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Abstract. In his 1950 Annals of Mathematics paper entitled “Some New
Functional Spaces”, G. G. Lorentz [1] introduced the function spaces denoted

by Λ(α), 0 < α < 1, defined as the set of real measurable functions for 0 <

x < 1 for which

‖f‖Λ(α) = α

∫ 1

0
xα−1f?(x)dx <∞ ,

where f? is the decreasing rearrangement of f . In this paper we give two
simple characterizations for Λ(1/p) for 1 < p <∞ based on a generalization of

the special atom space introduced by G. De Souza in earlier works [3], [6], [7],

and [11]. The space Λ(1/p) is nowadays denoted by L(p, 1). As an application,
we give a proof of Carleson’s Theorem on the convergence of Fourier series on

L(p, 1) and, more generally, on L(p, r) for p, r > 1. Also we have a simple

proof of a theorem of Stein and Weiss on operators in L(p, 1).

1. Preliminaries

In this section, we state several definitions that will be used throughout this
paper with references to the original source.

Definition 1.1. A real-valued function f defined on [−π, π] belongs to the space
L(p, 1) for 1 < p <∞ if

‖f‖L(p,1) =

∫ 2π

0

f?(t)t
1
p−1dt <∞ ,

where f? is the decreasing rearrangement of f . This space was originally introduced
by G. G. Lorentz [1] in 1950 where it was denoted by Λ(1/p).

Definition 1.2. A generalized special atom is a function b : [−π, π]→ R, b(t) =
1

2π
or for any α ∈ (0, 1] and µ-measurable subsets X,A,B of [−π, π],

b(t) =
1

µ(X)α

[
χA(t)− χB(t)

]
where X = A ∪ B,A ∩ B = ∅, µ(A) = µ(B), µ is a measure on subsets of [−π, π],
and χE denotes the characteristic function of the set E.
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Definition 1.3. For 0 < α ≤ 1, let (bn)n≥1 be a sequence of generalized special
atoms, (Cn)n≥1 a sequence of real numbers, and µ a measure on subsets of [−π, π].
We define the generalized special atom spaces by

A(µ, α) =

{
f : [−π, π]→ R; f(t) =

∞∑
n=1

Cnbn(t);

∞∑
n=1

|Cn| <∞

}
.

We endow A(µ, α) with the norm

‖f‖A(µ,α) = inf

∞∑
n=1

|Cn| ,

where the infimum is taken over all possible representations of f .
The notion of special atoms and the spaces formed by special atoms as well as

certain generalized spaces were introduced originally by G. De Souza, see [3], [6],[7],
[19]. In those works, intervals and lengths were used.

Definition 1.4. For 0 < α ≤ 1 and µ a measure on sets of [−π, π], we define the
space B(µ, α) as

B(µ, α) =

{
f : [−π, π]→ R; f(t) =

∞∑
n=1

andn(t);

∞∑
n=1

|an| <∞

}
,

where dn(t) =
1

µα(An)
χAn(t), An are µ-measurable sets in [−π, π], and an’s are

real numbers. We endow B(µ, α) with the norm

‖f‖B(µ,α) = inf

∞∑
n=1

|an| ,

where the infimum is taken over all possible representations of f .
This space also was introduced by G. De Souza in his early work, see [3], [4], [6],

[7].

Definition 1.5. For 0 < α ≤ 1 and µ a measure on sets of [−π, π], we define the
space Λ(µ, α) as

Λ(µ, α) =

{
f : [−π, π]→ R;

1

µα(X)

∣∣∣∣∣
∫
A

f(x)dµ(x)−
∫
B

f(x)dµ(x)

∣∣∣∣∣ < M

}
for µ-measurable subsets X,A,B of [−π, π] such that X = A ∪ B,A ∩ B = ∅. We
endow Λ(µ, α) with the norm

‖f‖Λ(µ,α) = sup
X=A∪B,A∩B=∅

[
1

µα(X)

∣∣∣∣∣
∫
A

f(x)dµ(x)−
∫
B

f(x)dµ(x)

∣∣∣∣∣
]

Note that this space is a natural generalization of the Lipschitz spaces. In fact if
we take µ as the Lebesgue measure, X = [x−h, x+h], A = [x−h, x), B = [x, x+h],
and µα(X) = (2h)α, then for a differentiable f , we get

1

µα(X)

∣∣∣∣∣
∫
A

f ′(x)dµ(x)−
∫
B

f ′(x)dµ(x)

∣∣∣∣∣ =
|f(x+ h) + f(x− h)− 2f(x)|

(2h)α
.

The space Λ(µ, α) in this form has been introduced by G. De Souza in his ealier
work, see [3], [6], [7], [23].
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Definition 1.6. For 0 < α ≤ 1 and µ a measure on sets of [−π, π], we define the
space Lip(µ, α) as

Lip(µ, α) =

{
f : [−π, π]→ R;

1

µα(X)

∣∣∣∣∣
∫
A

f(x)dµ(x)

∣∣∣∣∣ < M

}
,

where A is a µ-measurable set in [−π, π]. A norm is defined on Lip(µ, α) as

‖f‖Lip(µ,α) = sup
A

1

µα(A)

∣∣∣∣∣
∫
A

f(x)dµ(x)

∣∣∣∣∣ .
This space was originally introduced by G. G. Lorentz in 1950, see [1], [2] .

2. Known Results

In this section, we state some known results and sketch very briefly the proof of
some of them or make some comments. For more details, see [1], [2], [23], [24].

Theorem 2.1. The spaces (A(µ, α), ‖ · ‖A(µ,α)), (B(µ, α), ‖ · ‖B(µ,α)), (Λ(µ, α), ‖ ·
‖Λ(µ,α)), and (Lip(µ, α), ‖ · ‖Lip(µ,α)) for 0 < α ≤ 1 are Banach spaces.

The proof follows using direct application of standard techniques for Banach
spaces.

Theorem 2.2. The spaces A(µ, α) and B(µ, α) are the same as Banach spaces and
the norms are equivalent, that is A(µ, α) ∼= B(µ, α) withM‖f‖B(µ,α) ≤ ‖f‖A(µ,α) ≤
N‖f‖B(µ,α), where M and N are absolute constants.

Clearly A(µ, α) is continuously contained in B(µ, α). In fact if f ∈ A(µ, α), then

f(t) =

∞∑
n=1

Cn
µα(Xn)

[
χAn(t)− χBn(t)

]

=

∞∑
n=1

Cn
µα(Xn)

χAn(t)−
∞∑
n=1

Cn
µα(Xn)

χAn(t)

=

∞∑
n=1

Cn

(
µ(An)

µ(Xn)

)α
1

µα(An)
χAn(t)−

∞∑
n=1

Cn

(
µ(Bn)

µ(Xn)

)α
1

µα(Bn)
χBn(t)

Since Xn = An ∪ Bn,
µ(An)

µ(Xn)
≤ 1,

µ(Bn)

µ(Xn)
≤ 1, we have ‖f‖B(µ,α) ≤ 2

∞∑
n=1

|Cn|.

Therefore, ‖f‖B(µ,α) ≤ ‖f‖A(µ,α).
For the other inequality, please refer to De Souza and Pozo [24].

Theorem 2.3. The spaces Λ(µ, α) and Lip(µ, α) for 0 < α < 1 are equivalent as
Banach spaces that is Λ(µ, α) ∼= Lip(µ, α) with
M‖f‖B(µ,α) ≤ ‖f‖Λ(µ,α) ≤ N‖f‖B(µ,α), where M and N are absolute constants.

Again, one of the inequalities is easily seen, that is Lip(µ, α) ⊆ Λ(µ, α) and
‖f‖Λ(µ,α) ≤ 2‖f‖Lip(µ,α). For the other inequality, just note that

1

µ1/p(A)

∫
A

|f(t)|dµ(t) ≤ sup
µ(A∆B)6=0

1

µ1/p(A∆B)

∣∣∣∣∫
A

f(t)dµ(t)−
∫
B

f(t)dµ(t)

∣∣∣∣ ,
where A∆B = (A−B) ∪ (B −A).



4 GERALDO SOARES DE SOUZA

Theorem 2.4 (Duality). φ is a bounded linear functional on A(µ, α), 0 < α < 1

if and only if there is a unique g ∈ Λ(µ, α) so that φ(f) =

∫ π

−π
f(x)g(x)dµ(x) with

‖φ‖ = ‖g‖Λ(µ,α). That is, A?(µ, α) ∼= Λ(µ, α), where A?(µ, α) is the dual space of
A(µ, α).

Theorem 2.5 (Duality). φ is a bounded linear functional on B(µ, α), 0 < α < 1 if

and only if there is a unique g ∈ Lip(µ, α) so that φ(f) =

∫ π

−π
f(x)g(x)dµ(x) with

‖φ‖ = ‖g‖Lip(µ,α). That is, B?(µ, α) ∼= Lip(µ, α), where B?(µ, α) is the dual space
of B(µ, α).

The proofs of these two duality Theorems follow easily after a pair of Holder
type inequalities. That is∣∣∣∣ ∫ π

−π
f(x)g(x)dµ(x)

∣∣∣∣ ≤ ‖f‖A(µ,α) · ‖g‖Λ(µ,α), f ∈ A(µ, α), g ∈ Λ(µ, α)

and∣∣∣∣ ∫ π

−π
f(x)g(x)dµ(x)

∣∣∣∣ ≤ ‖f‖B(µ,α) · ‖g‖Lip(µ,α), f ∈ B(µ, α), g ∈ Lip(µ, α) .

For a complete proof see De Souza and Pozo [24].

Theorem 2.6 (Duality-G.G. Lorentz). φ is a bounded linear functional on L( 1
α , 1), 0 <

α < 1, if and only if there is a unique g ∈ Lip(µ, α) so that φ(f) =

∫ π

−π
f(x)g(x)dµ(x)

with ‖φ‖ = ‖g‖Lip(µ,α). That is, L?( 1
α , 1) ∼= Lip(µ, α).

Again this duality Theorem is due to G.G. Lorentz [1]. It also follows from the
Holder type inequality∣∣∣∣ ∫ π

−π
f(x)g(x)dµ(x)

∣∣∣∣ ≤ ‖f‖L( 1
α ,1) · ‖g‖Lip(µ,α), f ∈ L(

1

α
, 1), g ∈ Lip(µ, α) .

3. Main result

In this section, we state and prove the main result which is the characterization
of L(p, 1), 1 < p <∞ as B(µ, 1/p) and A(µ, 1/p).

Theorem 3.1. f ∈ L(p, 1) if and only if f ∈ B(µ, 1/p) for 1 < p <∞. Moreover
N‖f‖B(µ,1/p) ≤ ‖f‖L(p,1) ≤M‖f‖B(µ,1/p), where N and M are absolute constants.

Proof. Let us show that B(µ, 1/p) ⊂ L(p, 1), 1 < p <∞. To that end, all we need
is to estimate ‖f‖L(p,1) where f(t) = χA(t), A is a µ-measurable set in [−π, π].
In fact

‖χA(t)‖L(p,1) =

∫ ∞
0

χ?A(t)t
1
p−1dt

=

∫ ∞
0

χ[0,µ(A)](t)t
1
p−1dt

=

∫ µ(A)

0

t
1
p−1dt

= p(µ(A))
1
p
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That is ∥∥∥∥∥ 1

(µ(A))
1
p

χA

∥∥∥∥∥ ≤ p .
Now if f ∈ B(µ, α), then f(t) =

∞∑
n=1

Cndn(t) with

∞∑
n=1

|Cn| < ∞, where dn(t) =

1

(µ(An))
1
p

χAn(t), An a µ-measurable set in [−π, π].

Then ‖f‖L(p,1) ≤
∞∑
n=1

|Cn‖|dn‖L(p,1) ≤ p
∞∑
n=1

|Cn| so that taking the infimum,

we get

‖f‖L(p,1) ≤ p‖f‖B(µ,1/p), 1 < p <∞ .

�

We have the following situations:

(1) B(µ, 1/p) ⊆ L(p, 1) for 1 < p <∞ and ‖f‖L(p,1) ≤ p‖f‖B(µ,1/P )

(2) B?(µ, 1/p) ∼= Lip(µ, 1/p) by Theorem 2.5
(3) L?(p, 1) ∼= Lip(µ, 1/p) by Theorem 2.6
(4) B(µ, 1/p) is dense in L(p, 1). Easily shown with standard technique.

As a consequence of these facts, the embedding operator I : B(µ, 1/p) → L(p, 1)
defined by I(f) = f is a Banach space isomorphism. That is B(µ, 1/p) ∼= L(p, 1)
with equivalent norms.

Note that A(µ, 1/p) ∼= B(µ, 1/p), 1 < p <∞ by Theorem 2.2. Therefore we have
the following result.

Theorem 3.2. The spaces A(µ, 1/p), B(µ, 1/p) and L(p, 1) for 1 < p < ∞ are
equivalent as Banach spaces and the norms are equivalent.

4. Application

In this section, we give a simple proof of a well-known theorem due to Guido
Weiss and Elias Stein given in [25] and [26] concerning linear operators acting on
the Lorentz space L(p, 1).

Theorem 4.1 (Stein and Weiss). If T is a linear operator on the space of mea-

surable functions and ‖TχA‖X ≤ M(µ(A))
1
p , 1 < p < ∞ where X is a Ba-

nach space, then T can be extended to all L(p, 1); that is T : L(p, 1) → X and
‖Tf‖X ≤M‖f‖L(p,1).

Proof. After this new characterization of L(p, 1) as the space B(µ, 1/p), 1 < p <∞,
given in Theorem 3.1, this result is an immediate consequence of the representation

of f as f ∈ L(p, 1)⇒ f ∈ B(µ, 1/p)⇒ f(t) =

∞∑
n=1

Cndn(t) with

∞∑
n=1

|Cn| <∞ and

dn(t) =
1

(µ(An))
1
p

χAn(t), An’s µ-measurable sets in [−π, π] so that

Tf(t) =

∞∑
n=1

CnT (dn((t)) .
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Consequently, ‖Tf‖X ≤
∞∑
n=1

|Cn‖|Tdn‖X and, by hypothesis, ‖Tdn‖X ≤M(µ(An))
1
p .

Therefore ‖Tf‖X ≤
∞∑
n=1

|Cn| and so ‖Tf‖X ≤M‖|f |L(p,1) �

5. Comments

1. Prof. Richard O’Neil from SUNY at Albany: If f(t) =

n∑
j=1

CjχAj (t) where

A1 ⊆ A2 ⊆ A3 ⊆ · · · ⊆ An and Cj > 0, then

n∑
j=1

Cj(µ(Aj))
1
p =

1

p
‖f‖L(p,1). Also

he added that if

f(t) =

n∑
j=1

Cjqj(t)

where qj(t) = χAj (t)− χBj (t), Aj ∩Bj = ∅, Cj > 0, then

n∑
j=1

Cj(µ(Aj ∪Bj))
1
p =

1

p
‖f‖L(p,1) .

Note L(p, 1) ⊆ Lp for 1 < p <∞ and because of this new characterization, L(p, 1)
is a much easier space to work with than Lp. The space which we denoted in this
paper by Lip(µ, α) is denoted in the literature by L( 1

α ,∞) for 0 < α < 1 and is
called the weak-Lp space with “norm” given by ‖f‖ = Sup

t>0
{tαf?(t)}, where f? is

the decreasing rearrangement of f .
One can show that the “norms” ‖f‖ and ‖f‖Lip(µ,α) are equivalent.

Finally, if we define m(f, y) = µ({x : |f(x) > y|}), then by a change of variable
y = f?(t), t = m(f, y) and integration by parts, we get

‖f‖L(p,1) =

∫ ∞
0

f?(t)t
1
p−1dt = p

∫ ∞
0

(m(f, y))
1
p dy .

Prof. Richard O’Neil:“This last integral is sort of infinitesimal version of your
atomic decomposition. Indeed it was this formula that led to the remark that an
operator of restricted weak type (p, q) was the same as a strong operator from
L(p, 1) to L(p,∞).”

2. One of the most interesting observations that we made in the process to obtain
the new characterization of L(p, 1) for 1 < p < ∞ is that Tf(x) = sup

n≥1
|Sn(f, x)|,

where Sn(f, x) is the nth partial sum of the Fourier Series of f is

Theorem 5.1. If Tf(x) = sup
n≥1
|Sn(f, x)|, then ‖TχA‖L(p,1) ≤ Mµ(A)

1
p for p > 1

and so ‖Tf‖L(p,1) ≤M‖f‖L(p,1). A is a µ-measurable set.

Proof. If we take the definition of the norm ‖g‖L(p,1) as

‖g‖L(p,1) = p

∫ ∞
0

µ{x : |g(x)| > λ}1/pdλ
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which is equivalent to the one in Definition 1.1, and use Hunt’s inequality given in
[27], which is

‖TχA‖L(p,1) = p

∫ ∞
0

µ{x : |TχA(x)| ≥ λ}1/pdλ

≤
∫ 1

0

[
µ(A)

1

λ
(1 + log

1

λ
)

]1/p

dλ+ C

∫ ∞
1

(
µ(A)e−Cλ

)1/p

dλ

where C is a positive constant, we get ‖TχA‖L(p,1) ≤ Cµ(A)1/p. Consequently, by
using the new characterization of L(p, 1), we get

‖Tf‖L(p,1) ≤ C‖f‖L(p,1) .

Note: This direct proof using Hunt’s inequality was mentioned to the author
by Loukas Grafakos during the 23th Mini-Conference on Harmonic Analysis and
Related Areas held at Auburn University on December 4-5, 2009 after the talk
given by the author on the subject. �

As a Corollary of Theorem 5.1, we have that

Corollary 5.2. If f ∈ L(p, 1), p > 1 and Sn(f, x) is the n-th partial sum of the
Fourier series of f , then Sn(f, x)→ f(x) almost everywhere.

Also we note that L(p, 1) ⊆ L(p,∞) with ‖f‖L(p,∞) ≤ C‖f‖L(p,1). It follows by
Theorem 5.1 that for p0 6= p1, p0, p1 > 1

a) ‖TχA‖L(p0,∞) ≤M0(µ(A))1/p0

b) ‖TχA‖L(p1,∞) ≤M1(µ(A))1/p1

Therefore using the interpolation Theorem 1.4.19 in [25], we get

(5.1) ‖Tf‖L(p,r) ≤M‖f‖L(p,r), for
1

p
=

θ

p0
+

1− θ
p1

, 0 < θ < 1,∀r > 1.

The inequality (5.1) leads to the following corollary.

Corollary 5.3. If f ∈ L(p, r), p, r > 1, then Sn(f, x)→ f(x) almost everywhere.

Corollary 5.4 (Carleson’s Theorem on Convergence of Fourier Series). If f ∈ Lp,
then Sn(f, x)→ f(x) almost everywhere.

Proof. Set p = r in Corollary 5.3 since L(p, p) = Lp. �
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discussion and comments.
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