
Introduction Partial Differential Equations Discretization Model Problem

Numerical Analysis and Methods for PDE I

A. J. Meir

Department of Mathematics and Statistics
Auburn University

US-Africa Advanced Study Institute on Analysis, Dynamical
Systems, and Mathematical Modeling of Biological Systems

Dec. 2–Dec. 12, 2011

This project is supported by a grant from the NSF



Introduction Partial Differential Equations Discretization Model Problem

Outline

1 Introduction

2 Partial Differential Equations

3 Discretization

4 Model Problem
Finite Difference Discretization
Homogenization and Weak Formulation
Finite Element Discretization
Finite Volume Discretization



Introduction Partial Differential Equations Discretization Model Problem

Modeling

Physical Problem

The actual problem we want to study

?

Mathematical Model

Equations, usually o.d.e, or p.d.e., hence also continuous model,
usually posed in an infinite dimensional space

?

Approximate Model

Equations, usually algebraic equations, hence also discrete model,
usually posed in a finite dimensional space
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Modeling and Simulation

Physical Problem

?

Mathematical Model

?

Numerical Model

Direct
Simulation

Finite
Differences

Finite
Volumes

Finite
Elements

Spectral
Methods

Particle
Methods

?

Algebraic Equations
(linear or nonlinear)
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Motivation

Many processes in natural sciences, engineering, and
economics (social sciences) are governed by partial differential
equations (p.d.e.)

The efficient numerical solution∗ of such equations plays an
ever-increasing role in state-of-the-art technology

The enormous computing power available allows us to
simulate real world problems

∗Numerical approximation of solutions
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Partial Differential Equations (P.D.E.)

P.D.E. model many and various phenomena, but relatively few
have closed form solutions

A p.d.e. is an equation that contains partial derivatives of an
unknown function∗ u : Λ 7→ R

The domain Λ ⊂ Rd with d ≥ 2 (if d = 1 it is an o.d.e.);
Λ = Ω× (0,T )

Poisson’s equation −∆u = f

Heat equation ut −∆u = f

Wave equation utt −∆u = f

Biharmoninc equation ∆∆u = f

∗We can also consider systems of p.d.e.
∗∗−∆u = −

∑d
i=1 uxi xi



Introduction Partial Differential Equations Discretization Model Problem

Partial Differential Equations

More generally for a domain Ω ⊂ Rd−1

Lu = −
d−1∑
i=1

aij(x)
∂2u

∂xi∂xj
+

d−1∑
i=1

bj(x)
∂u

∂xi
+ c(x)u

Assume aij = aji , the differential operator L is elliptic if there exists
a λ > 0 such that for all x ∈ Ω and ξ ∈ Rd−1

d−1∑
i=1

aij(x)ξi · ξj ≥ λ
d−1∑
i=1

ξ2
i

Elliptic equation Lu = f

Parabolic equation ut + Lu = f

Hyperbolic equation utt + Lu = f
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Partial Differential Equations
Classification of P.D.E.

Poisson’s equation −∆u = f
elliptic - equilibrium u : Ω 7→ R

Heat equation ut −∆u = f
parabolic - diffusion, decay u : Λ 7→ R

Wave equation utt−∆u = f
hyperbolic - propagation u : Λ 7→ R

Note, here the domain Ω ⊂ Rd−1 and Λ = Ω× (0,T ), later
we will denote the boundary of Ω by ∂Ω

∗This classification is not exhaustive and p.d.e. may change type
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Remarks

In order to obtain a well posed problem we may have to
supplement the p.d.e. with initial conditions (i.c.), boundary
conditions (b.c.), or both (as appropriate)

In this talk I will introduce the finite element method.

Finite element methods may be used to solve∗ elliptic,
parabolic, and hyperbolic equations, (as well as first order
systems, and other types of equations) although they were
originally developed to approximate solutions of elliptic
p.d.e.∗∗

∗this is a misnomer it should be approximate solutions of
∗∗We will initially look at the finite element method for elliptic p.d.e.
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Discretization

The basic idea behind any numerical method for approximating
solutions of p.d.e. is to replace the continuous problem (p.d.e.) by
a discrete problem

Continuous problem (p.d.e.) - posed on an infinite
dimensional space∗

Discrete problem - posed on a finite dimensional space∗∗

∗The solution lies in some infinite dimensional space
∗∗The solution lies in some finite dimensional space
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Common Discretizations

Finite Difference Method - approximate the differential
operator

Finite Element Method - approximate the solution

Finite Volume Method - write the equation in conservation
form, approximate a conservation law

Spectral Method - approximate the solution

Spectral Element Method - approximate the solution

Collocation Method - require that the equation hold at special
points (collocation points)
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Finite Elements

“The finite element method has been an astonishing success. It
was created to solve the complicated equations of elasticity and
structural mechanics, and for those problems it has essentially
superseded the method of finite differences. Now other
applications are rapidly developing. Whenever flexibility in
geometry is important—and the power of the computer is needed
not only to solve a system of equations, but also to formulate and
assemble the discrete approximation in the first place—the finite
element method has something to contribute.”

Gilbert Strang and George J. Fix (1973)∗

∗Gilbert Strang, George Fix; An Analysis of the Finite Element Method,
Second Edition, Wellesley-Cambridge Press (Distributed by SIAM) 2008.



Introduction Partial Differential Equations Discretization Model Problem

Disclaimers

I will try to illustrate the main ideas behind the finite element
method (and maybe some other methods)

All the statements I make can be made mathematically
rigorous

Can be extended to problems in d-dimensions

Can be extended to more complex problems
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History

Finite difference methods

Ancient

Finite element methods

Courant (1943)
Argyris (1954), Turner (1956)
Clough (1960)
Engineering literature 1960–1970 (early developments), and
1970–
Mathematics literature 1970–
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Finite Elements vs. Finite Differences

Finite Elements - approxi-
mate the solution

Replace p.d.e. by a weak for-
mulation (variational problem;
optimization problem)

Approximate the solution by a
function in a suitable finite di-
mensional function space

Finite Differences - approxi-
mate the differential operator

Replace p.d.e. by a difference
equation

Solve the difference equation
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Model Problem 1-d

Consider the model problem, Ω = (0, 1)

−u′′(x) + c(x)u(x) = f (x) x ∈ Ω

with b.c.
u(0) = g0 u(1) = g1

Note, this is a t.p.b.v.p. (not an i.v.p.) this is the 1-d (d.e.) analog
of the p.d.e. −∆u + cu = f in Ω with (Dirichlet) b.c. u|∂Ω = g
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Finite Difference Discretization

Finite Difference Approximation

u′(x) ≈ u(x + h)− u(x)

h

u′(x) ≈ u(x)− u(x − h)

h

u′(x) ≈ u(x + h)− u(x − h)

2h

u′′(x) ≈ u(x + h)− 2u(x) + u(x − h)

h2

O(h)

O(h)

O(h2)

O(h2)



Introduction Partial Differential Equations Discretization Model Problem

Finite Difference Discretization

Finite Difference Mesh

Finite difference mesh, or grid

xi = ih i = 0, 1, . . . n + 1 h =
1

n + 1
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Finite Difference Discretization

Finite Difference Discretization

Replace the equation for u

−u′′(x) + c(x)u(x) = f (x) x ∈ Ω

with b.c.
u(0) = g0 u(1) = g1

by algebraic equations for a grid function uh
i = uh(xi )

−uh
i−1 + 2uh

i − uh
i+1

h2
+ c(xi )uh

i = f (xi ) 1 ≤ i ≤ n

and
uh

0 = g0 uh
n+1 = g1
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Finite Difference Discretization

Finite Difference Approximation

This is the system of algebraic equations (for c(x) = c, a
constant) we get

1

h2


2 + ch2 −1
−1 2 + ch2 −1

−1 2 + ch2 −1
. . .

. . .
. . .

−1 2 + ch2




uh

1

uh
2

uh
3
...

uh
n

 =


f1 + g0

h2

f2

f3
...

fn + g1

h2


This system matrix is symmetric, positive definite, hence the
system has a unique solution and u(xi ) ≈ uh

i
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Finite Difference Discretization

Homogenization

Given
−u′′(x) + c(x)u(x) = f (x) x ∈ Ω

with b.c.
u(0) = g0 u(1) = g1

Find a function∗ g such that g(0) = g0 and g(1) = g1

Set û = u − g

∗The function g must belong to some space of admissible functions
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Homogenization and Weak Formulation

Homogenization - Continued

Solve the homogeneous problem

−û′′(x) + c(x)û(x) = f̂ (x) x ∈ Ω

with b.c.
û(0) = 0 û(1) = 0

where
f̂ (x) = f (x) + g ′′(x)− c(x)g(x)

Then
u(x) = û(x) + g(x)
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Homogenization and Weak Formulation

Variational Lemma and Weak Derivative

Variational Lemma Let v ∈ L1(Ω)loc, Ω ⊂ Rd nonempty, if∫
Ω

v(x)φ(x) dx = 0 for all φ ∈ C∞0 (Ω)

then v = 0 a.e. in Ω

Weak Derivative Let Ω ⊂ Rd nonempty, v ,w ∈ L1(Ω)loc, then w
is the weak αthderivative of v if∫

Ω
v(x)Dαφ(x) dx = (−1)|α|

∫
Ω

w(x)φ(x) dx for all φ ∈ C∞0 (Ω)

∗α = (α1, . . . αd) and Dα = ∂|α|

∂x
α1
1 ...∂x

αd
d

where |α| =
∑d

i=1 αi
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Homogenization and Weak Formulation

Weak Form

Multiply the d.e. by a test function v and integrate over Ω = (0, 1)∫ 1

0
[−û′′(x) + c(x)û(x)]v(x) dx =

∫ 1

0
f̂ (x)v(x) dx

v in some appropriate function space∗ V
Integrating by parts we get∫ 1

0
(−û′′(x) + c(x)û(x))v(x) dx

= −û′(1)v(1) + û′(0)v(0) +

∫ 1

0
û′(x)v ′(x) + c(x)û(x)v(x) dx

∗Here V = H1
0 (0, 1), those unfamiliar with Sobolev spaces can think

v ∈ C [0, 1] such that v ′ is piecewise continuous and bounded on [0, 1] with
v(0) = v(1) = 0
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Homogenization and Weak Formulation

Weak and Variational Formulations

Define

(u, v) =

∫ 1

0
u(x)v(x) dx

and

F (v) =
1

2
[(v ′, v ′) + (cv , v)]− (f̂ , v)
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Homogenization and Weak Formulation

Weak and Variational Formulations - Continued

The weak problem is find û ∈ V such that

(û′, v ′) + (cû, v) = (f̂ , v) for all v ∈ V

The variational problem is find û ∈ V such that

F (û) ≤ F (v) for all v ∈ V

Then u = û + g is a weak (or variational) solution of the original
problem
If u is sufficiently regular, it is a strong solution, or a classical
solution of the p.d.e.
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Finite Element Discretization

The Discrete Problem

Construct a finite dimensional space∗ V h ⊂ V

Solve the discrete weak (or variational problem) find ûh ∈ V h such
that

(ûh′ , vh′) + (cûh, vh) = (f̂ , vh) for all vh ∈ V h

or find ûh ∈ V h such that

F (ûh) ≤ F (vh) for all vh ∈ V h

Then ûh + gh is an approximation to u the solution of the p.d.e.
(where gh is some approximation to g)

∗This leads to, so called, conforming finite element methods, if this inclusion
does not hold we have nonconforming finite elements
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Finite Element Discretization

Finite Elements

Finite element mesh, or grid

0 = x0 < x1 < . . . < xn < xn+1 = 1

Ii = (xi−1, xi ) hi = |Ii | = xi − xi−1
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Finite Element Discretization

Finite Elements

h = max
1≤i≤n+1

{hi}

h is a measure of the size of the grid (the smaller h the finer the
grid, higher resolution, more accurate solution, higher dimensional
space)
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Finite Element Discretization

Linear Finite Element Space

The simplest finite element space is that of continuous piecewise
linear functions (which are zero at 0 and 1)
A basis for V h can be constructed as follows

φj ∈ V h 1 ≤ j ≤ n

φj(xi ) =

{
1 if i = j
0 if i 6= j

Obviously any vh ∈ V h can be written as

vh(x) =
n∑

i=1

vh
i φi (x) for x ∈ [0, 1]

where vh
i = vh(xi )
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Finite Element Discretization

Linear Finite Elements

Piecewise linear basis functions

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x
0 x

i
x

i+1
x

j

φ
i
                                              φ

j



Introduction Partial Differential Equations Discretization Model Problem

Finite Element Discretization

Weak Form - Revisited

(ûh′ , vh′) + (cûh, vh) = (f̂ , vh) for all vh ∈ V h

is equivalent to

(ûh′ , φ′j) + (cûh, φj) = (f̂ , φj) for 1 ≤ j ≤ n

and substituting ûh(x) =
n∑

i=1

ûh
i φi (x)

n∑
i=1

ûh
i [(φ′i , φ

′
j) + (cφi , φj)] = (f̂ , φj) for 1 ≤ j ≤ n
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Finite Element Discretization

Algebraic System

This (for c(x) = c , a constant) is the algebraic system

1

h


2 + 2ch2

3 −1 + ch2

6

−1 + ch2

6 2 + 2ch2

3 −1 + ch2

6

−1 + ch2

6 2 + 2ch2

3 −1 + ch2

6
. . .

. . .
. . .

−1 + ch2

6 2 + 2ch2

3




ûh

1

ûh
2

ûh
3
...

ûh
n

 =


f̃1

f̃2

f̃3
...

f̃n


This system matrix is symmetric, positive definite, hence the
system has a unique solution and

u(x) ≈ uh(x) = ûh(x) + gh(x) =
n∑

i=1

ûh
i φi (x) + gh(x)
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Finite Element Discretization

Finite Elements vs. Finite Difference

1

h2


2 + ch2 −1
−1 2 + ch2 −1

. . .
. . .

. . .

−1 2 + ch2




uh
1

uh
2

uh
3
...

uh
n

 =


f1 + g0

h2

f2

f3

...
fn + g1

h2


u(xi ) ≈ uh

i

1

h


2 + 2ch2

3 −1 + ch2

6

−1 + ch2

6 2 + 2ch2

3 −1 + ch2

6
. . .

. . .
. . .

−1 + ch2

6 2 + 2ch2

3




ûh
1

ûh
2

ûh
3
...

ûh
n

 =


f̃1

f̃2

f̃3

...

f̃n


u(x) ≈ uh(x) =

n∑
i=1

ûh
i φi (x) + gh(x)
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Finite Element Discretization

Higher Order Elements
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Finite Element Discretization

Finite Elements vs. Finite Differences - Revisited

Finite Elements - approxi-
mate the solution

• Replace p.d.e. by a weak for-
mulation (variational problem;
optimization problem)

• Approximate the solution by
a function in a suitable finite
dimensional function space

Finite Differences - approxi-
mate the differential operator

• Replace p.d.e. by a difference
equation

• Solve the difference equation
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Finite Element Discretization

Finite Elements vs. Finite Differences - Continued

Finite Elements

• Complicated domains

• Variable material properties

• Nonlinear equations

• Rigorous theoretical founda-
tions

Finite Differences

• Simple (easy to program)

• Lower complexity (memory
footprint)

• Easier to parallelize
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Finite Volume Discretization

Finite Volumes

Recall the homogeneous model problem

−û′′(x) + c(x)û(x) = f̂ (x) x ∈ Ω

with b.c.
û(0) = 0 û(1) = 0

where
f̂ (x) = f (x) + g ′′(x)− c(x)g(x)

Then
u(x) = û(x) + g(x)
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Finite Volume Discretization

Finite Volumes

The main idea behind the finite volume method is the introduction
of a flux for some quantity and writing conservation equation for
that quantity. First consider the simpler problem

−û′′(x) = f̂ (x) x ∈ Ω

with b.c.
û(0) = 0 û(1) = 0

Introduce the flux F (x) = −û′ and write the eq. in conservation
form

∇ · F = f̂ (x) x ∈ Ω

F ′(x) = f̂ (x) x ∈ Ω
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Finite Volume Discretization

Finite Volumes

Introduce a mesh, or grid

0 = x0 = x1/2 < x1 < x3/2 < . . . < xn < xn+1/2 = xn+1 = 1

Ii = (xi−1/2, xi+1/2) hi = |Ii | = xi+1/2 − xi−1/2
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Finite Volume Discretization

Finite Volumes

Conservation of F on each volume∫
Ii

F ′(x)dx =

∫
Ii

f̂ (x)dx

F (xi+1/2)− F (xi−1/2) =

∫
Ii

f̂ (x)dx

−u′(xi+1/2) + u′(xi−1/2) =

∫
Ii

f̂ (x)dx
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Finite Volume Discretization

Finite Volumes

We still need to approximate the fluxes

F (xi+1/2) ≈ −u(xi+1)− u(xi )

xi+1 − xi

and the integral ∫
Ii

f̂ (x)dx ≈ hi f̂ (xi )
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Finite Volume Discretization

Finite Volumes

Putting it all together

F (xi+1/2)− F (xi−1/2) = hi f̂ (xi ) i = 1, . . . ,N

F (xi+1/2) ≈ −u(xi+1)− u(xi )

xi+1 − xi
i = 0, . . . ,N

where
u(x0) = 0 u(xN+1) = 0
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Finite Volume Discretization

Finite Volumes

Back to our model problem we get

F (xi+1/2)− F (xi−1/2) +

∫
Ii

cu(x)dx =

∫
Ii

f̂ (x)dx

approximating the integrals

F (xi+1/2)− F (xi−1/2) + hi û(xi ) = hi f̂ (xi )
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Finite Volume Discretization

Finite Volumes

Ending up with

F (xi+1/2)− F (xi−1/2) + hicuh(xi ) = hi f̂ (xi ) i = 1, . . . ,N

F (xi+1/2) = −uh(xi+1)− uh(xi )

xi+1 − xi
i = 0, . . . ,N

where
uh(x0) = 0 uh(xN+1) = 0
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Finite Volume Discretization

Finite Volumes
Finite Differences vs. Finite Elements vs. Finite Volumes

1

h


2 + ch2 −1
−1 2 + ch2 −1

. . .
. . .

. . .

−1 2 + ch2




uh
1

uh
2

uh
3
...

uh
n

 = h


f1 + g0

h2

f2

f3

...
fn + g1

h2


u(xi ) ≈ uh

i

1

h2


2 + ch2 −1
−1 2 + ch2 −1

. . .
. . .

. . .

−1 2 + ch2




uh
1

uh
2

uh
3
...

uh
n

 =


f1 + g0

h2

f2

f3

...
fn + g1

h2


u(xi ) ≈ uh

i
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Finite Volume Discretization

Finite Volumes
Finite Differences vs. Finite Elements vs. Finite Volumes

1

h


2 + 2ch2

3 −1 + ch2

6

−1 + ch2

6 2 + 2ch2

3 −1 + ch2

6
. . .

. . .
. . .

−1 + ch2

6 2 + 2ch2

3




ûh
1

ûh
2

ûh
3
...

ûh
n

 =


f̃1

f̃2

f̃3

...

f̃n



u(x) ≈ uh(x) =
n∑

i=1

ûh
i φi (x) + gh(x)
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