\left(\nabla \hat{u}^{h}, \nabla v^{h}\right)+\left(c \hat{u}^{h}, v^{h}\right)=\left(\hat{f}, v^{h}\right) \quad \text { for all } v^{h} \in V^{h}
$$

or find $\hat{u}^{h} \in V$ such that

$$
F\left(\hat{u}^{h}\right) \leq F\left(v^{h}\right) \quad \text { for all } v^{h} \in V^{h}
$$

Then $\hat{u}^{h}+\hat{g}$ is an approximation to u the solution of the p.d.e.
${ }^{1}$ This leads to, so called, conforming finite element methods, if this inclusion does not hold we have nonconforming finite elements

Finite Element Method

Main tasks

- Construct a basis for V^{h}
- Construct the discrete weak form
- Solve algebraic system of equations

Finite Element Method

List of Ingredients

- Mesh generator (data structure)
- Basis functions
- Assembly routines
- Algebraic solver (linear solver)
- Post processor

Mesh Generator

Mesh Generator

Mesh Generator

Elements

Basis Functions

Elements

Quadratic simplicial elements.

Elements

$d=2, \operatorname{dim}=4$

bilinear ansatz
$d=2, \operatorname{dim}=9$

biquadratic ansatz

trilinear ansatz

triquadratic ansatz

Quadratic and cubic elements on the cube.

Assembly

$$
\sum_{i=1}^{n} \hat{u}_{i}^{h}\left[\left(\phi_{i}^{\prime}, \phi_{j}^{\prime}\right)+\left(c \phi_{i}, \phi_{j}\right)\right]=\left(\hat{f}, \phi_{j}\right) \quad \text { for } \quad 1 \leq j \leq n
$$

Algebraic Solver

Linear solver (direct, or iterative)
Nonlinear solver (iterative)

Post Processor

