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Abstract. In this paper, we revisit the Lorentz spaces L(p, q) for p > 1, q > 0

defined by G. G. Lorentz in the nineteen fifties and we show how the atomic
decomposition of the spaces L(p, 1) obtained by De Souza in 2010 can be

used to characterize the multiplication and composition operators on these

spaces. These characterizations, though obtained from a completely different
perspective, confirm the various results obtained by S. C. Arora, G. Datt and

S. Verma in different variants of the Lorentz Spaces.
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1. Introduction

In the early 1950s, G. G. Lorentz introduced the now famous Lorentz Spaces
L(p, q) in his papers [6] and [7] as a generalization of the Lp spaces. The parameters
p and q encode the information about the size of a function, that is, how tall and how
spread out a function is. The Lorentz spaces are quasi-Banach spaces in general
but the Lorentz quasi-norm of a function has better control over the size of the
function than the Lp norm, via the parameters p and q, making the spaces very
useful. We are mostly concerned with studying the multiplication and composition
operators on Lorentz spaces. This has been studied before by various authors in
particular by S. C. Arora, G. Datt and S. Verma in [2],[3],[4] and [5]. In this paper,
the results we obtain are in accordance with what these authors have found before.
We believe that the techniques and relative simplicity of our approach are worth
reporting to further enrich the topic. Our results, found on the boundary of the
unit disc due to the original focus by De Souza in [1], will show how one can use the
atomic characterization of the Lorentz space L(p, 1) in the study of multiplication
and composition operators in the spaces L(p, q).

2. Preliminaries

Let (X,µ) be a measure space.

Definition 2.1. Let f be a complex-valued function defined on X. The decreasing
rearrangement of f is the function f∗ defined on [0,∞) by

f∗(t) = inf{y > 0 : d(f, y) ≤ t} ,

where d(f, y) = µ({x : |f(x)| > y}) is the distribution of the function f .
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Definition 2.2. Given a measurable function f on (X,µ) and 0 < p, q ≤ ∞, define

‖f‖L(p,q) =


(
q

p

∫ ∞
0

(
t
1
p f∗(t)

)q dt
t

) 1
q

if q <∞,

sup
t>0

t
1
p f∗(t) if q =∞.

The set of all functions f with ‖f‖L(p,q) < ∞ is called the Lorentz Space with
indices p and q and denoted by L(p, q)(X,µ).

We now consider the measure µ on X to be finite. Let g : X → X be a
µ−measurable function such that µ(g−1(A)) ≤ Cµ(A) for a µ−measurable set
A ⊆ [0, 2π] and for an absolute constant C. Here g−1(A) refers to the pre-image of
the set A.

Remark 2.3. It is important to note that ‖g‖ = sup
µ(A) 6=0

µ(g−1(A))

µ(A)
is not a neces-

sarily a norm.

Definition 2.4. For a given function g, we define the multiplication operator Tg on
Lorentz spaces as Tg(f) = f · g and the composition operator Cg as Cg(f) = f ◦ g.

The following two results are used in our proofs. The first is a result of De
Souza [1] which gives an analytic characterization of L(p, 1). The second is the
Marcinkiewicz Interpolation Theorem (see [8]) which we state for completeness of
presentation.

Theorem 2.5 (De Souza [1]). A function f ∈ L(p, 1) for p > 1 if and only if

f(t) =
∑∞
n=1 cnχAn(t) with

∑∞
n=1 |cn|µ

1
p (An) < ∞, where is µ is measure on X

and An are µ-measurable sets in X. Moreover, ‖f‖L(p,1) ∼= inf
∑∞
n=1 |cn|µ

1
p (An),

where the infimum is taken over all possible representations of f .

Theorem 2.6 (Marcinkiewicz). Assume that for 0 < p0 6= p1 ≤ ∞, for all q > 0,
for all measurable subsets A of X, there are some constants 0 < M0,M1 <∞ such
that for a linear or quasi-linear operator Tg

a) ‖TgχA‖L(p0,∞) ≤M0µ
1
p0 (A)

b) ‖TgχA‖L(p1,∞) ≤M1µ
1
p1 (A).

Then there is some M > 0 such that ‖Tgf‖L(p,q) ≤ M‖f‖L(p,q) for 1
p = θ

p0
+

1−θ
p1
, 0 < θ < 1.

One implication of Theorem 2.5 is that it can be used to prove and justify
a theorem of Stein and Weiss [9]. That is, to show that linear operators T :
L(p, 1)→ B are bounded, where B is Banach space closed under absolute value and

satisfying ‖f‖B = ‖|f |‖B , all one needs to show is that ‖TχA‖B ≤Mµ
1
p (A), p >

1. Theorem 2.6 will be used to show that results valid on L(p, 1) are also valid on
L(p, q).

Definition 2.7. We denote by Mp
r the set of real-valued functions defined on

X = [0, 2π] such that

(1) ‖f‖Mp
r

= sup
x>0

(
r

px1/p

∫ x

0

(
f∗(t)t1/p

)r dt
t

)1/r

<∞,

where 1 ≤ p ≤ r <∞.
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We will show that the space Mp
r is equivalent to a weak Lk space for some k

that depends on p and r and ‖ · ‖Mp
r

is quasi-norm.

Lemma 2.8. ‖ · ‖Mp
r

a quasi-norm on Mp
r .

Proof. f∗ ≥ 0 by definition. This implies that ||f ||Mp
r
≥ 0. Moreover, ||f ||Mp

r
= 0

implies that for all 0 < x ≤ 2π,
∫ x
0

(
f∗(t)t

1
p
)r dt

t = 0. Hence we have f∗ =
0 µ-a.e, thus f = 0 since f is a representative of an equivalence class. Now let
k 6= 0 be a real constant, f ∈ Mp

r and x ∈ (0, 2π]. Noting (kf)∗ = |k|f∗, the
homogeneity condition ‖kf‖Mp

r
= |k|‖f‖Mp

r
follows trivially. Let f, g ∈ Mp

r . Since
(f + g)∗(t) ≤ f∗(t/2) + g∗(t/2), for any x ∈ (0, 2π], we have∫ x

0

(
(f + g)∗(t)t

1
p
)r dt
t
≤ 2r−1

(∫ x

0

(
f∗(t/2)t

1
p
)r dt
t

+

∫ x

0

(
g∗(t/2)t

1
p
)r dt
t

)
≤ 2

r
p+r−1

(∫ 1
2x

0

(
f∗(t)t

1
p
)r dt
t

+

∫ 1
2x

0

(
g∗(t)t

1
p
)r dt
t

)
Since (a+ b)1/r ≤ a1/r + b1/r for a, b > 0, we have

||f + g||Mp
r
≤ 2

1
p−

1
r+1(‖f‖Mp

r
+ ‖g‖Mp

r
), with 2

1
p−

1
r+1 > 1 for r, p > 1.

�

Theorem 2.9. Mp
r
∼= L(pr′,∞) where r, r′ ≥ 1, 1r + 1

r′ = 1

Proof. Suppose g ∈Mp
r . There is an absolute constant C such that for all x > 0,

C ≥
(

r

px1/p

∫ x

0

(
g∗(t)t1/p

)r dt
t

)1/r

≥
(

r

px1/p
(g∗(x))r

∫ x

0

t
r
p−1dt

)1/r

= x
1
pr′ g∗(x).

Thus supx>0 x
1
pr′ g∗(x) ≤ C implying that g ∈ L(pr′,∞).

Conversely, let g ∈ L(pr′,∞). Then there is an absolute constant C such that,

g∗(t) ≤ Ct−1/pr′ . This implies that (g ∗ (t)t1/p)r ≤ Crt1/p. Thus

sup
x>0

(
r

px1/p

∫ x

0

(
g∗(t)t1/p

)r dt
t

)1/r

≤ sup
x>0

(
Cr

r

px1/p

∫ x

0

t1/p
dt

t

)1/r

= Cr1/r

This implies that g ∈Mp
r . �

Remark 2.10. One can easily see from Theorem 2.9 that Mp
∞
∼= L(p,∞) and Mp

1
∼=

L∞. Moreover, ‖g‖Mp
1

= ‖g‖∞. To see this, note that

‖g‖Mp
1

= sup
x>0

(
1

px1/p

∫ x

0

g∗(t)t1/p
dt

t

)
≤ ‖g‖∞ sup

x>0

(
1

px1/p

∫ x

0

t1/p−1dt

)
= ‖g‖∞

and

‖g‖Mp
1
≥ g∗(x)

px1/p

∫ x

0

t1/p−1dt = g∗(x)

for all x since g∗ is decreasing. Taking the limit as x → 0, we see that ‖g‖Mp
1
≥

g∗(0) = ‖g‖∞.
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3. Main Results

3.1. Multiplication Operators.

Theorem 3.1 (Multiplication Operator on L(p, 1)). The multiplication operator
Tg : L(p, 1) → L(p′, 1) for p′ ≥ p > 1 is bounded if and only g ∈ L∞. Moreover,
‖Tg‖ = ‖g‖∞.

Proof. It is convenient to useMp
1 which is equivalent to L∞. Assume that ‖Tgf‖L(p′,1) ≤

C‖f‖L(p,1). Then for f = χ[0,x] where x ∈ (0, 2π],∫ 2π

0

(Tgχ[0,x])
∗(t)t

1
p′−1dt =

∫ x

0

g∗(t)t
1
p′−1dt ≤ C

∫ 2π

0

χ∗[0,x](t)t
1
p−1dt = Cpx

1
p .

Multiplying and dividing the integrand on the left by t
1
p−1, we get∫ x

0

g∗(t)t
1
p−1t

p−p′
pp′ dt ≤ Cpx

1
p .

Since t 7→ t
p−p′
pp′ is decreasing on [0, x] and 0 < x ≤ 2π, we have

1

px1/p

∫ x

0

g∗(t)t
1
p−1dt ≤ C(2π)

p−p′
pp′

Taking the supremum over all x > 0, we have that g ∈Mp
1 .

Assume that g ∈Mp
1 and x > 0. Since p′ > p we have

‖Tgχ[0,x]‖L(p′,1) =

∫ x

0

g∗(t)t
1
p′−1dt ≤

∫ x

0

g∗(t)t
1
p−1dt.

And so,

(2) ‖Tgχ[0,x]‖L(p′,1) ≤M‖χ[0,x]‖L(p,1) where M = sup
x>0

1

px1/p

∫ x

0

g∗(t)t
1
p−1dt .

Using the atomic decomposition of L(p, 1), we get

‖Tgf‖L(p′,1) ≤M ′‖f‖L(p,1) for some positive constant M ′.

To prove the second part of the theorem, first note that the expression in (2) gives
that ‖Tg‖ ≤ ‖g‖∞. Now take f = 1

x1/pχ[0,x]. We can easily see that ‖f‖L(p,1) = 1
and ‖Tgf‖L(p′,1) ≥ g∗(x) for x ∈ [0, 2π] since g∗ is decreasing. Now taking the
sup over ‖f‖L(p,1) ≤ 1 and the limit as x → 0 gives ‖Tg‖ ≥ ‖g‖∞. Thus ‖Tg‖ =
‖g‖∞. �

The following theorem, which is equivalent to Theorem 1.1 of [5], follows from
Theorems 2.6 and 3.1.

Theorem 3.2 (Multiplication Operator on L(p, q)). The multiplication operator
Tg : L(p, q)→ L(p, q) is bounded if and only if g ∈ L∞ for 1 < p ≤ ∞, 1 < q ≤ ∞.
Moreover, ‖Tg‖ = ‖g‖∞.

Remark 3.3. Since, by Theorem 2.9, Mp
1 ⊆ Mp

r for r > 1, the theorem implies
that if the multiplication operator Tg : L(p, q) → L(p, q) defined by Tgf = g · f is
bounded, then g ∈Mp

r for p, q > 1.
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Remark 3.4. Note that the previous theorem can be proved using the norm

‖f‖L(p,1) = sup
A⊆X
µ(A)6=0

1

µ
1
p (A)

∫ µ(A)

0

g∗(t)t
1
p−1dt

on L(p, 1). In fact this norm is the motivation for the definition of the spaces Mp
r .

We show in the next result in what Lorentz space to expect the product of two
functions from different Lorentz spaces.

Theorem 3.5. If f ∈ L(p1, q1) and g ∈ L(p2, q2) where 1 < p1, p2, q1, q2 < ∞,

then g · f ∈ L(r, s) where
1

r
=

1

p1
+

1

p2
,

1

s
=

1

q1
+

1

q2
.

Proof. Given 1 < p1, p2, q1, q2 <∞, assume f ∈ L(p1, q1) and g ∈ L(p2, q2). Let r, s
be such that 1/r = 1/p1+1/p2 and 1/s = 1/q1+1/q2. Since (f ·g)∗(t) ≤ f∗(t)g∗(t),
we have ∫ 2π

0

(
(f · g)∗(t)t

1
r

)s dt
t
≤
∫ 2π

0

(
f∗(t)t

1
p1

)s
·
(
g∗(t)t

1
p2

)s dt
t

Using Holder’s inequality on the RHS with s/q1 + s/q2 = 1 we have∫ 2π

0

(
(f · g)∗(t)t

1
r

)s dt
t
≤
(∫ 2π

0

(
f∗(t)t

1
p1

)q1 dt
t

) s
q1

·
(∫ 2π

0

(
g∗(t)t

1
q2

)q2 dt
t

) s
q2

Thus, we have

‖g · f‖L(r,s) ≤ ‖f‖L(p1,q1) · ‖g‖L(p2,q2) .

�

Theorem 3.6. If g ∈ Mp
r , then Tg : L(q, s) → L

(
pqr′

pr′+q , s
)

is bounded, where
1
r + 1

r′ = 1 and for s > 0 and p, q > 1.

Proof. Let g ∈Mp
r
∼= L(pr′,∞).

‖Tgf‖sL(k,s) ≤
∫ 2π

0

(
g∗(t) · f∗(t)t1/k

)s dt
t

=

∫ 2π

0

(
g∗(t)t1/pr

′
· f∗(t)t1/q

)s dt
t

if
1

k
=

1

q
+

1

qr′
.

Therefore

‖Tgf‖sL(k,s) ≤ sup
t>0

(
g∗(t)t1/pr

′
)s
·
∫ 2π

0

(
f∗(t)t1/q

)s dt
t
.

That is,

‖Tgf‖L(k,s) ≤ ‖g‖Mp
r
· ‖f‖L(q,s) , where k =

pr′q

pr′ + q
.

�

Noting that Mp
r
∼= L(pr′,∞), r′ = r/(r − 1), it is easy to see that Theorem 3.6

shows that the result of Theorem 3.5 extends to the case where q2 =∞.
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3.2. Composition Operators.

Theorem 3.7. The composition operator Cg : L(p, q) → L(p, q) is bounded if and
only if there is an absolute constant C such that

(3) µ(g−1(A)) ≤ Cµ(A)

for all µ−measurable sets A ⊆ [0, 2π] and for 1 < p ≤ ∞, 1 ≤ q ≤ ∞. Moreover,
‖Cg‖ = ‖g‖1/p.

Proof. We will prove this theorem for L(p, 1) and use the Interpolation Theorem
to conclude for L(p, q).

First assume that Cg : L(p, 1)→ L(p, 1) is bounded, that is, there is an absolute
constant C such that

(4) ‖Cgf‖L(p,1) ≤ C‖f‖L(p,1).
Let A be a µ−measurable set in [0, 2π] and let f = χA. Then (4) is equivalent to

‖CgχA‖L(p,1) ≤ C‖χA‖L(p,1) ⇔
1

p

∫ 2π

0

(
CgχA

)∗
(t)t

1
p−1dt ≤ C

p

∫ 2π

0

χ∗A(t)t
1
p−1dt

that is,

1

p

∫ 2π

0

(χA ◦ g)∗(t)t
1
p−1dt ≤ C

p

∫ 2π

0

χ[0,µ(A)](t)t
1
p−1dt

Since (χA ◦ g) = χg−1(A), then (χA ◦ g)∗ = χ[0,µ(g−1(A))]. Therefore the previous
inequality gives

1

p

∫ µ(g−1(A))

0

t
1
p−1dt ≤ C

p

∫ µ(A)

0

t
1
p−1dt.

And hence

µ(g−1(A)) ≤ Cpµ(A).

On the other hand, assume that there is some constant C > 0 such that
µ(g−1(A)) ≤ Cµ(A). Then

‖CgχA‖L(p,1) =
1

p

∫ 2π

0

(
χA ◦ g

)∗
(t)t

1
p−1dt =

1

p

∫ 2π

0

χ[0,µ(g−1(A))](t)t
1
p−1dt

=
(
µ(g−1(A))

) 1
p ≤ C

1
p
(
µ(A)

) 1
p .

Consequently,

‖CgχA‖L(p,1) ≤ C
1
p
(
µ(A)

) 1
p .

As a consequence of (2.5) or the result by Weiss and Stein in [9], we have

‖Cgf‖L(p,1) ≤ C
1
p ‖f‖L(p,1).

To prove the second part of the theorem, note that from the above, we have

‖Cg‖ = sup
‖f‖L(p,1)≤1

‖Cgf‖L(p,1)
‖f‖L(p,1)

≤ C1/p .

But inf{C : µ(g−1(A)) ≤ Cµ(A)} = ‖g‖. Thus ‖Cg‖ ≤ ‖g‖1/p. To obtain the other
inequality, let f = 1

[µ(A)]1/p
χA. This gives ‖f‖L(p,1) = 1 and

‖Cgf‖L(p,1) =

{
µ(g−1(A))

µ(A)

}1/p
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Thus

‖Cg‖ = sup
‖f‖L(p,1)≤1

‖Cgf‖L(p,1) ≥ sup
µ(A)6=0

{
µ(g−1(A))

µ(A)

}1/p

= ‖g‖1/p .

Now to show the result for L(p, q), note that the operator Cg is linear on L(p, q) and

that for p0 and p1 such that p0 < p < p1, we have ‖CgχA‖L(p0,1) ≤ M0

(
µ(A)

) 1
p0

and ‖CgχA‖L(p1,1) ≤ M1

(
µ(A)

) 1
p1 . Since L(pi, 1) ⊆ L(pi,∞), i = 0, 1, then for

some absolute constants C0 and C1 we have

‖CgχA‖L(p0,∞) ≤ C0

(
µ(A)

) 1
p0 .

and

‖CgχA‖L(p1,∞) ≤ C0

(
µ(A)

) 1
p1 .

Hence by the Interpolation Theorem we conclude that there is a constant C > 0
such that

‖Cgf‖L(p,q) ≤ C‖f‖L(p,q) for p0 < p < p1, for all q and for all f ∈ L(p, q).

�

Remark 3.8. The necessary and sufficient condition (3) makes intuitive sense if we
consider a variety of measures. Let us consider two of them.

(1) If µ is the Lebesgue measure and X happens to be an interval, then it
suffices to take g as the left multiplication by an absolute constant a to
achieve (3).

(2) If instead µ is the Haar measure, by taking X = (0,∞), the locally compact
topological group of nonzero real numbers with multiplication as operation,
then for any Borel set A ⊆ X, we have µ(A) =

∫
A
|t|−1dt. Hence (3)

is achieved for a measurable function g such that g−1(A) ⊆ A. The left
multiplication by the reciprocal of an absolute constant a would be enough.

Remark 3.9. The results in Theorems 3.6 and 3.7 are in accordance with the results
of S. C. Arora, G. Datt and S. Verma in [4] and [5]. In fact, even though they
obtained their results in a more general version of Lorentz spaces, their necessary
and sufficient conditions for boundedness of the multiplication and composition
operators are the same as ours.
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