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Disease Transmission

Transmission of disease is influenced by aggregation
patterns in the host population as well as its social

organization and behavioral traits (Anderson and May
1979, Hilker 2009, etc).

Disease incidence (new infection per unit time)

» Density-dependent (mass action) transmission assumes
that effective contact rate between susceptible and

infective individuals increases linearly with population
Size.

» Frequency- dependent (standard incidence or
proportional mixing) assumes the number of contacts
between susceptible and infective individuals is
independent of population size.



Allee Effect (Critical Depensation)

» The phenomenon that populations benefit from large
population sizes (due to high higher success rates in

finding mating partners, predator dilution or reduction in
inbreeding, etc).

» At low densities, populations experience positive density
dependence as they have difficulties in maintaining social
functioning, for example.

» If the Allee effect is strong (respectively, weak) the

population growth rate is negative (reduced) at low
densities.



Allee Effect In Real Populations

1.0 1 I

\\J- Saiga Antelopes (Saiga tatarica ): One of

l the world’s most rapidly declining
species, their numbers falling by 95% in
just 15 years.

e Polar Bear (Ursus maritimus): Polar
bears were listed as threatened in 2008
by Dirk Kempthorne, an Interior
Secretary under then-President George
W. Bush, because of an alarming loss of
summer sea ice in recent decades and
climate models indicating the trend will
continue.

o African Wild dog (Lycaon pictus)
* Island Fox (Urocyon littoralis)
e Atlantic cod (Gadus morhua)




Demographic Equation

P =ra-p)(p-uyp




Question

If a healthy host population at the disease-free
equilibrium is subject to an Allee effect, can a small
number of infected individuals with a fatal disease
drive the total population to extinction?



S| Epidemic Model
(Hilker et al., Am. Nat. 2009)

% r(1 —p)(p —u)p— a, } (2.4)

di —A+ (o0 —1)p — oil1,

A=oa+d+ ru.



Initial Conditions

In Model (2.4), we take initial conditions
0 <(0) <p(0) < 1. (3.1)
Theorem 3.1. The solution (p(t).i(t)) of (2.4) and (3.1) satisfies the inequal-

ities
0 < i(t) < p(t) forall t > 0.



Disease Threshold and R,

As in [16]. we introduce the critical host population density for disease es-
tablishment, the disease threshold,

(3.2)




Local Stability

Theorem 3.2. If Pr > 1, then (1,0) is locally asymptotically stable and
the disease goes extinct.



Persistence

Theorem 3.3. If

U<ug Prgl (3.3)
and
ax -l —u > 2" Yy p (3.4)
o A B

then for any solution of Model (2.4) with p(0) > u + ¢ for some =9 > 0, there
exists a 0 > 0 depending only on =g and a time T = T (2¢,i(0)) such that

i(t) > 4 for all t > T(=0,1(0)). (3.5)
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Extinction

Theorem 3.4. If 0 < Pr <min{l. u} and

alc—1)

max {7‘(1 —y)(y —u)y —

u<y<1

ol PT)} <c (38

for some sufficiently small £ > 0. then every solution of Model (2.4) with
1 —0 <p(0) <1 for any § > 0 sufficiently small and i(0) > 0 satisfies:

p(t) — 0 and i(t) — 0 as t — .

Condition (3.8) holds whenever the p — nullcline, I',, 1s below the i —
nullcline, I';, of Model (2.4) (see Figure 2).
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Stability of Endemic Equilibrium

Let

d .
F(z) = = [r(l —z)(x —u)x] .
Theorem 7.1. If 0 < u < Pr <1, then Model (2.4) has a unique stationary
point

(ﬁ,g ) with Pr < p<1, i >0,
and (ﬁ,g ) s locally asymptotically stable if

F(p) < (¢ —-1)(@— Pr). (7.1)



Conclusion (single patch)

o Studies of systems that exhibit the Allee
mechanism seem to be focused on the role of the
Allee effect at small population densities.

e |In combination with a fatal infectious disease, we
prove that a small perturbation to the disease-
free equilibrium can lead to the catastrophic
extinction of the host population.

* We prove that when there is an Allee effect in the
host demographics and a fatal disease invades
the host population, then the Allee threshold is
effectively increased (Deredec and Couchamp,
2006).



S| Epidemic Patch Model

Spatial heterogeneity, habitat connectivity and
rates of movement play important roles in disease
persistent and extinction (Allen et al. 2009, Yakubu
and Castillo-Chavez 2002, Lloyd and May 2001).



S| Model In Patchy Environment

: ="
SRS

= 71— p) (P —u5)ps — 05 + 0 D pealLonph — Ligps), | (g 4
= [—Aj+(o;—Dp; — 0,414 + 8 rea(Ljrtr — Lijis),

where on each patch j € Q, A; = o; +d; +rju;, 0 is the non-negative diffusion
coefficient for the total population, the Allee threshold u; € (0,1) and L; ;. is the
degree of movement from patch k to patch 7. We make the following additional
assumptions:

(A1) The matrix L = (Ljz) is nonnegative and irreducible.

This means that L, > 0 for all j,k € Q, and that for any j. £ € Q there
exists a sequence ji.J2..... J; such that

Ljj, >0, Lj 5, >0, ..., Ls 15 >0, Ly > 0.

We shall also impose throughout this paper the initial conditions:

(A2)

0<4;(0)<p;j(0)<1 forall jEQ. (2.2)



Initial Conditions

—

Theorem 3.1. The solution (ﬁ(t) 0 (t)) of (2.1) satisfies the inequalities

0<i;(t) <pi(t)<Iforalt>0and jecl (8:1)



Disease-Free Equilibrium Points

The szet of disease-free equilibrium points of the single patch model without
diffusion. Model (2.3). are

(poj-toj) = (0,0), (p1j.21;) = (u;,0) and (pa2;.22;) = (1.0).

The corresponding disease-free equilibrium (DFE) points of the diffusion-linked
n — patch model. Model (2.1). are

0 —(0.0.0.0.....0.0).

(E' 0) = (21, Ug, ...ty 0.0 ... 0)

and

(T_ﬁ) —(1,1,..,1,0.0,..,0).

In Model (2.3). (pp;.20;) 15 locally asymptotically stable. Furthermore, any
solution of Model (2.3) with p;(0) < u; satisfies:

pi(t) | 0ast — oc.

Consequently. under weak diffusion in Model (2.1). 0 is locally asymptotically
stable and any solution with p;(0) < u; for each patch 3 € 2 satisfies:

(01 (2), Pa(t). -, P (t), 81(2), 82 (2), ..., 1 (t)) — O as t — 2.



Population Extinction

Theorem 4.1 (Population Extinction). [n Model (2.1). assume that

0<p;(0) <u= min {u;} forall j€Q.

1<:<n

Then the solution

(F®). 7))

satisfies
pj(t) <u—e forallt >0 and jecf,

where = > 0 is sufficiently small. Moreover,
> py(t) < Ce e
Jei2

where C' and ~ are positive constants. Hence,

S S

(?(f]-?(t_]) — 0 as t — oc.



Population Extinction:
Single Patch

Using the single patch model with no diffusion, Model (2.3). Friedman and
Yakubu showed that population extinction is possible on each local patch ; € Q2
whenever p;(0) > u;. In particular. Friedman and Yakubu proved that in Model

(2.3), if

o;: —1 1
‘P. = =i J :} 1. {:l
-0, f’lj 'R{JJ' Ly
and
exs(os —1) 1
(1 — s el AEPAE o s
ujl;};;_i_l {T‘J'{ Yy )y — u5)Y; 5 (Y; Ro; ]} < gj

for some sufficiently small =; > 0. then every solution of Model (2.3) with
p;(0) =1 and 7;(0) > 0 satisfies:

p;(t) — 0and i;(t) — 0 as t — .



R, in Patchy Environment

To obtain a similar population extinction result for the diffusion-linked n—patch
model, we let

tor each j. k € Q.

Hence, 'R,gj < Rg; (that is, ‘R.gj > 1 implies Rg; > 1 and Rp; < 1 implies
jo < 1) and lims_.g 'F.',gj = Ryp;. First, we obtain a local stability result.

Theorem 4.2, If _
'Rﬂj > 1 for all j € £,

then the DFE, (T H) . 1s unstable.



The Jacobian matrix evaluated at {TEJ 13

—riil —uy)— 0L dLq2 -0 o
sty JLH —ra(l —ua) — {ng 1] —i3
T 0 0 — A1+ 01 —1—06Ln 3L12
0 0 l'j.lr_-.g] —_4.2 Ty 1-— ‘5'['12
For j £ {1.2}. let my = —r;(1 —uj) — 4L and n; = —4; + 05 — 1 — JL.

where L,y = Ly = L. Then the eigenvalues of J[T are the roots of the

o)
characteristic equations
2 F. % i a
AT — Mmy +me) +Fmyme — (0L =0
and

2 ( T2
AT = Any+ny)+nyn, —{ol)" =0,

The largest eigenvalue is

(ny <+a) + 1,':'911 —?13_|3+-I|'<3L_II
2

which is easily seen to be larger than

max{—4; +o; —1).
g j+a;

Hence. if we dencte by R the basic reproduction number for the migration-
linked Wlodel (2.1}, then

Ry >1if max Rgj > 1. {4.5)

j=1.2



o

When the number of patches is n, then the eigenvalues of J,+

g are the
roots of the characteristic equations. I
| m1—A 6L 6Lz -+ O0Lin |
R dL3s T — A [y . | _b
Jl]n wj.[,gn Tin — A |
and
ny—A bdLyy O0Lyg -+ 0Ly,
S 0Ly ma—A 0Lan 3
ij‘ln L.'l__[.gg-l Mg — A
where for each j € 0. my = —rj(1—u;) — 83 g Legjand ny = —A;+0;—1—

& Eke!‘. Lgj. The zeros of M are all negative, but the zeros of V,

Aigy Agis Mg

may be positive or negative or zero. If

maxd; 4 < 0then B; < 1,
j=n .
and if

maxA; ; > 0 then Ry > 1.
jen

When & is small, one can easily compute that

max \; 5 = |}1§a!;\ {Ma+0L;}+0(57),

jsn
where \jg=—A;+o; —land L; =3, o Ly;. Henee,
Rs > 1if maxRg =1 (4.6)
jen

This means that § —migration increases the chance of "instability". For n = 2.

(4.6) holds for all § = 0 (see (1.5)). and we conjecture that (4.6) holds for all
§ > 0 and arbitrary n £ {1.2.3. ..}



Population Extinction

Theorem 4.3 (Host Population Extinction). [n Model (2.1). assume
that
K =1,

and, forany l € Q, if u<y <land 0<y; <1 forall j €Q, j#I, then

2. {“”’j(l — Y)Y —u5)Y; — %05 — 1) (¥ — Prj)} <0 (4.7)

jen i
Then every solution of Model (2.1),

(ﬁft): T(t)) 0 ast—s 00,

provided (F(OJ ?(O)) does not lie on either the (local) stable or center mani-
folds of (Tﬁ)



Disease-Free Sytem

We first consider the disease-free model (2.3). That is,

dp ; .
— =1;(1—p;)(p; — wy)p; +9 > (Ljkpr — Lijps)-

k=)



Host Population Persistence
(No Infected)

Theorem 5.1 (Population Persistence). In Model (5.1). assume
u < pi(0) <1 forall j€

Then the model solution
(p1(t),p2(2), ... pn(2))

satisfies
U+ < p;(t) forallt >0 and j €,

where & > 0 is suffictently small and T = maxy<;<n {u;}.
Hence, in the absence of the disease, the diffusion-linked population persists

uniformly whenever each initial local patch population exceeds the biggest Allee
threshold.



Disease Persistence

By Theorem 5.2. each Patch ;7 € Q) is either low-risk or high-risk at high
densities whenever ‘Rs > 1 and condition (5.3) holds. In the next theorem. to
prove persistence of the infected individuals, we assume in addition to (3.3)
that

(6; — 1@ > A; for all 5 € Q. (5.4)

Theorem 5.3 (Disease Persistence). [n Model (2.1). if

Rs >1,

T+e<p;(0)<1foral jeQ,

Zm‘m %0

[ef2

and conditions (5.3), (5.4) are satisfied. then the solution

satisfies
Z 11(t) = (constant) > 0 for all t = 0,

e



S| Epidemic PDE Model

Instead of the discrete set of compartments,
(7o), 7®).

we now consider a continuum
(pla.t).2(z, 1))

where x varies in a bounded domain G in B™ with boundary dG. In this case,
the movement among compartments 15 replaced by the dispersion operator

where & = (1. %5, ... 2, ). Thus, we have

%{f—&p = r(x)(l-p)p—ulz))p—alx) (6.1)
S—ANi = [FAlz)+(olz)—1)p—olz)]e [

where p =p(z.t). 1 =1la. t), Alz) =alz) +d(z)+r(z)u(z) and 0 < u(z) < 1.
We assume no-flux houndary conditions. That 15

dp :
e e e s ]—' - 9
e =ns Oon 8G. t >0, (6.2)

where v 15 the outward normal. and prescribes the initial conditions

p(x.0) = po(x), 2(xz,0) = 2o(x) for x € = (6.3)



S| PDE Model Assumptions

e We assume no-flux boundary conditions. That 1s.

dp . a9
a=%=0{m OG. t > 0. (6.2)

where 17 15 the outward normal. and prescribes the nitial conditions

p(z,0) = po(z). 2(x.0) =1g(z) for x € G. (6.3)

e We assume that
0 < ip(x) < po(x) <1forzeG, (6.4)

that the functions
r. u, o, d, o, 19 and pp

are in a Hélder class C®(G). that G is in €27 _and that

8?0_350_ :
E—E—OOH BG_

e Then by standard theory of parabelic PDEs. there exists a unique solution
of (6.1)-(6.3) for all £ = 0 with

2 = 2
Dyp. Dip, Dyt and D2
a—Holder continuous in x and (a/2) —Holder continuous in ¢, uniformly

in G x [to,T] for any 0 < to < T < o¢, and p, i are continuous for x £ G
and t = 0.



SI PDE: Initial Conditions

Theorem 6.1. [f
0 <ip(z) <polz) <1 forzeG
then the solution (p(x.t), 1(x.t)) of (6.1) satisfies the inequalities

0<i(z,t) <plz,t) <1l forzeG.,t>0.



S| PDE: Population Extinction

Theorem 6.2 (Host Population Extinction). [n Model (6 1) assume
that

0 < polx) <uforal z€G.
Then the solution
(p{x.t),2(x. 1))
satisfies
ple.t) <u—= forall t =0 and some = > 0,
and .
plz.t) < Ce " forall x €G andt > 0. (6.6)

where C' and ~ are positive constants. Hence.

(plx.t), ez, t) — 0 ast— o



SI PDE: DFE

We denote the DFE of (6.1). the solution of
plz.t)=1and t(z, ) =0

by (1.0). We consider the case when (1.0) 15 not stable 1n the following sense.

There exists a neighborhood 17, of (1,0) defined by

1—29<plz)< 1l 0<ifz) <z forall =G} (6.7)

|7
tor some small z5 > 0 and nitial condition (pg(x).20(x)) € V;, such that
(po.20) € Vs for some small § > 29, and (p(z,t),2(x.t)) € V., ¥t > 0. (6.8)

The next theorem 1s similar to Theorem 4.3. As in the remark following the
statement of Theorem 4.3, we shall assume that

a(x) alx)
A2) and (@) (6.9)

are sufficiently large and. in particular.

Alx
Pr(z) = A ) (6.10)
glx)—1



S| PDE: Population Extinction

Theorem 6.3 (Host Population Extinction). Under conditions (6.9)
and (6.10). if
(po.tg) is as in (6.8)
Then the solution of (6.1).
(plz.1),2z_1)).,

satisfies

max pla.t) — 0as t — oo
TEG



S| PDE: Disease-Free System

Theorem 6.4 (Population Persistence). In Model (6.1), if ig(x) =0
and .
io(z) =0, po(x) >U+e for all x €G and = > 0

then the model solution
(p(z,1),i(x,t))
satisfies _
u+e<plx,t) forall z € G, t>0.



S| PDE: Population Persistence

Theorem 6.5 (Host Population Persistence). [n Model (6.1).
io(x) > 0, po(z) >U+e for all x €G, = > 0, (6.13)
and

min [r(z)(1 —y)(y —ulx))y — alz)y] =), (6.14)

relE

y—u—+=
Then the model solution
(ple.t).2(2. 1))

satisfies .
U+z<pla.t) foralze G, t>0.



S| PDE: Disease Extinction

In order to establish persistence ot the infected population. we introduce the

funetion
I(t) E/i[;r_t_]dx
=

and the condition

(o(z) — 17T > A(z) forall z < G. (6.15)

Theorem 6.6 (Disease Persistence). In Model (6.1). under conditions
(6.13)-(6.13), if
I(0) = 0.

then

I(t) = z¢ for all t sufficiently large and some positive constant =g.



Single Patch S| Model
(A. Friedman and A.-A. Yakubu, JBD in press

11)

 |f a healthy stable host
population at the disease-free
equilibrium is subject to an Allee
- effect, can a small number of
: iInfected individuals with a fatal

disease cause the host
population to go extinct?

0 01 02 03 04 05 06 07 0B 08 1
p



High Risk In All Patches
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High Risk Vrs Low Risk Patches
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Conclusion

» We used mathematical theorems to link Allee effect in
host demographics, spatial heterogeneity, habitat
connectivity, and rates of movement to host population
persistence or extinction.

> At high densities, migration from a low (respectively, high)
risk patch to a high (respectively, low) risk patch can save
an endangered species from local patch extinction.

» At high densities, migration of the total population
between high risk patches leads to the extinction of the
total population.



Thank You!




