Neglected Tropical Diseases

Infection, modelling and control

Robert Smith?

Department of Mathematics and Faculty of Medicine
The University of Ottawa
NTDs

- A group of bacterial and parasitic infections endemic in tropical climates
NTDs

- A group of bacterial and parasitic infections endemic in tropical climates
- Some of the most common infections among the world’s poorest people
NTDs

• A group of bacterial and parasitic infections endemic in tropical climates
• Some of the most common infections among the world’s poorest people
• Affect rural areas in the developing world
NTDs

- A group of bacterial and parasitic infections endemic in tropical climates
- Some of the most common infections among the world’s poorest people
- Affect rural areas in the developing world
- More than 1 billion people infected
NTDs

- A group of bacterial and parasitic infections endemic in tropical climates
- Some of the most common infections among the world’s poorest people
- Affect rural areas in the developing world
- More than 1 billion people infected
- Transmission cycles perpetuated by
NTDs

- A group of bacterial and parasitic infections endemic in tropical climates
- Some of the most common infections among the world’s poorest people
- Affect rural areas in the developing world
- More than 1 billion people infected
- Transmission cycles perpetuated by environmental contamination
NTDs

- A group of bacterial and parasitic infections endemic in tropical climates
- Some of the most common infections among the world’s poorest people
- Affect rural areas in the developing world
- More than 1 billion people infected
- Transmission cycles perpetuated by
 - environmental contamination
 - poor standards of living
NTDs

• A group of bacterial and parasitic infections endemic in tropical climates
• Some of the most common infections among the world’s poorest people
• Affect rural areas in the developing world
• More than 1 billion people infected
• Transmission cycles perpetuated by
 – environmental contamination
 – poor standards of living
 – lack of hygiene.
The diseases

<table>
<thead>
<tr>
<th>Infection</th>
<th>Global prevalence (millions)</th>
<th>Population at risk</th>
</tr>
</thead>
</table>
The diseases

<table>
<thead>
<tr>
<th>Infection</th>
<th>Global prevalence (millions)</th>
<th>Population at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-transmitted helminths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hookworm</td>
<td>807</td>
<td>4.2 billion</td>
</tr>
<tr>
<td>Roundworm</td>
<td>604</td>
<td>3.2 billion</td>
</tr>
<tr>
<td>Whipworm</td>
<td>576</td>
<td>3.2 billion</td>
</tr>
</tbody>
</table>
The diseases

<table>
<thead>
<tr>
<th>Infection</th>
<th>Global prevalence (millions)</th>
<th>Population at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-transmitted helminths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hookworm</td>
<td>807</td>
<td>4.2 billion</td>
</tr>
<tr>
<td>Roundworm</td>
<td>604</td>
<td>3.2 billion</td>
</tr>
<tr>
<td>Whipworm</td>
<td>576</td>
<td>3.2 billion</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>207</td>
<td>779 million</td>
</tr>
<tr>
<td>Elephantitis</td>
<td>120</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>Trachoma</td>
<td>84</td>
<td>590 million</td>
</tr>
<tr>
<td>River blindness</td>
<td>37</td>
<td>90 million</td>
</tr>
</tbody>
</table>
The diseases

<table>
<thead>
<tr>
<th>Infection</th>
<th>Global prevalence (millions)</th>
<th>Population at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-transmitted helminths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hookworm</td>
<td>807</td>
<td>4.2 billion</td>
</tr>
<tr>
<td>Roundworm</td>
<td>604</td>
<td>3.2 billion</td>
</tr>
<tr>
<td>Whipworm</td>
<td>576</td>
<td>3.2 billion</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>207</td>
<td>779 million</td>
</tr>
<tr>
<td>Elephantitis</td>
<td>120</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>Trachoma</td>
<td>84</td>
<td>590 million</td>
</tr>
<tr>
<td>River blindness</td>
<td>37</td>
<td>90 million</td>
</tr>
<tr>
<td>Leishmaniasis</td>
<td>12</td>
<td>350 million</td>
</tr>
<tr>
<td>Chagas’ Disease</td>
<td>8-9</td>
<td>25 million</td>
</tr>
<tr>
<td>Leprosy</td>
<td>0.4</td>
<td>N/A</td>
</tr>
<tr>
<td>Sleeping sickness</td>
<td>0.3</td>
<td>60 million</td>
</tr>
</tbody>
</table>
The diseases

<table>
<thead>
<tr>
<th>Infection</th>
<th>Global prevalence (millions)</th>
<th>Population at risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil-transmitted helminths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hookworm</td>
<td>807</td>
<td>4.2 billion</td>
</tr>
<tr>
<td>Roundworm</td>
<td>604</td>
<td>3.2 billion</td>
</tr>
<tr>
<td>Whipworm</td>
<td>576</td>
<td>3.2 billion</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>207</td>
<td>779 million</td>
</tr>
<tr>
<td>Elephantitis</td>
<td>120</td>
<td>1.3 billion</td>
</tr>
<tr>
<td>Trachoma</td>
<td>84</td>
<td>590 million</td>
</tr>
<tr>
<td>River blindness</td>
<td>37</td>
<td>90 million</td>
</tr>
<tr>
<td>Leishmaniasis</td>
<td>12</td>
<td>350 million</td>
</tr>
<tr>
<td>Chagas’ Disease</td>
<td>8-9</td>
<td>25 million</td>
</tr>
<tr>
<td>Leprosy</td>
<td>0.4</td>
<td>N/A</td>
</tr>
<tr>
<td>Sleeping sickness</td>
<td>0.3</td>
<td>60 million</td>
</tr>
<tr>
<td>Guinea Worm Disease</td>
<td>0.01</td>
<td>N/A</td>
</tr>
<tr>
<td>Buruli ulcer</td>
<td>N/A</td>
<td>N/A.</td>
</tr>
</tbody>
</table>
Neglect

- These diseases are neglected at the
Neglect

• These diseases are neglected at the
 – community
Neglect

• These diseases are neglected at the
 – community
 – national
Neglect

• These diseases are neglected at the
 – community
 – national
 – international levels
Neglect

• These diseases are neglected at the
 – community
 – national
 – international levels

• Attention to disease in endemic areas usually focuses on
Neglect

- These diseases are neglected at the
 - community
 - national
 - international levels

- Attention to disease in endemic areas usually focuses on
 - HIV/AIDS
Neglect

- These diseases are neglected at the:
 - community
 - national
 - international levels

- Attention to disease in endemic areas usually focuses on:
 - HIV/AIDS
 - malaria
Neglect

• These diseases are neglected at the
 – community
 – national
 – international levels

• Attention to disease in endemic areas usually focuses on
 – HIV/AIDS
 – malaria
 – TB
Neglect

- These diseases are neglected at the
 - community
 - national
 - international levels
- Attention to disease in endemic areas usually focuses on
 - HIV/AIDS
 - malaria
 - TB

The “big three”
Neglect

• These diseases are neglected at the
 – community
 – national
 – international levels

• Attention to disease in endemic areas usually focuses on
 – HIV/AIDS
 – malaria
 – TB
 – novel emerging infections.

The “big three”
Common features

• Ancient
Common features

- Ancient
- Chronic
Common features

- Ancient
- Chronic
- Disfigurement and disability
Common features

- Ancient
- Chronic
- Disfigurement and disability
- Impair growth and development in children
Common features

• Ancient
• Chronic
• Disfigurement and disability
• Impair growth and development in children
• Large socioeconomic effect
Common features

- Ancient
- Chronic
- Disfigurement and disability
- Impair growth and development in children
- Large socioeconomic effect
- Poverty promoting
Common features

- Ancient
- Chronic
- Disfigurement and disability
- Impair growth and development in children
- Large socioeconomic effect
- Poverty promoting
- Reduce economic productivity
Common features

- Ancient
- Chronic
- Disfigurement and disability
- Impair growth and development in children
- Large socioeconomic effect
- Poverty promoting
- Reduce economic productivity
- Stigmatising
Common features

- Ancient
- Chronic
- Disfigurement and disability
- Impair growth and development in children
- Large socioeconomic effect
- Poverty promoting
- Reduce economic productivity
- Stigmatising
- High disease burden, low mortality
Common features

- Ancient
- Chronic
- Disfigurement and disability
- Impair growth and development in children
- Large socioeconomic effect
- Poverty promoting
- Reduce economic productivity
- Stigmatising
- High disease burden, low mortality (530,000 per year).
Measuring the impact

- DALYs (Disability-Adjusted Life Years)
Measuring the impact

• DALYs (Disability-Adjusted Life Years)
 – measure the number of years of life lost from premature death/disability
Measuring the impact

• DALYs (Disability-Adjusted Life Years)
 – measure the number of years of life lost from premature death/disability

<table>
<thead>
<tr>
<th>Infection</th>
<th># of DALYs/year (millions)</th>
</tr>
</thead>
</table>

Measuring the impact

- DALYs (Disability-Adjusted Life Years)
 - measure the number of years of life lost from premature death/disability

<table>
<thead>
<tr>
<th>Infection</th>
<th># of DALYs/year (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS</td>
<td>84.5</td>
</tr>
</tbody>
</table>
Measuring the impact

• DALYs (Disability-Adjusted Life Years) – measure the number years of life lost from premature death/disability

<table>
<thead>
<tr>
<th>Infection</th>
<th># of DALYs/year (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS</td>
<td>84.5</td>
</tr>
<tr>
<td>NTDs</td>
<td>56.6</td>
</tr>
</tbody>
</table>
Measuring the impact

- DALYs (Disability-Adjusted Life Years) – measure the number years of life lost from premature death/disability

<table>
<thead>
<tr>
<th>Infection</th>
<th># of DALYs/year (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS</td>
<td>84.5</td>
</tr>
<tr>
<td>NTDs</td>
<td>56.6</td>
</tr>
<tr>
<td>Malaria</td>
<td>46.5</td>
</tr>
</tbody>
</table>
Measuring the impact

• DALYs (Disability-Adjusted Life Years)

- measure the number years of life lost from premature death/disability

<table>
<thead>
<tr>
<th>Infection</th>
<th># of DALYs/year (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS</td>
<td>84.5</td>
</tr>
<tr>
<td>NTDs</td>
<td>56.6</td>
</tr>
<tr>
<td>Malaria</td>
<td>46.5</td>
</tr>
<tr>
<td>TB</td>
<td>34.7</td>
</tr>
</tbody>
</table>
Measuring the impact

- DALYs (Disability-Adjusted Life Years)
 - measure the number of years of life lost from premature death/disability
- These are likely underestimates, especially for NTDs.

<table>
<thead>
<tr>
<th>Infection</th>
<th># of DALYs/year (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS</td>
<td>84.5</td>
</tr>
<tr>
<td>NTDs</td>
<td>56.6</td>
</tr>
<tr>
<td>Malaria</td>
<td>46.5</td>
</tr>
<tr>
<td>TB</td>
<td>34.7</td>
</tr>
</tbody>
</table>
Proportion of DALYs

- Diarrhoeal diseases
- Childhood & vaccine preventable diseases
- Other infectious and parasitic diseases
- STDs excluding HIV
- HIV/AIDS
- TB
- Malaria
Proportion of DALYs

- Diarrhoeal diseases
- Childhood & vaccine preventable diseases
- STDs excluding HIV
- HIV/AIDS
- TB
- Malaria
- Other infectious and parasitic diseases
Categories

- Core group of 13 tropical infections
Categories

- Core group of 13 tropical infections
- Helminths
Categories

• Core group of 13 tropical infections
• Helminths
 – Soil-transmitted helminths, elephantitis, river blindness, Guinea worm disease, schistosomiasis
Categories

• Core group of 13 tropical infections

• Helminths
 – Soil-transmitted helminths, elephantitis, river blindness, Guinea worm disease, schistosomiasis

• Protozoan
Categories

• Core group of 13 tropical infections
• Helminths
 – Soil-transmitted helminths, elephantitis, river blindness, Guinea worm disease, schistosomiasis
• Protozoan
 – Leishmaniasis, Chagas’ disease, sleeping sickness
Categories

• Core group of 13 tropical infections
• Helminths
 – Soil-transmitted helminths, elephantitis, river blindness, Guinea worm disease, schistosomiasis
• Protozoan
 – Leishmaniasis, Chagas’ disease, sleeping sickness
• Bacterial
Categories

• Core group of 13 tropical infections
• Helminths
 – Soil-transmitted helminths, elephantitis, river blindness, Guinea worm disease, schistosomiasis
• Protozoan
 – Leishmaniasis, Chagas’ disease, sleeping sickness
• Bacterial
 – Leprosy, trachoma, Buruli ulcer
Categories

• Core group of 13 tropical infections
• Helminths
 – Soil-transmitted helminths, elephantitis, river blindness, Guinea worm disease, schistosomiasis
• Protozoan
 – Leishmaniasis, Chagas’ disease, sleeping sickness
• Bacterial
 – Leprosy, trachoma, Buruli ulcer
• Others.
Soil-transmitted helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Roundworm</th>
<th>Whipworm</th>
<th>Hookworm</th>
</tr>
</thead>
</table>

Soil-transmitted helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Roundworm</th>
<th>Whipworm</th>
<th>Hookworm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Small intestine</td>
<td>Large intestine (colon)</td>
<td>Small intestine</td>
</tr>
</tbody>
</table>
Soil-transmitted helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Roundworm</th>
<th>Whipworm</th>
<th>Hookworm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Small intestine</td>
<td>Large intestine (colon)</td>
<td>Small intestine</td>
</tr>
<tr>
<td>Transmission</td>
<td>Contact with soil contaminated by larva or eggs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soil-transmitted helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Roundworm</th>
<th>Whipworm</th>
<th>Hookworm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Small intestine</td>
<td>Large intestine (colon)</td>
<td>Small intestine</td>
</tr>
<tr>
<td>Transmission</td>
<td>Contact with soil contaminated by larva or eggs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical manifestation/impairment</td>
<td>Anemia: impairs growth and development in children</td>
<td>Intestinal obstruction</td>
<td>Inflammation, dystentery</td>
</tr>
</tbody>
</table>
Soil-transmitted helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Roundworm</th>
<th>Whipworm</th>
<th>Hookworm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Small intestine</td>
<td>Large intestine (colon)</td>
<td>Small intestine</td>
</tr>
<tr>
<td>Transmission</td>
<td>Contact with soil contaminated by larva or eggs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical manifestation/impairment</td>
<td>Anemia: impairs growth and development in children</td>
<td>Intestinal obstruction</td>
<td>Inflammation, dystentry</td>
</tr>
<tr>
<td>Treatment</td>
<td>Benzimidazole anthelmintics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soil-transmitted helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Roundworm</th>
<th>Whipworm</th>
<th>Hookworm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Small intestine</td>
<td>Large intestine (colon)</td>
<td>Small intestine</td>
</tr>
<tr>
<td>Transmission</td>
<td>Contact with soil contaminated by larva or eggs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical manifestation/impairment</td>
<td>Anemia: impairs growth and development in children</td>
<td>Intestinal obstruction</td>
<td>Inflammation, dystentry</td>
</tr>
<tr>
<td>Treatment</td>
<td>Benzimidazole anthelmintics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>Mass dewormings, drugs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td>Elephantitis</td>
<td>River blindness</td>
<td>Guinea worm</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

Other helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Elephantitis</th>
<th>River blindness</th>
<th>Guinea worm</th>
<th>Schistosomiasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Lymphatic system, genitals</td>
<td>Subcutaneous tissue</td>
<td>Subcutaneous tissue, legs</td>
<td>Urinary tract, liver, intestines</td>
</tr>
</tbody>
</table>
Other helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Elephantitis</th>
<th>River blindness</th>
<th>Guinea worm</th>
<th>Schistosomiasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Lymphatic system, genitals</td>
<td>Subcutaneous tissue</td>
<td>Subcutaneous tissue, legs</td>
<td>Urinary tract, liver, intestines</td>
</tr>
<tr>
<td>Transmission</td>
<td>Mosquitoes</td>
<td>Blackflies</td>
<td>Water fleas in drinking water</td>
<td>Larvae in freshwater</td>
</tr>
</tbody>
</table>
Other helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Elephantitis</th>
<th>River blindness</th>
<th>Guinea worm</th>
<th>Schistosomiasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Lymphatic system, genitals</td>
<td>Subcutaneous tissue</td>
<td>Subcutaneous tissue, legs</td>
<td>Urinary tract, liver, intestines</td>
</tr>
<tr>
<td>Transmission</td>
<td>Mosquitoes</td>
<td>Blackflies</td>
<td>Water fleas in drinking water</td>
<td>Larvae in freshwater</td>
</tr>
<tr>
<td>Clinical manifestation/impairment</td>
<td>Filarial fever, swelling, disfigurement</td>
<td>Malnutrition, developmental/educational impairment</td>
<td>Blindness, disfigurement, skin disease</td>
<td>Painful blister in foot, inflammation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Target organ damage, highest mortality</td>
</tr>
</tbody>
</table>
Other helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Elephantitis</th>
<th>River blindness</th>
<th>Guinea worm</th>
<th>Schistosomiasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Lymphatic system, genitals</td>
<td>Subcutaneous tissue</td>
<td>Subcutaneous tissue, legs</td>
<td>Urinary tract, liver, intestines</td>
</tr>
<tr>
<td>Transmission</td>
<td>Mosquitoes</td>
<td>Blackflies</td>
<td>Water fleas in drinking water</td>
<td>Larvae in freshwater</td>
</tr>
<tr>
<td>Clinical manifestation/impairment</td>
<td>Filarial fever, swelling, disfigurement</td>
<td>Malnutrition, developmental/educational impairment</td>
<td>Blindness, disfigurement, skin disease</td>
<td>Painful blister in foot, inflammation</td>
</tr>
<tr>
<td>Treatment</td>
<td>Diethylcarbamazine, ivermectin, albendazole</td>
<td>Ivermectin</td>
<td>Extract worm on stick</td>
<td>Praziquantel</td>
</tr>
</tbody>
</table>
Other helminths

<table>
<thead>
<tr>
<th>Disease</th>
<th>Elephantitis</th>
<th>River blindness</th>
<th>Guinea worm</th>
<th>Schistosomiasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Lymphatic system, genitals</td>
<td>Subcutaneous tissue</td>
<td>Subcutaneous tissue, legs</td>
<td>Urinary tract, liver, intestines</td>
</tr>
<tr>
<td>Transmission</td>
<td>Mosquitoes</td>
<td>Blackflies</td>
<td>Water fleas in drinking water</td>
<td>Larvae in freshwater</td>
</tr>
<tr>
<td>Clinical manifestation/impairment</td>
<td>Filarial fever, swelling, disfigurement</td>
<td>Malnutrition, developmental/educational impairment</td>
<td>Blindness, disfigurement, skin disease</td>
<td>Painful blister in foot, inflammation</td>
</tr>
<tr>
<td>Treatment</td>
<td>Diethylcarbamazine, ivermectin, albendazole</td>
<td>Ivermectin</td>
<td>Extract worm on stick</td>
<td>Praziquantel</td>
</tr>
<tr>
<td>Control</td>
<td>Interrupt transmission cycle, yearly mass drug admin</td>
<td>Vector control, yearly mass drug admin</td>
<td>Safe water, health education</td>
<td>Molluscide, yearly mass drug admin.</td>
</tr>
</tbody>
</table>
Protozoans

<table>
<thead>
<tr>
<th>Disease</th>
<th>Leishmaniasis</th>
<th>Chagas’ Disease</th>
<th>Sleeping sickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral</td>
<td>Cutaneous</td>
<td></td>
<td>T.b.g.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T.b.r.</td>
</tr>
</tbody>
</table>
Protozoans

<table>
<thead>
<tr>
<th>Disease</th>
<th>Leishmaniasis</th>
<th>Chagas’ Disease</th>
<th>Sleeping sickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visceral</td>
<td>Cutaneous</td>
<td>T.b.g.</td>
</tr>
<tr>
<td>Target</td>
<td>Liver, spleen, blood, bone marrow</td>
<td>Skin</td>
<td>Multiple</td>
</tr>
</tbody>
</table>
Protozoans

<table>
<thead>
<tr>
<th>Disease</th>
<th>Leishmaniasis</th>
<th>Chagas’ Disease</th>
<th>Sleeping sickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>Visceral</td>
<td>Cutaneous</td>
<td></td>
</tr>
<tr>
<td>Liver, spleen, blood, bone marrow</td>
<td>Skin</td>
<td>Multiple</td>
<td>Blood, lymph, spinal fluid, central nervous system</td>
</tr>
<tr>
<td>Transmission</td>
<td>Sandflies</td>
<td>Triatome bugs</td>
<td>Tsetse flies</td>
</tr>
</tbody>
</table>
Protozoans

<table>
<thead>
<tr>
<th>Disease</th>
<th>Leishmaniasis</th>
<th>Chagas’ Disease</th>
<th>Sleeping sickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visceral</td>
<td>Cutaneous</td>
<td>T.b.g.</td>
</tr>
<tr>
<td>Target</td>
<td>Liver, spleen, blood, bone marrow</td>
<td>Skin</td>
<td>Multiple</td>
</tr>
<tr>
<td>Transmission</td>
<td>Sandflies</td>
<td>Triatome bugs</td>
<td>Tsetse flies</td>
</tr>
<tr>
<td>Clinical manifestation/impairment</td>
<td>Decreased red blood cell count, fever, weight loss</td>
<td>Disfigure-ment</td>
<td>Chronic heart disease, megacolon, megaesophagus</td>
</tr>
</tbody>
</table>
Protozoans

<table>
<thead>
<tr>
<th>Disease</th>
<th>Leishmaniasis</th>
<th>Chagas’ Disease</th>
<th>Sleeping sickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visceral</td>
<td>Cutaneous</td>
<td>Chagas’ Disease</td>
</tr>
<tr>
<td>Target</td>
<td>Liver, spleen,</td>
<td>Skin</td>
<td>Multiple</td>
</tr>
<tr>
<td></td>
<td>blood, bone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>marrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td>Sandflies</td>
<td>Triatome bugs</td>
<td>Tsetse flies</td>
</tr>
<tr>
<td>Clinical</td>
<td>Decreased red blood cell count, fever, weight loss</td>
<td>Disfigurement</td>
<td>Chronic heart disease, megacolon, megaesophagus</td>
</tr>
<tr>
<td>manifestation/ impairment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>Amphotericin B,</td>
<td>Nifurtimox, Benznidazole, Pacemakers/transplant</td>
<td>Pentadmine, Suramine, Melarsoprol, Eflornithine</td>
</tr>
<tr>
<td></td>
<td>Pentamidine, Mitefosine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Protozoans

<table>
<thead>
<tr>
<th>Disease</th>
<th>Leishmaniasis</th>
<th>Chagas’ Disease</th>
<th>Sleeping sickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visceral</td>
<td>Cutaneous</td>
<td>T.b.g.</td>
</tr>
<tr>
<td>Target</td>
<td>Liver, spleen, blood, bone marrow</td>
<td>Skin</td>
<td>Multiple</td>
</tr>
<tr>
<td>Transmission</td>
<td>Sandflies</td>
<td>Triatome bugs</td>
<td>Tsetse flies</td>
</tr>
<tr>
<td>Clinical manifestation/impairment</td>
<td>Decreased red blood cell count, fever, weight loss</td>
<td>Disfigure-ment</td>
<td>Chronic heart disease, megacolon, megaesophagus</td>
</tr>
<tr>
<td>Treatment</td>
<td>Amphotericin B, Pentamidine, Mitefosine</td>
<td>Nifurtimox, Benznidazole, Pacemakers/transplant</td>
<td>Pentadmine, Suramine, Melarsoprol, Eflornithine</td>
</tr>
<tr>
<td>Control</td>
<td>Case detection & management, vector control</td>
<td>Case detection & management, vector control</td>
<td>Case detection & management</td>
</tr>
<tr>
<td>Disease</td>
<td>Buruli ulcer</td>
<td>Leprosy</td>
<td>Trachoma</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
</tr>
</tbody>
</table>

Bacterial
<table>
<thead>
<tr>
<th>Disease</th>
<th>Buruli ulcer</th>
<th>Leprosy</th>
<th>Trachoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Direct contact with discharge</td>
</tr>
</tbody>
</table>
Bacterial Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Buruli ulcer</th>
<th>Leprosy</th>
<th>Trachoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Direct contact with discharge</td>
</tr>
<tr>
<td>Clinical</td>
<td>Disfiguring skin infection, amputation</td>
<td>Tuberculoid</td>
<td>Lepromatous</td>
</tr>
<tr>
<td>manifestation/</td>
<td></td>
<td>Loss of sensation, skin</td>
<td>Disfigure-ment, bone invasion</td>
</tr>
<tr>
<td>impairment</td>
<td></td>
<td>lesions</td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bacterial Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Buruli ulcer</th>
<th>Leprosy</th>
<th>Trachoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Direct contact with discharge</td>
</tr>
<tr>
<td>Clinical manifestation/impairment</td>
<td>Disfiguring skin infection, amputation</td>
<td>Tuberculoid</td>
<td>Lepromatous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loss of sensation, skin lesions</td>
<td>Disfigure-ment, bone invasion</td>
</tr>
<tr>
<td>Treatment</td>
<td>Rifamprin, streptomycin, debridement/graft</td>
<td>Dapsone, rifamprin, clofazimime</td>
<td>Azithromycin</td>
</tr>
<tr>
<td>Disease</td>
<td>Buruli ulcer</td>
<td>Leprosy</td>
<td>Trachoma</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Transmission</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Direct contact with discharge</td>
</tr>
<tr>
<td>Clinical manifestation/impairment</td>
<td>Disfiguring skin infection, amputation</td>
<td>Tuberculoid</td>
<td>Lepromatous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loss of sensation, skin lesions</td>
<td>Irreversible visual impairment, blindness</td>
</tr>
<tr>
<td>Treatment</td>
<td>Rifamprin, streptomycin, debridement/graft</td>
<td>Dapsone, rifamprin, clofazimime</td>
<td>Azithromycin</td>
</tr>
<tr>
<td>Control</td>
<td>Amputation</td>
<td>Multidrug treatment</td>
<td>facial hygiene, surgery</td>
</tr>
</tbody>
</table>
Management and control

- Prevention/treatment exists for most NTDs
Management and control

- Prevention/treatment exists for most NTDs
 - cheap and effective chemical pharmaceuticals are available for some NTDs
Management and control

- Prevention/treatment exists for most NTDs
 - cheap and effective chemical pharmaceuticals are available for some NTDs
- Not available to the people at risk
Management and control

- Prevention/treatment exists for most NTDs
 - cheap and effective chemical pharmaceuticals are available for some NTDs
- Not available to the people at risk
 - access and distribution difficulties
Management and control

- Prevention/treatment exists for most NTDs
 - cheap and effective chemical pharmaceuticals are available for some NTDs
- Not available to the people at risk
 - access and distribution difficulties
- Lack of healthcare infrastructure
Management and control

- Prevention/treatment exists for most NTDs
 - cheap and effective chemical pharmaceuticals are available for some NTDs
- Not available to the people at risk
 - access and distribution difficulties
- Lack of healthcare infrastructure
 - lack of R&D for existing and novel pharmaceuticals
Management and control

• Prevention/treatment exists for most NTDs
 – cheap and effective chemical pharmaceuticals are available for some NTDs

• Not available to the people at risk
 – access and distribution difficulties

• Lack of healthcare infrastructure
 – lack of R&D for existing and novel pharmaceuticals
 – treatments may be toxic
Management and control

• Prevention/treatment exists for most NTDs
 – cheap and effective chemical pharmaceuticals are available for some NTDs
• Not available to the people at risk
 – access and distribution difficulties
• Lack of healthcare infrastructure
 – lack of R&D for existing and novel pharmaceuticals
 – treatments may be toxic
• Inadequate funding.
What can help

- Availability and access to health care
What can help

- Availability and access to health care
- Clean living conditions
What can help

• Availability and access to health care
• Clean living conditions
• Clean drinking water
What can help

• Availability and access to health care
• Clean living conditions
• Clean drinking water
• Adequate nutrition
What can help

- Availability and access to health care
- Clean living conditions
- Clean drinking water
- Adequate nutrition
- Education
What can help

• Availability and access to health care
• Clean living conditions
• Clean drinking water
• Adequate nutrition
• Education
• Gender equality
What can help

- Availability and access to health care
- Clean living conditions
- Clean drinking water
- Adequate nutrition
- Education
- Gender equality
- Non-discrimination
What can help

- Availability and access to health care
- Clean living conditions
- Clean drinking water
- Adequate nutrition
- Education
- Gender equality
- Non-discrimination
- Pharmaceutical research and development
What can help

- Availability and access to health care
- Clean living conditions
- Clean drinking water
- Adequate nutrition
- Education
- Gender equality
- Non-discrimination
- Pharmaceutical research and development
- Overhaul of drug patent systems
What can help

• Availability and access to health care
• Clean living conditions
• Clean drinking water
• Adequate nutrition
• Education
• Gender equality
• Non-discrimination
• Pharmaceutical research and development
• Overhaul of drug patent systems
• Identification/targeting of vulnerable groups.
Organisation

- Public-private partnerships have had considerable success
Organisation

- Public-private partnerships have had considerable success
- Eg Guinea worm disease has been almost entirely eradicated, despite no biomedical intervention

![Graph showing decline in Guinea worm eradication cases](Source: World Health Organization)
Organisation

- Public-private partnerships have had considerable success
- Eg Guinea worm disease has been almost entirely eradicated, despite no biomedical intervention
- These relationships need to be strengthened.
Mathematical models

• Have contributed to many advances in disease control and management
Mathematical models

- Have contributed to many advances in disease control and management
- Eg

\[
\begin{align*}
\frac{dS_{H}}{dt} &= -\alpha m S_{H} I_{V} + \nu I_{H} \\
\frac{dI_{H}}{dt} &= \alpha m S_{H} I_{V} - \nu I_{H} - \delta I_{H} \\
\frac{dY_{V}}{dt} &= \lambda_{V} N_{V}(t) - \rho \lambda_{V} N_{V}(t - \tau) - \mu_{V} Y_{V} \\
\frac{dS_{V}}{dt} &= \rho \lambda_{V} N_{V}(t - \tau) - a c S_{V} I_{H} - \mu_{V} S_{V} \\
\frac{dI_{V}}{dt} &= a c S_{V} I_{H} - \mu_{V} I_{V}
\end{align*}
\]
Mathematical models

- Have contributed to many advances in disease control and management
- Eg – malaria control
Mathematical models

- Have contributed to many advances in disease control and management
- Eg
 - malaria control
 - smallpox eradication
Mathematical models

• Have contributed to many advances in disease control and management
• Eg
 – malaria control
 – smallpox eradication
 – polio eradication

\[
\begin{align*}
\frac{dS_H}{dt} &= -abmS_H I_V + \nu I_H \\
\frac{dI_H}{dt} &= abmS_H I_V - \nu I_H - \delta I_H \\
\frac{dY_V}{dt} &= \lambda_V N_V(t) - \rho \lambda_V N_V(t - \tau) - \mu_V Y_V \\
\frac{dS_V}{dt} &= \rho \lambda_V N_V(t - \tau) - acS_V I_H - \mu_V S_V \\
\frac{dI_V}{dt} &= acS_V I_H - \mu_V I_V
\end{align*}
\]
Mathematical models

• Have contributed to many advances in disease control and management

• Eg
 – malaria control
 – smallpox eradication
 – polio eradication
 – vaccine design
Mathematical models

• Have contributed to many advances in disease control and management
 • Eg
 – malaria control
 – smallpox eradication
 – polio eradication
 – vaccine design
 – mosquito management
Mathematical models

- Have contributed to many advances in disease control and management
- Eg
 - malaria control
 - smallpox eradication
 - polio eradication
 - vaccine design
 - mosquito management
 - effects of climate change
Mathematical models

- Have contributed to many advances in disease control and management
 - Eg
 - malaria control
 - smallpox eradication
 - polio eradication
 - vaccine design
 - mosquito management
 - effects of climate change
 - emergency preparedness.
Advantages of models

• Can assess theoretical intervention methods in the absence of data
Advantages of models

• Can assess theoretical intervention methods in the absence of data
• Eg
Advantages of models

- Can assess theoretical intervention methods in the absence of data
- Eg
 - optimal drug administration schedule
Advantages of models

• Can assess theoretical intervention methods in the absence of data

• Eg
 – optimal drug administration schedule
 – optimal allocation of limited resources
Advantages of models

• Can assess theoretical intervention methods in the absence of data
• Eg
 – optimal drug administration schedule
 – optimal allocation of limited resources
 – vector control
Advantages of models

• Can assess theoretical intervention methods in the absence of data
• Eg
 – optimal drug administration schedule
 – optimal allocation of limited resources
 – vector control
• However, models depend critically on the assumptions used to construct them
Advantages of models

• Can assess theoretical intervention methods in the absence of data

• Eg
 – optimal drug administration schedule
 – optimal allocation of limited resources
 – vector control

• However, models depend critically on the assumptions used to construct them

• Modellers need to be clear about limitations
Advantages of models

• Can assess theoretical intervention methods in the absence of data

• Eg
 – optimal drug administration schedule
 – optimal allocation of limited resources
 – vector control

• However, models depend critically on the assumptions used to construct them

• Modellers need to be clear about limitations

• Policy analysts need to be better educated about the power of models.
Modelling

• Provides greater understanding of existing control strategies without costly experiments
Modelling

- Provides greater understanding of existing control strategies without costly experiments
- Can find control/eradication thresholds
Modelling

• Provides greater understanding of existing control strategies without costly experiments
• Can find control/eradication thresholds
• Limited by
Modelling

- Provides greater understanding of existing control strategies without costly experiments
- Can find control/eradication thresholds
- Limited by
 - lack of access to data
Modelling

• Provides greater understanding of existing control strategies without costly experiments
• Can find control/eradication thresholds
• Limited by
 – lack of access to data
 – disinterest by funding bodies
Modelling

• Provides greater understanding of existing control strategies without costly experiments
• Can find control/eradication thresholds
• Limited by
 – lack of access to data
 – disinterest by funding bodies
 – insufficient communication between policy analysts and modellers
Modelling

• Provides greater understanding of existing control strategies without costly experiments
• Can find control/eradication thresholds
• Limited by
 – lack of access to data
 – disinterest by funding bodies
 – insufficient communication between policy analysts and modellers
 – a reliance on a model’s conclusion that does not consider its assumptions.
NTD modelling so far...

• Only sleeping sickness has received any substantial theoretical modelling
NTD modelling so far...

- Only sleeping sickness has received any substantial theoretical modelling
- No models for the Buruli ulcer
NTD modelling so far...

- Only sleeping sickness has received any substantial theoretical modelling
- No models for the Buruli ulcer
- Only one for Guinea worm
NTD modelling so far...

• Only sleeping sickness has received any substantial theoretical modelling
• No models for the Buruli ulcer
• Only one for Guinea worm
• Models that do exist are usually limited to one lab and its collaborators per NTD
NTD modelling so far...

- Only sleeping sickness has received any substantial theoretical modelling
- No models for the Buruli ulcer
- Only one for Guinea worm
- Models that do exist are usually limited to one lab and its collaborators per NTD
- A diversity of voices is urgently needed.
A modelling success story

- The West African River Blindness Control Program was hailed as a success due to integrated modelling and control efforts
A modelling success story

• The West African River Blindness Control Program was hailed as a success due to integrated modelling and control efforts
• Modelling predicted that 14 years of vector control would reduce the risk to less than 1%
A modelling success story

- The West African River Blindness Control Program was hailed as a success due to integrated modelling and control efforts
- Modelling predicted that 14 years of vector control would reduce the risk to less than 1%
- Helped convince donors that control was feasible
A modelling success story

- The West African River Blindness Control Program was hailed as a success due to integrated modelling and control efforts
- Modelling predicted that 14 years of vector control would reduce the risk to less than 1%
- Helped convince donors that control was feasible
- Models were refined using subsequent data to include treatment
A modelling success story

• The West African River Blindness Control Program was hailed as a success due to integrated modelling and control efforts
• Modelling predicted that 14 years of vector control would reduce the risk to less than 1%
• Helped convince donors that control was feasible
• Models were refined using subsequent data to include treatment
• Modelling retained a prominent role in subsequent policy discussions.
Future directions for modelling

• More mathematical models are urgently needed
Future directions for modelling

• More mathematical models are urgently needed
• Existing control efforts need to be optimised
Future directions for modelling

• More mathematical models are urgently needed
• Existing control efforts need to be optimised
• Theoretical interventions need to be examined
Future directions for modelling

- More mathematical models are urgently needed
- Existing control efforts need to be optimised
- Theoretical interventions need to be examined
 - eg potential vaccines
Future directions for modelling

- More mathematical models are urgently needed
- Existing control efforts need to be optimised
- Theoretical interventions need to be examined
 - eg potential vaccines
- Spatial effects are crucial
Future directions for modelling

• More mathematical models are urgently needed
• Existing control efforts need to be optimised
• Theoretical interventions need to be examined
 – eg potential vaccines
• Spatial effects are crucial
• Urban/rural models
Future directions for modelling

• More mathematical models are urgently needed
• Existing control efforts need to be optimised
• Theoretical interventions need to be examined
 – eg potential vaccines
• Spatial effects are crucial
• Urban/rural models
• Fill in potential gaps in knowledge
Future directions for modelling

- More mathematical models are urgently needed
- Existing control efforts need to be optimised
- Theoretical interventions need to be examined
 - eg potential vaccines
- Spatial effects are crucial
- Urban/rural models
- Fill in potential gaps in knowledge
 - eg routes of transmission.
Specific problems

- Adapting malaria pesticide models for vector control in Chagas’ Disease
Specific problems

• Adapting malaria pesticide models for vector control in Chagas’ Disease
• Modelling access to resources across geographically difficult terrains
Specific problems

• Adapting malaria pesticide models for vector control in Chagas’ Disease

• Modelling access to resources across geographically difficult terrains
 – eg distance to hospitals, swamps, mountains, road networks
Specific problems

• Adapting malaria pesticide models for vector control in Chagas’ Disease

• Modelling access to resources across geographically difficult terrains
 – eg distance to hospitals, swamps, mountains, road networks

• Categorise the cost to developing economies of disabling NTDs
Specific problems

• Adapting malaria pesticide models for vector control in Chagas’ Disease

• Modelling access to resources across geographically difficult terrains
 – eg distance to hospitals, swamps, mountains, road networks

• Categorise the cost to developing economies of disabling NTDs

• Model NTD research funding
Specific problems

• Adapting malaria pesticide models for vector control in Chagas’ Disease

• Modelling access to resources across geographically difficult terrains
 – eg distance to hospitals, swamps, mountains, road networks

• Categorise the cost to developing economies of disabling NTDs

• Model NTD research funding

• Co-infection models
Specific problems

- Adapting malaria pesticide models for vector control in Chagas’ Disease
- Modelling access to resources across geographically difficult terrains
 - eg distance to hospitals, swamps, mountains, road networks
- Categorise the cost to developing economies of disabling NTDs
- Model NTD research funding
- Co-infection models
 - with other NTDs and the big three.
Summary

• NTDs require immediate attention
Summary

• NTDs require immediate attention
• NTDs extract an enormous price in
Summary

• NTDs require immediate attention
• NTDs extract an enormous price in
 – suffering
Summary

- NTDs require immediate attention
- NTDs extract an enormous price in
 - suffering
 - lack of economic development
Summary

• NTDs require immediate attention
• NTDs extract an enormous price in
 – suffering
 – lack of economic development
 – promotion of poverty
Summary

• NTDs require immediate attention
• NTDs extract an enormous price in
 – suffering
 – lack of economic development
 – promotion of poverty
• Mathematical models can be used to inform policy at minimal cost.
Conclusions

- NTDs are the low-hanging fruit of disease modelling
Conclusions

• NTDs are the low-hanging fruit of disease modelling

• A great many problems could be solved, relatively easily, by harnessing the power of mathematical modelling
Conclusions

• NTDs are the low-hanging fruit of disease modelling

• A great many problems could be solved, relatively easily, by harnessing the power of mathematical modelling

• The price — political and otherwise — for such a huge improvement in the quality of life for 1/6 of the world’s population is tiny.
Key References

http://mysite.science.uottawa.ca/rsmith43