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Demographic EquationDemographic Equation

T(n):  population size at generation n

f:    models nonlinear birth or recruitment process

γ:    constant probability of surviving

T(n+1)=f(T(n))+ γ T(n) (1)



Examples of Demography Examples of Demography 

1) Constant rate Λ: f(T(n))=Λ

2) Constant per-capita recruitment rate µ:  f(T(n))= µT(n)

3) Density dependent per-capita growth rate:  f(T(n))=T(n)g(T(n)),

where the per-capita growth function g: [0, ∞ )�(0, ∞ )  is a 

strictly decreasing positive, smooth  function with 

limT�∞ g(T)<1.



Demographic EquationDemographic Equation

T(n):  population size at generation n

f:    models nonlinear birth or recruitment process

γ:    constant probability of surviving

T(n+1)=f(T(n))+ γ T(n) (1)



Asymptotically Bounded GrowthAsymptotically Bounded Growth

Equation (1) with constant rate Λ and initial condition 

T0  gives rise to the following 

T(n+1)= γT(n)+Λ, T(0)=T0

Since 

T(1)=γ T0 +Λ,

T(2)=γ2 T0 +(γ+1) Λ,

T(3)=γ3 T0 +(γ2+γ+1) Λ,   ...,

T(n)=γn T0 +(γn-1+γn-2+...+γ+1) Λ



Asymptotically Bounded GrowthAsymptotically Bounded Growth

The solution to Model (1) is given by the population sequence  

{T(n)}n� 0

where 

0<γ <1   imply that 

• T(n) �Λ/(1- γ)  as   n � ∞ .

• T∞= Λ/(1- γ) 
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Geometric GrowthGeometric Growth

If new recruits arrive at the positive per-capita rate  µ per

generation, that is, if  f(T(n))=µT(n)  then 

T(n+1)=(µ +γ )T(n), 

that is, 

T(n)=(µ +γ)nT(0).

The demographic basic reproductive number is  Rd=µ/(1-γ)

Rd ,  a dimensionless quantity, gives the average number of

descendants produced by a small pioneer population (T(0)) over its

life-time.

Rd>1 implies that the population invades at a geometric rate.

Rd<1 leads to extinction.



Density Dependent Density Dependent 
Per Capita Growth RatePer Capita Growth Rate

If 

f(T(n))=T(n)g(T(n)), 

then 

T(n+1)=T(n)g(T(n))+γT(n).

That is, 

T(n+1)=T(n)(g(T(n))+γ).

Demographic basic reproductive number is 

Rd=g(0)/(1-γ)



BevertonBeverton--Holt ModelHolt Model



Example 1Example 1



Ricker ModelRicker Model



Example 2Example 2



SS--II--S ModelS Model



Epidemic ModelEpidemic Model

At generation n,

• S(n):  population of susceptible;

• I(n): population of infected;

• T(n) ≡ S(n)+I(n) :  total population size;

• T∞ ≡ limn� ∞ T(n):  the demographic steady state;  

• f: [0, ∞)�[0, ∞):  denotes the recruitment function;

• γ:  survival rate;

• 1-σ: recovery rate.

• σ probability of surviving from the disease.



Infection ProcessInfection Process

Susceptible individuals become infected with probability 1-G 

(remain susceptible with probability G).

g(y) ≡ G(yα (y)) where the transmission function α ≡ α(y) models 

the impact of prevalence (y ≡ I/T) on G.

In general, G:[0, ∞ )�[0,1] is a monotone concave probability 

function with G(0)=1; G’(x)<0 and G’’(x) ≥ 0 for all x in [0, ∞ ).

α :[0,1]�[0, ∞ ) is a smooth function.



Model AssumptionsModel Assumptions

• When σ =1, the disease is fatal (the nonlinear population dynamics  

are fixed).

• The model assumes (implicitly) a sequential process. At the  end of   

each generation, a fraction (1-γ) of each class is removed (death); 

susceptible then become infected with probability (1-G) and,  

independently, surviving infectives recover with probability (1-σ).



SS--II--S Epidemic ModelS Epidemic Model

S(n+1)  =  f(T(n))+γ g(y(n))S(n)+γ(1-σ)I(n), 

I(n+1)  =  γ (1-g(y(n)))S(n)+γσI(n).



QuestionsQuestions

• What is relationship between model parameters and disease 

persistence or extinction?

• Can the infective population persist on a cyclic (non-

equilibrium) attractor? 

• What is the relationship between the population and 

epidemic attractors?



Asymptotically Bounded GrowthAsymptotically Bounded Growth

Assume that the total population has reached the positive steady

state T∞ and, 

set T(n) ≡ T ∞, x(n)=S(n)/T ∞ and y(n)=I(n)/T ∞ in System (2). 

The resulting one-dimensional autonomous ``limiting system'' for 

y(n), is therefore given by 

y(n+1)  = γ (1-g(y(n)))(1-y(n))+γ σ y(n).  (3)



Limiting SystemLimiting System



Global StabilityGlobal Stability



Basic Reproductive NumberBasic Reproductive Number

The basic reproductive number, R0 , determines the asymptotic  

behavior of System (3). 

gives the average number of secondary infections generated by a 

small pioneer population of infected (assumed infectious) 

individuals over their life-time, whenever the disease is not fatal.
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Global Stability (1)Global Stability (1)

Let  α ≡α0 be a positive constant.

a) If R0<1, then the solutions (x(n),y(n)) of System (3) approach the  

disease free equilibrium, (1,0), as n�∞ .

b) If R0>1,then the solutions  (x(n),y(n)) of System (3) approach a     

unique positive endemic equilibrium,  (1-ŷ, ŷ) in (0, ∞ )×(0, ∞ ), 

as n �∞



Global Stability (2)Global Stability (2)

Let  α(y) +y α’(y) >0 and  2α’(y) +y α’’(y) ≤0

a) If R0<1, then the solutions (x(n),y(n)) of System (3) approach the 
disease free equilibrium, (1,0), as n�∞.

b) If R0>1,then the solutions  (x(n),y(n)) of System (3) approach a 
unique positive endemic equilibrium,  (1-ŷ, ŷ) in (0, ∞)×(0, ∞), 

as n�∞



Geometric Growth(1)Geometric Growth(1)

x(n)=S(n)/T(n) and y(n)=I(n)/T(n)  reduces System (2) with 
f(T(n))=µT(n):

x(n+1)=µ/(µ+γ)+ γ/(µ+γ) x(n)g(y(n))+ γ/(µ+γ)(1-σ)y(n),

y(n+1)= γ/(µ+γ) x(n)(1-g(y(n)))+ γ/(µ+γ) σ y(n).

x(n)+y(n)=1



Geometric Growth(2)Geometric Growth(2)

x(n)=1-y(n) reduces  the System to a one-dimensional system 
of y(n):

y(n+1)= γ/(µ+γ)  (1-y(n))(1-g(y(n)))+ γ/(µ+γ) σ y(n).
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Geometric GrowthGeometric Growth



Global Stability (1)Global Stability (1)

Let  α(y) +y α’(y) >0 and  2α’(y) +y α’’(y) ≤0 . Then,

(a)  If  Rd<1, the total population, T ≡ S+I, decreases to zero at 

a geometric rate; Rd>1 implies that the total population 

increases at a geometric rate;  Rd =1 implies that the total 

population remains fixed at its initial value.

(b)  If Rd >1 and R0<1, then the proportion  I/T of invectives in 

the total population tends to 0 as n�∞, while the proportion  

S/T of susceptible in the total population tends to 1 as 

n�∞.Hence, (S/T,I/T) tends to the disease-free equilibrium  

(1,0), where S is increasing at the same geometric rate as T.



Global Stability (2)Global Stability (2)

(c) If Rd >1 and R0>1, then the proportion  I/T of invectives in the total 

population tends to a positive number Ī/T as n approaches infinity,  and  

the proportion  S/T of susceptible in the total population tends to  a 

positive number (1- Ī/T) as n approaches infinity. Hence, (S/T,I/T) tends to 

an endemic. I, S, and T  are increasing at the same geometric rate.

(d) If Rd <1 and R0<1, then the proportion  I/T of invectives in the total 

population tends to 0 as n approaches infinity,  while  the proportion  S/T 

of susceptible in the total population tends to 1 as n approaches infinity. 

Hence, (S/T,I/T) tends to disease-free equilibrium.  Hence  S is increasing 

to zero  at the same geometric rate as T.

(c) If Rd <1 and R0>1, then the proportion  I/T of invectives in the total 

population tends to a positive number Ī/T as n approaches infinity,  and  

the proportion  S/T of susceptible in the total population tends to  a 

positive number (1- Ī/T) as n approaches infinity. Hence, (S/T,I/T) tends to 

an endemic. I, S, and T  are increasing at the same geometric rate.



Illustrative Example (1)Illustrative Example (1)

• e-d=γ, e-αI(n)/T(n) =G(αI(n)/T(n) ) and e-β=σ.

• f(T(n))=µT(n) implies that T(n+1)= (e-d+µ)T(n) and

Rd=µ/(1- e-d)

• R0=α2/(1+µe-d- e-β)

• β=0.1, d=ln2 and µ=0.1 are fixed and the transmission 

coefficient α is varied.



Illustrative Example (2)Illustrative Example (2)



QuestionsQuestions

• Can complex demographic dynamics drive disease 

dynamics?

• Are simple discrete-time epidemic models bistable?



KK--Cycle AttractorsCycle Attractors

• S- is on a hyperbolic attracting k-cycle whenever the T- is on a

hyperbolic attracting k-cycle and α =0.

• I- is on a positive k-cycle whenever both the T- and S- are on

different k-cycles.

• Assume that {ž0(0), ž1(0), ..., ž k-1(0)} is a hyperbolic k-cycle for

(SIS) when  α =0. Then, for α close enough to 0, 

there is a curve of  k-cycles for (SIS) given by 

{ž0(α), ž1(α), ..., ž k-1(α)}. This k-cycle is an attractor 

for (SIS) if {ž0(0), ž1(0), ..., ž k-1(0)} is a hyperbolic 

attracting k-cycle when α =0.



SS--Dynamics Versus IDynamics Versus I--DynamicsDynamics



SS--EE--II--S MODELS MODEL



SS--II--S Epidemic Models With DelayS Epidemic Models With Delay

S(t+1)=f(T(t-k))+γS(t)G(αI(t)/T(t))+γI(t)(1-σ),

I(t+1)=γ(1-G(αI(t)/T(t)))S(t)+γ σ I(t)

Demographic equation becomes

T(t+1)=f(T(t-k))+ γT(t)



Geometric GrowthGeometric Growth
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, a dimensionless quantity, gives the average number of 

susceptible produced by a (typically small) pioneer population 

(T(0)) over its life-time. The kth-root accounts for the fact that a 

T(0) descendant must survive k-generations before it joins the 

population of susceptible.
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We assume that the T-population has been around long enough 

(prior to disease invasion) for T(t) = T(0)(λ*)t, where  λ*> | λ | . 

Rescaling reduces the System with new recruits under geometric 

growth (T(t) = T(0)(λ*)t)  to the following one-dimensional 

autonomous ``system'' for y(t): 

y(t+1)=(γ/λ*)(1-y(t))(1-G(αy(t)))+(γσ/λ*) y(t)
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TT--Dynamics (1)Dynamics (1)

If new births or new recruits are governed by 

f(T(n-k))=T(n-k)exp (r-T(n-k))

then the presence of delay increases the level of dynamic 

complexity in the  T- dynamics. We can now keep the 

T- dynamics on a selected Hopf invariant closed curve or 

a strange (chaotic) attractor.

The equation  

T(n+1)=T(n-1)exp (r-T(n-1))+γT(n)

has a positive equilibrium that is capable of undergoing a 

discrete-time  Hopf bifurcation.



TT--Dynamics (2)Dynamics (2)



TT--Dynamics (3)Dynamics (3)



Bistability in TBistability in T--Dynamics (1)Dynamics (1)

• T(t+1)=f(T(t-k),T(t-(k-1)),…,T(t)), + γT(t)

• The equation 

• T(t+1)=T(t)exp{r-cT(t-1)-T(t)} + γT(t)

• Supports multiple attractors when c=0.9, r=2.3, 

• k=1,  and γ=0.01



Bistability in TBistability in T--Dynamics (2)Dynamics (2)



Dynamical Systems TheoryDynamical Systems Theory

• Equilibrium Dynamics, Oscillatory Dynamics, Stability      

Concepts, etc

• Attractors and repellors (Chaotic attractors)

• Basins of Attraction

• Bifurcation Theory (Hopf, Period-doubling and saddle-node   

bifurcations)

• Perturbation Theory (Structural Stability)



ConclusionsConclusions

• Complex internally driven population dynamics can  

``drive'' disease dynamics. Hence, disease is likely to     

have   a dramatic impact on local life-history evolution even 

when it is non-fatal.

• Contact rate and dispersal play key roles on diseases 

survival and  epidemic severity.

• Age-structure expands the class of attractors where 

epidemics can   live.



DiscussionDiscussion

• Developing more realistic epidemic processes and adding 

the impact of disease induced mortality leads to a class of 

challenging nonlinear systems

• Role of dispersal, population dynamics, and disease on 

life history evolution

• Connections with real data.



SIS Epidemic Model With SIS Epidemic Model With 

DiseaseDisease--Induced DeathInduced Death
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Model AssumptionsModel Assumptions

•• Disease increases mortality but does not affect fecundity;Disease increases mortality but does not affect fecundity;

•• No acquired immunity;No acquired immunity;

•• No latent period (or latent period is very short);No latent period (or latent period is very short);

•• Transmission is frequency dependent rather than density Transmission is frequency dependent rather than density 

dependent.dependent.



Deterministic SIS ModelDeterministic SIS Model

• Our model is a deterministic SIS epidemic model and has no 
“probability” of  transmission. The assumption of 
deterministic dynamics is valid in a large population, where 
stochasticity is unimportant. 

• This assumption places a constraint on the applicability of our 
model.   For example, stochastic transmission (including a 
Poisson process) in a small population (close to extinction) 
would not be described by our model.



Disease Extinction or PersistenceDisease Extinction or Persistence
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R0

• Without disease-induced mortality, it is known that R0 >1 

implies disease persistence.

• With disease-induced mortality, independent of initial 

population size of healthy individuals, a tiny number of 

infectious individuals can drive the total population to 

extinction.



Auxiliary FunctionsAuxiliary Functions
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Disease-Free State

dynamics. state

 free-disease  thedescribesequation  reduced This
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Demographic Basic Reproduction Demographic Basic Reproduction 

NumberNumber
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Dramatic Population ExtinctionDramatic Population Extinction
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Illustrative ExampleIllustrative Example
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Multiple AttractorsMultiple Attractors
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Origin an AttractorOrigin an Attractor



Complex Disease DynamicsComplex Disease Dynamics
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OvercompensatoryOvercompensatory DynamicsDynamics



Fractal Basin BoundariesFractal Basin Boundaries



Geometric GrowthGeometric Growth
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SIS Model With Geometric GrowthSIS Model With Geometric Growth
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Envelopes on Compact IntervalsEnvelopes on Compact Intervals

[Cull, 1986][Cull, 1986]
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Globally Stable Positive Fixed PointGlobally Stable Positive Fixed Point

.equlibrium stableally asymptoticglobally  positive unique a hasgrowth 
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ConclusionConclusion

• Our model framework allows the population dynamics and 
disease transmission to be fairly general.

• We highlighted the role of disease-induced mortality, and the 
complexity of the interaction between infectives and 
susceptibles in discrete-time models.

• Disease-induced death can force the extinction of a 
population with R0 >1, where the population persists without 
disease-induced death.

• Disease-induced death can generate multiple attractors with 
complicated basin structures.

• In epidemic models with disease-induced death, the disease-
free dynamics do not drive the disease dynamics.



Thank You!


