DISCRETE TIME EPIDEMICS MODELS

Abdul-Aziz Yakubu Department of Mathematics Howard University Washington, D.C. 20059 ayakubu@howard.edu

Epidemics In Strongly Fluctuating Populations

- Barrera et al. MTBI Cornell University Technical Report (1999).
- Valezquez et al. MTBI Cornell University Technical Report (1999).
- Arreola, R. MTBI Cornell University Technical Report (2000).
- Gonzalez, P. A. MTBI Cornell University Technical Report (2000).
- Castillo-Chavez and Yakubu, Contemporary Mathematics, Vol 284 (2001).
- Castillo-Chavez and Yakubu, Math. Biosciences, Vol 173 (2001).
- Castillo-Chavez and Yakubu, Non Linear Anal TMA, Vol 47 (2001).
- Castillo-Chavez and Yakubu, IMA (2002).
- Yakubu and Castillo-Chavez Journal of Theo. Biol. (2002).

Demographic Equation

T(n): population size at generation n

- f: models nonlinear birth or recruitment process
- γ : constant probability of surviving

 $T(n+1)=f(T(n))+\gamma T(n) \qquad (1)$

Examples of Demography

- **1)** Constant rate Λ : f(T(n))= Λ
- 2) Constant per-capita recruitment rate μ : f(T(n))= μ T(n)
- 3) Density dependent per-capita growth rate: f(T(n))=T(n)g(T(n)), where the per-capita growth function g: [0, ∞)→(0, ∞) is a strictly decreasing positive, smooth function with lim_{T→∞} g(T)<1.</p>

Demographic Equation

T(n): population size at generation n

- f: models nonlinear birth or recruitment process
- γ : constant probability of surviving

 $T(n+1)=f(T(n))+\gamma T(n)$ (1)

Asymptotically Bounded Growth

```
Equation (1) with constant rate \Lambda and initial condition

T_0 gives rise to the following

T(n+1) = \gamma T(n) + \Lambda, T(0) = T_0

Since

T(1) = \gamma T_0 + \Lambda,

T(2) = \gamma^2 T_0 + (\gamma + 1) \Lambda,

T(3) = \gamma^3 T_0 + (\gamma^2 + \gamma + 1) \Lambda, ...,

T(n) = \gamma^n T_0 + (\gamma^{n-1} + \gamma^{n-2} + ... + \gamma + 1) \Lambda
```

Asymptotically Bounded Growth

The solution to Model (1) is given by the population sequence $\{T(n)\}_{n \ge 0}$

where

$$T(n) = \begin{cases} T_0 + \Lambda n & \text{if } \gamma = 1, \\ \gamma n \left[T_0 - \frac{\Lambda}{1 - \gamma} \right] + \frac{\Lambda}{1 - \gamma} & \text{if } \gamma \neq 1 \end{cases}$$

 $0 < \gamma < 1$ imply that

• $T(n) \rightarrow \Lambda/(1-\gamma)$ as $n \rightarrow \infty$.

Geometric Growth

```
If new recruits arrive at the positive per-capita rate \mu per generation, that is, if f(T(n))=\mu T(n) then

T(n+1)=(\mu + \gamma)T(n),

that is,

T(n)=(\mu + \gamma)^nT(0).
```

The demographic basic reproductive number is $R_d = \mu/(1-\gamma)$ R_d , a dimensionless quantity, gives the average number of descendants produced by a small pioneer population (T(0)) over its life-time.

 $R_d>1$ implies that the population invades at a geometric rate. $R_d<1$ leads to extinction.

Density Dependent Per Capita Growth Rate

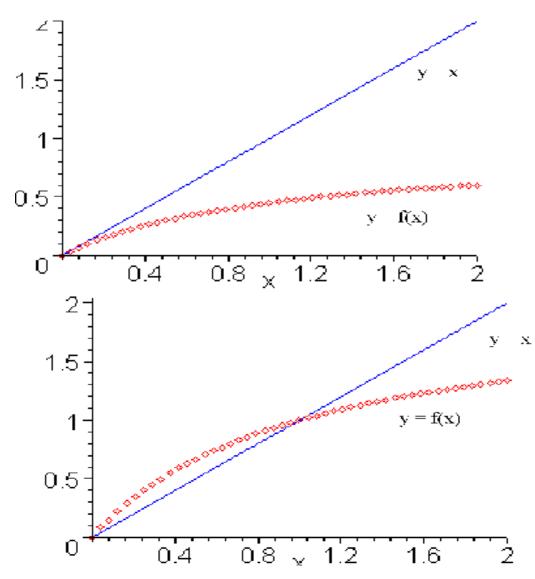
```
lf
```

f(T(n))=T(n)g(T(n)),then $T(n+1)=T(n)g(T(n))+\gamma T(n).$ That is, $T(n+1)=T(n)(g(T(n))+\gamma).$

Demographic basic reproductive number is

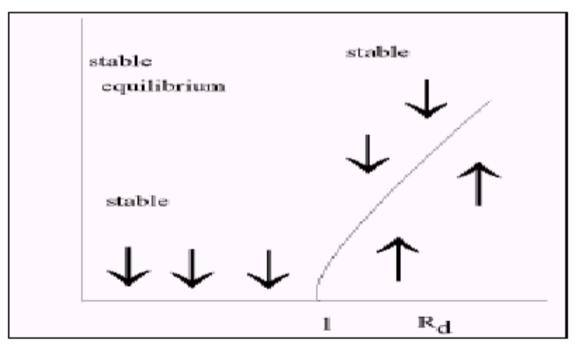
 $R_{d}=g(0)/(1-\gamma)$

Beverton-Holt Model



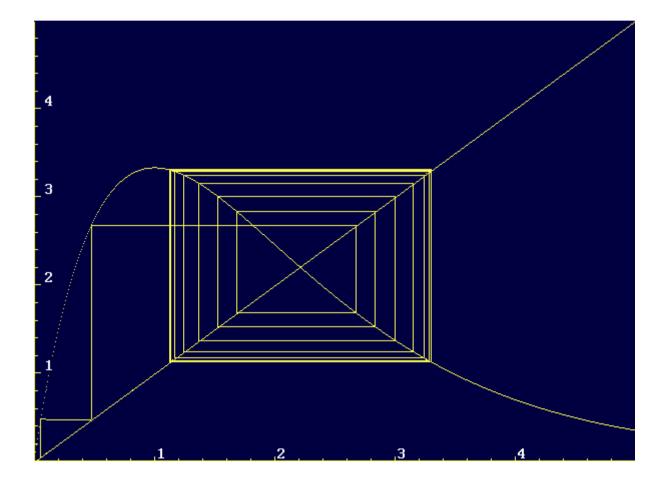
Example 1

Beverton-Holt Model: $g(T(n)) = \frac{a}{1+bT(n)}$ $\Re_d > 1 \text{ implies a globally stable positive}$ fixed point at $T_{\infty} = \frac{1}{b}(\frac{a}{1-\gamma} - 1)$.



Fixed point dynamics supported

Ricker Model

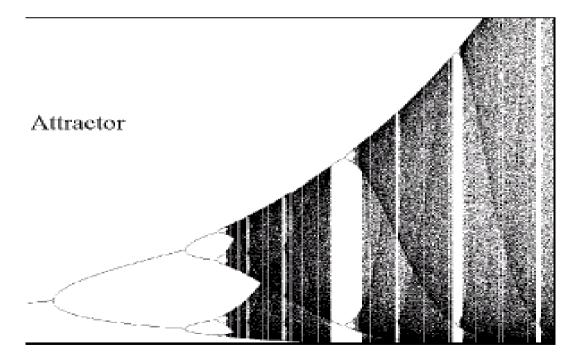


Example 2

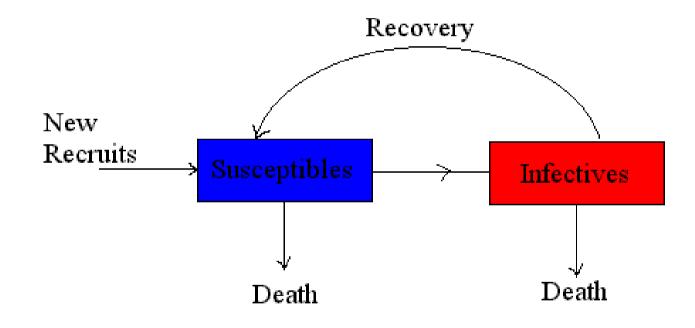
Ricker's Model:

$$g(T(n)) = \exp(p - T(n))$$

Period-Doubling Bifurcation



S-I-S Model



Epidemic Model

At generation n,

- S(n): population of susceptible;
- I(n): population of infected;
- $T(n) \equiv S(n)+I(n)$: total population size;
- $T_{\infty} \equiv \lim_{n \to \infty} T(n)$: the demographic steady state;
- f: $[0, \infty) \rightarrow [0, \infty)$: denotes the recruitment function;
- γ : survival rate;
- 1-σ: recovery rate.
- σ probability of surviving from the disease.

Infection Process

Susceptible individuals become infected with probability 1-G (remain susceptible with probability G).

 $g(y) \equiv G(y\alpha(y))$ where the transmission function $\alpha \equiv \alpha(y)$ models the impact of prevalence ($y \equiv I/T$) on G.

In general, $G:[0, \infty) \rightarrow [0,1]$ is a monotone concave probability function with G(0)=1; G'(x)<0 and $G''(x) \ge 0$ for all x in $[0, \infty)$.

 α :[0,1] \rightarrow [0, ∞) is a smooth function.

Model Assumptions

• When $\sigma = 1$, the disease is fatal (the nonlinear population dynamics are fixed).

The model assumes (implicitly) a sequential process. At the end of each generation, a fraction (1-γ) of each class is removed (death); susceptible then become infected with probability (1-G) and, independently, surviving infectives recover with probability (1-σ).

S-I-S Epidemic Model

$$\begin{split} \mathsf{S}(\mathsf{n}+1) &= \ \mathsf{f}(\mathsf{T}(\mathsf{n})) + \gamma \, \mathsf{g}(\mathsf{y}(\mathsf{n})) \mathsf{S}(\mathsf{n}) + \gamma (1 - \sigma) \mathsf{I}(\mathsf{n}), \\ \mathsf{I}(\mathsf{n}+1) &= \ \gamma \, (1 - \mathsf{g}(\mathsf{y}(\mathsf{n}))) \mathsf{S}(\mathsf{n}) + \gamma \sigma \mathsf{I}(\mathsf{n}). \end{split}$$

Questions

• What is relationship between model parameters and disease persistence or extinction?

- Can the infective population persist on a cyclic (non-equilibrium) attractor?
- What is the relationship between the population and epidemic attractors?

Asymptotically Bounded Growth

Assume that the total population has reached the positive steady state $T_{\rm \infty}$ and,

set T(n) \equiv T $_{\infty}$, x(n)=S(n)/T $_{\infty}$ and y(n)=I(n)/T $_{\infty}$ in System (2).

The resulting one-dimensional autonomous ``limiting system" for y(n), is therefore given by

 $y(n+1) = \gamma (1-g(y(n)))(1-y(n))+\gamma \sigma y(n).$ (3)

Limiting System

$$\begin{array}{rcl} y(t+1) &=& G(y(t)), & y(0) = y \in \mathcal{R}_+^n \\ z(t+1) &=& H(y(t), z(t)), & z(0) = z \in \mathcal{R}_+^m \end{array} \right\} (*)$$

where $G: \mathbb{R}^n_+ \to \mathbb{R}^n_+$ and $H: \mathbb{R}^n_+ \times \mathbb{R}^m_+ \to \mathbb{R}^m_+$ are continuous functions. Assumptions in System (*):

- 1. Equation y(t + 1) = G(y(t)) admits a globally attracting fixed point Y_{∞} in \mathbb{R}^n_+ , and
- 2. $z(t+1) = H(Y_{\infty}, z(t))$ admits a globally asymptotically stable fixed point Z_{∞} in \mathbb{R}^{m}_{+} .

Theorem (BCY, 2002). (Y_{∞}, Z_{∞}) in $\mathbb{R}^n_+ \times \mathbb{R}^m_+$ is a globally attracting fixed point of System (*).

Global Stability

Theorem (Cull): Suppose a continuous reproduction function $f : [0, \infty) \rightarrow [0, \infty)$ satisfies all the following properties:

1.

 $f(\theta) = \theta.$

2. f has a unique positive fixed point, x_{∞} , satisfying

f(x) > x if $x < x_{\infty}$,

and

$$f(x) < x ext{ if } x > x_{\infty}$$

3. If f has a maximum value at $m \in (0, x_{\infty})$, then f is monotonically decreasing in (m, f(m)).

Then x_{∞} is a globally stable fixed point in the open interval (0, f(m)) if and only if (0, f(m)) contains no 2-cycles.

Basic Reproductive Number

The basic reproductive number, R₀, determines the asymptotic behavior of System (3).

$$R_0 = \begin{cases} \gamma \sigma & \text{if } \alpha(0) = 1, \\ \frac{-\gamma \alpha(0)G'(0)}{1 - \gamma \sigma} & \text{if } \alpha(0) \neq 1 \end{cases}$$

gives the average number of secondary infections generated by a small pioneer population of infected (assumed infectious) individuals over their life-time, whenever the disease is not fatal.

Global Stability (1)

Let $\alpha \equiv \alpha_0$ be a positive constant.

- a) If $R_0 < 1$, then the solutions (x(n), y(n)) of System (3) approach the disease free equilibrium, (1,0), as $n \rightarrow \infty$.
- b) If $R_0>1$, then the solutions (x(n),y(n)) of System (3) approach a unique positive endemic equilibrium, $(1-\hat{y}, \hat{y})$ in $(0, \infty) \times (0, \infty)$,

as n $\rightarrow \infty$

Global Stability (2)

Let $\alpha(y) + y \alpha'(y) > 0$ and $2\alpha'(y) + y \alpha''(y) \le 0$

- a) If $R_0 < 1$, then the solutions (x(n), y(n)) of System (3) approach the disease free equilibrium, (1,0), as $n \rightarrow \infty$.
- b) If $R_0 > 1$, then the solutions (x(n), y(n)) of System (3) approach a unique positive endemic equilibrium, $(1-\hat{y}, \hat{y}) in (0, \infty) \times (0, \infty)$, as $n \rightarrow \infty$

Geometric Growth(1)

x(n)=S(n)/T(n) and y(n)=I(n)/T(n) reduces System (2) with $f(T(n))=\mu T(n)$:

 $x(n+1)=\mu/(\mu+\gamma)+\gamma/(\mu+\gamma) x(n)g(y(n))+\gamma/(\mu+\gamma)(1-\sigma)y(n),$

 $y(n+1) = \gamma/(\mu+\gamma) x(n)(1-g(y(n))) + \gamma/(\mu+\gamma) \sigma y(n).$

x(n)+y(n)=1

Geometric Growth(2)

x(n)=1-y(n) reduces the System to a one-dimensional system of y(n):

 $y(n+1) = \gamma/(\mu+\gamma) \quad (1-y(n))(1-g(y(n))) + \gamma/(\mu+\gamma) \sigma y(n).$

$$R_0 = \begin{cases} \frac{\gamma\sigma}{(1-R_d)\gamma + R_d} & \text{if } \alpha(0) = 1, \\ \frac{-\gamma\alpha(0)G'(0)}{(1-\gamma)(R_d - 1) + 1 - \gamma\sigma} & \text{if } \alpha(0) \neq 1 \end{cases}$$

Geometric Growth

 \Re_0 is easily derived from the linearization of near $(x_{\infty}, y_{\infty}) \equiv (1,0)$, that is, from

 $y(n+1) \approx \frac{\gamma}{\mu + \gamma} (-a(0)G'(0) + \sigma)y(n).$

If $\Re_d = 1$ (no demographic impact) then \Re_0 reduces to $\Re_0 = \gamma \sigma$ or $\Re_0 = \frac{-\gamma \alpha(0)G'(0)}{1-\gamma\sigma}$ where $\frac{1}{1-\gamma\sigma}$ denotes the average death-adjusted length of the infectious period in generations; γ is the proportion of surviving susceptibles who can be invaded by the disease; and, $-\alpha(0)G'(0)$ is the maximum rate of infection per infective. If $\Re_d \neq 1$ then demography impacts disease dynamics, that is \Re_0 . In fact, $\frac{1}{(1-\gamma)(\Re_d-1)+1-\gamma\sigma}$ gives the demographic death-adjusted infectious period measured in generations. Hence, \Re_0 decreases with population growth $(\Re_d > 1)$ and increases with population decay $(0 < \Re_d < 1)$ as all new recruits are assumed to be susceptibles.

Global Stability (1)

Let $\alpha(y) + y \alpha'(y) > 0$ and $2\alpha'(y) + y \alpha''(y) \le 0$. Then,

(a) If $R_d < 1$, the total population, $T \equiv S+I$, decreases to zero at a geometric rate; $R_d > 1$ implies that the total population increases at a geometric rate; $R_d = 1$ implies that the total population remains fixed at its initial value.

(b) If $R_d > 1$ and $R_0 < 1$, then the proportion I/T of invectives in the total population tends to 0 as $n \rightarrow \infty$, while the proportion S/T of susceptible in the total population tends to 1 as $n \rightarrow \infty$.Hence, (S/T,I/T) tends to the disease-free equilibrium (1,0), where S is increasing at the same geometric rate as T.

Global Stability (2)

(c) If $R_d > 1$ and $R_0 > 1$, then the proportion I/T of invectives in the total population tends to a positive number \overline{I}/T as n approaches infinity, and the proportion S/T of susceptible in the total population tends to a positive number (1- \overline{I}/T) as n approaches infinity. Hence, (S/T,I/T) tends to an endemic. I, S, and T are increasing at the same geometric rate.

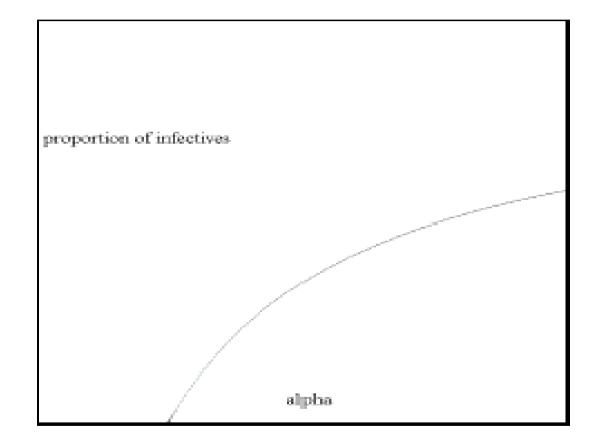
(d) If $R_d <1$ and $R_0<1$, then the proportion I/T of invectives in the total population tends to 0 as n approaches infinity, while the proportion S/T of susceptible in the total population tends to 1 as n approaches infinity. Hence, (S/T,I/T) tends to disease-free equilibrium. Hence S is increasing to zero at the same geometric rate as T.

(c) If $R_d <1$ and $R_0>1$, then the proportion I/T of invectives in the total population tends to a positive number \overline{I}/T as n approaches infinity, and the proportion S/T of susceptible in the total population tends to a positive number (1- \overline{I}/T) as n approaches infinity. Hence, (S/T,I/T) tends to an endemic. I, S, and T are increasing at the same geometric rate.

Illustrative Example (1)

- $e^{-d}=\gamma$, $e^{-\alpha I(n)/T(n)}=G(\alpha I(n)/T(n))$ and $e^{-\beta}=\sigma$.
- $f(T(n))=\mu T(n)$ implies that $T(n+1)=(e^{-d}+\mu)T(n)$ and $R_d=\mu/(1-e^{-d})$
- $R_0 = \frac{\alpha^2}{(1 + \mu e^{-d} e^{-\beta})}$
- $\beta=0.1$, d=ln2 and $\mu=0.1$ are fixed and the transmission coefficient α is varied.

Illustrative Example (2)



Questions

• Can complex demographic dynamics drive disease dynamics?

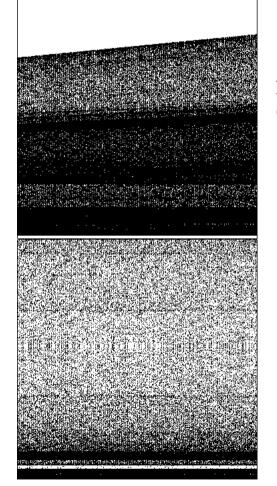
• Are simple discrete-time epidemic models bistable?

K-Cycle Attractors

- S- is on a hyperbolic attracting k-cycle whenever the T- is on a hyperbolic attracting k-cycle and α =0.
- I- is on a positive k-cycle whenever both the T- and S- are on different k-cycles.
- Assume that {ž₀(0), ž₁(0), ..., ž_{k-1}(0)} is a hyperbolic k-cycle for (SIS) when α =0. Then, for α close enough to 0, there is a curve of k-cycles for (SIS) given by {ž₀(α), ž₁(α), ..., ž_{k-1}(α)}. This k-cycle is an attractor for (SIS) if {ž₀(0), ž₁(0), ..., ž_{k-1}(0)} is a hyperbolic attracting k-cycle when α =0.

S-Dynamics Versus I-Dynamics

Infectives on 2-cycle attractor	Infectives on 4-cycle attractor
Susceptibles on	Susceptibles on
2-cycle attractor	4-cycle attractor



Infectives on a chaotic attractor

Susceptibles on a chaotic attractor

S-E-I-S MODEL

$$S(n+1) = f(T(n)) + \gamma G(z(n))S(n) + \gamma (1-\delta)I(n),$$

$$E(n+1) = \gamma (1 - G(z(n)))S(n) + \gamma \sigma E(n),$$

$$I(n+1) = \gamma (1 - \sigma)E(n) + \gamma \delta I(n).$$

S-I-S Epidemic Models With Delay

$$\begin{split} &S(t+1)=f(T(t-k))+\gamma S(t)G(\alpha I(t)/T(t))+\gamma I(t)(1-\sigma),\\ &I(t+1)=\gamma(1-G(\alpha I(t)/T(t)))S(t)+\gamma\,\sigma\,I(t) \end{split}$$

Demographic equation becomes

 $T(t+1)=f(T(t-k))+\gamma T(t)$

Geometric Growth

If new recruits were to arrive at a constant per-capita rate μ then

$$f(T(n-k)) = \mu T(n-k)$$

and the demographic equation becomes

$$T(n+1) = \mu T(n-k) + \gamma T(n),$$

This last equation has geometric solutions of the form

$$T(n) = T(0)\lambda^n$$

where $\lambda > \gamma$ is a solution of the characteristic equation

$$\lambda = \frac{\mu}{\lambda^*} + \gamma$$

and $T(0) \neq 0$. In fact, whenever λ^* is the unique largest real solution of the characteristic equation then $\lambda^* \geq |\lambda|$ (where λ is any real or complex solution of the characteristic equation).

In fact, $\gamma < \lambda^* < 1$ implies $\lambda^* > \sqrt[\mu]{\frac{\mu}{1-\gamma}}$ while $\gamma < 1 < \lambda^*$ implies $\lambda^* < \sqrt[\mu]{\frac{\mu}{1-\gamma}}$. Consequently, the demographic basic reproductive number is defined by

R_d

$$R_{d} = \sqrt[k]{\frac{\mu}{1 - \gamma}}$$

 R_d a dimensionless quantity, gives the average number of susceptible produced by a (typically small) pioneer population (T(0)) over its life-time. The kth-root accounts for the fact that a T(0) descendant must survive k-generations before it joins the population of susceptible.

R₀

We assume that the T-population has been around long enough (prior to disease invasion) for T(t) = T(0)(λ^*)^t, where $\lambda^* > |\lambda|$. Rescaling reduces the System with new recruits under geometric growth (T(t) = T(0)(λ^*)^t) to the following one-dimensional autonomous ``system'' for y(t):

 $y(t+1)=(\gamma/\lambda^*)(1-y(t))(1-G(\alpha y(t)))+(\gamma\sigma/\lambda^*) y(t)$

$$R_0 = \frac{-\alpha G(0)(\gamma/\lambda^*)}{1 - (\gamma \sigma/\lambda^*)}$$

T-Dynamics (1)

If new births or new recruits are governed by f(T(n-k))=T(n-k)exp(r-T(n-k))

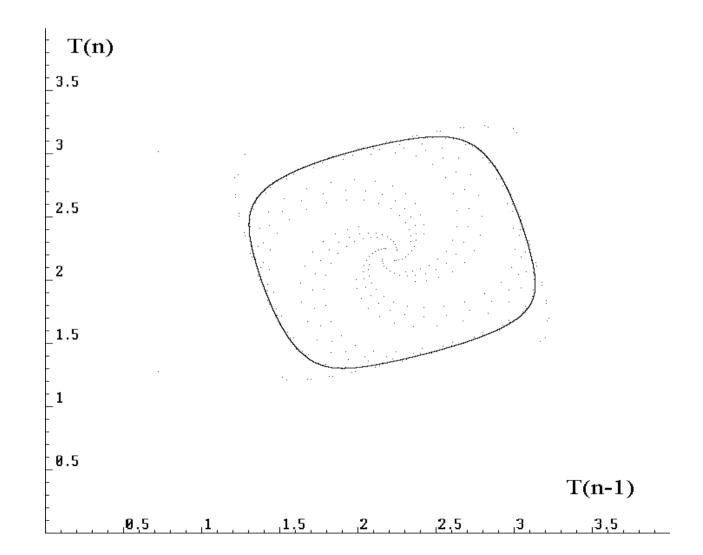
then the presence of delay increases the level of dynamic complexity in the T- dynamics. We can now keep the T- dynamics on a selected Hopf invariant closed curve or a strange (chaotic) attractor.

The equation

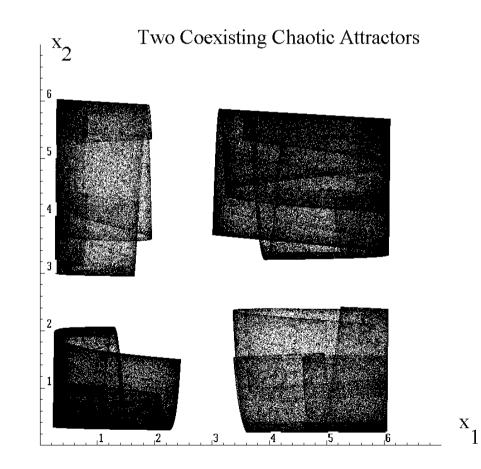
$T(n+1)=T(n-1)exp(r-T(n-1))+\gamma T(n)$

has a positive equilibrium that is capable of undergoing a discrete-time Hopf bifurcation.

T-Dynamics (2)



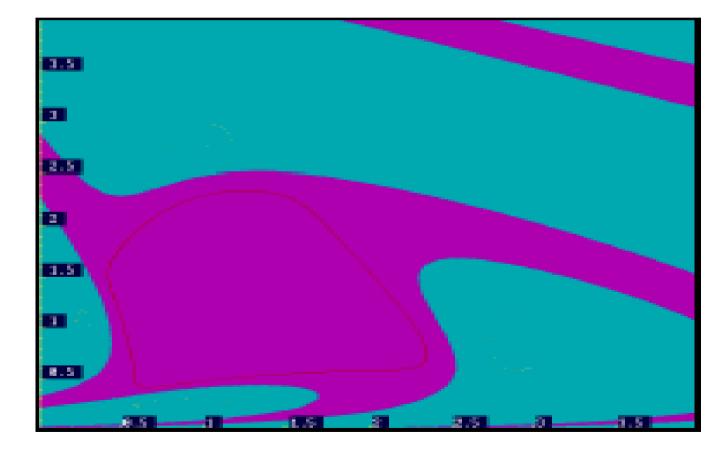
T-Dynamics (3)



Bistability in T-Dynamics (1)

- T(t+1)=f(T(t-k),T(t-(k-1)),...,T(t)), + γT(t)
- The equation
- $T(t+1)=T(t)\exp\{r-cT(t-1)-T(t)\} + \gamma T(t)$
- Supports multiple attractors when c=0.9, r=2.3,
- k=1, and γ=0.01

Bistability in T-Dynamics (2)



Dynamical Systems Theory

- Equilibrium Dynamics, Oscillatory Dynamics, Stability Concepts, etc
- Attractors and repellors (Chaotic attractors)
- Basins of Attraction
- Bifurcation Theory (Hopf, Period-doubling and saddle-node bifurcations)
- Perturbation Theory (Structural Stability)

Conclusions

- Complex internally driven population dynamics can
- "drive" disease dynamics. Hence, disease is likely to have a dramatic impact on local life-history evolution even when it is non-fatal.
- Contact rate and dispersal play key roles on diseases survival and epidemic severity.
- Age-structure expands the class of attractors where epidemics can live.

Discussion

• Developing more realistic epidemic processes and adding the impact of disease induced mortality leads to a class of challenging nonlinear systems

• Role of dispersal, population dynamics, and disease on life history evolution

• Connections with real data.

SIS Epidemic Model With Disease-Induced Death

$$S(t+1) = f(N(t)) + \gamma_1 \phi(\alpha \frac{I(t)}{N(t)}) S(t) + \gamma_2 (1-\sigma) I(t)$$

$$I(t+1) = \gamma_1 \left(1 - \phi(\alpha \frac{I(t)}{N(t)})\right) S(t) + \gamma_2 \sigma I(t)$$
(3)

where $0 < \gamma_2 < \gamma_1 < 1, 0 < \sigma < 1$ and N(t) > 0.

The escape function $\phi : [0, \infty) \to [0, 1]$ is a monotone convex probability function with $\phi(0) = 1$ and $\phi' \le 0$.

Model Assumptions

- Disease increases mortality but does not affect fecundity;
- No acquired immunity;
- No latent period (or latent period is very short);
- Transmission is frequency dependent rather than density dependent.

Deterministic SIS Model

- Our model is a deterministic SIS epidemic model and has no "probability" of transmission. The assumption of deterministic dynamics is valid in a large population, where stochasticity is unimportant.
- This assumption places a constraint on the applicability of our model. For example, stochastic transmission (including a Poisson process) in a small population (close to extinction) would not be described by our model.

Disease Extinction or Persistence

Let
$$R_0 = \frac{-\gamma_1 \alpha \phi'(0)}{1 - \gamma_2 \sigma}$$
.

No disease induced death : Castillo - Chavez and Yakubu [2001]

Theorem (Franke and Yakubu, 2008) : Let N(0) $\ge I(0) > 0$. 1. If R₀ < 1, then $\lim_{t\to\infty} I(t) = 0$. That is, the disease goes extinct. 2. If R₀ > 1 and the total population is uniformly persistent, then ther e exists $\eta > 0$ such that $\underline{\lim}_{t\to\infty} I(t) \ge \eta > 0$. That is, the disease is uniformly persistent.

R_0

- Without disease-induced mortality, it is known that R₀>1 implies disease persistence.
- With disease-induced mortality, independent of initial population size of healthy individuals, a tiny number of infectious individuals can drive the total population to extinction.

Auxiliary Functions

 $1. D_i(N) = f(N) + \gamma_i N$

The total population of new births and survivors;

2.
$$F_N(I) = \gamma_1 (1 - \phi(\alpha \frac{I}{N}))(N - I) + \gamma_2 \sigma I$$

Infective population in the next generation;

3.
$$G_N(I) = f(N) + \gamma_1(N - I) + \gamma_2 I$$

Total population in the next generation;

4.
$$H(N, I) = (G_N(I), F_N(I))$$

Vector of the total and infective populations.

Disease-Free State

If I(t) = 0, then the demographic c equation

 $N(t + 1) = f(N(t)) + \gamma_1 S(t) + \gamma_2 I(t)$

becomes

 $S(t + 1) = f(S(t)) + \gamma_1 S(t).$

This reduced equation describes the disease - free state dynamics.

Demographic Basic Reproduction Number

 $R_{D_i} = \frac{f'(0)}{1 - \gamma_i} \text{ whenever } f(0) = 0.$

1. Let f(0) = 0. If $R_{D_1} > 1$, then the disease - free

susceptible population is persistent.

2. Let f(0) = 0. If $R_{D_1} < 1$, then $\{(0,0)\}$ is locally

asymptotically stable. That is, both

the susceptible and infected populations

go extinct at low population sizes.

3. R_{D_1} is the disease - free state

demographic basic reproduction number.

4. If either f(0) > 0 or f(0) = 0 and $R_{D_{\gamma}} > 1$

then the total population is uniformly persistent.

Dramatic Population Extinction

Theorem : Let $R_0 > 1$, f(0) = 0 and $f(N) \le f'(0)N$ for all N > 0. Then there is a function $\zeta = \zeta(\gamma_1, \gamma_2, \phi, \alpha, \sigma, F_1) > 1$ such that if $1 < R_{D_1} < \zeta$ then the total population goes extinct under H iterations.

Illustrative Example

Let
$$f(N) = \frac{aN}{1+bN}$$
 and $\phi(N) = e^{-\frac{\alpha N}{N}}$

where

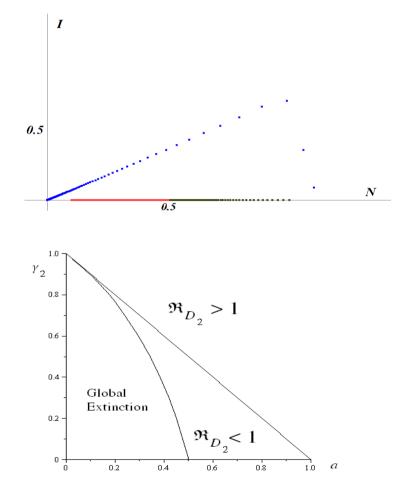
0.1 < a < 0.2, b = 1, α = 5, γ_1 = 0.9, γ_2 = 0.8 and σ = 0.9.

$$R_{D_1} = \frac{a}{1 - \gamma_1} > \frac{0.1}{1 - 0.9} = 1$$
 implies the

persistenc e of the susceptibl e population in the absence of the disease.

$$R_{D_2} = \frac{a}{1 - \gamma_2} < \frac{0.2}{1 - 0.8} = 1.$$

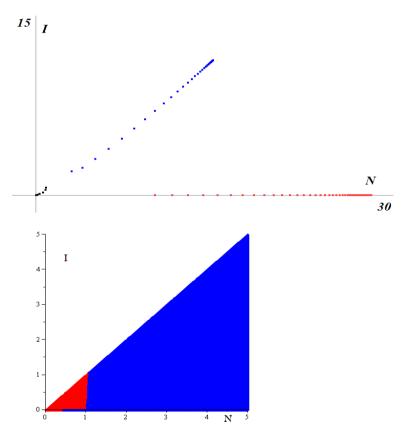
As predicted by the theorem, 0.1 < a < 0.177 gives the extinction of the total population .



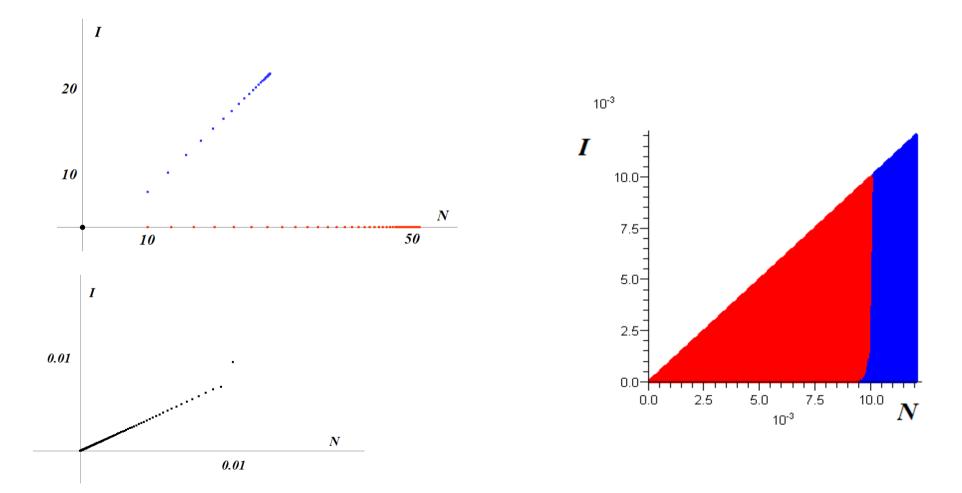
Multiple Attractors

Theorem : Let $\overline{\lim}_{N \to \infty} \frac{f(N) + \gamma_1 N}{N} < 1$ and $R_{D_2} > 1$. Then H has multiple fixed points when G_N "decreases" at low population sizes while it "increases" at high population values.

Corollary : Let $\overline{\lim}_{N\to\infty} \frac{f(N) + \gamma_1 N}{N} < 1$. If $R_{D_1} > 1$ and there is $0 < N_0$ with $G_{N_0}(I_1N_0) > N_0$, then the origin is not a global attractor and H has at least two positive fixed points.



Origin an Attractor

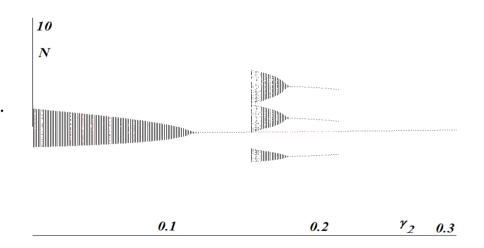


Complex Disease Dynamics

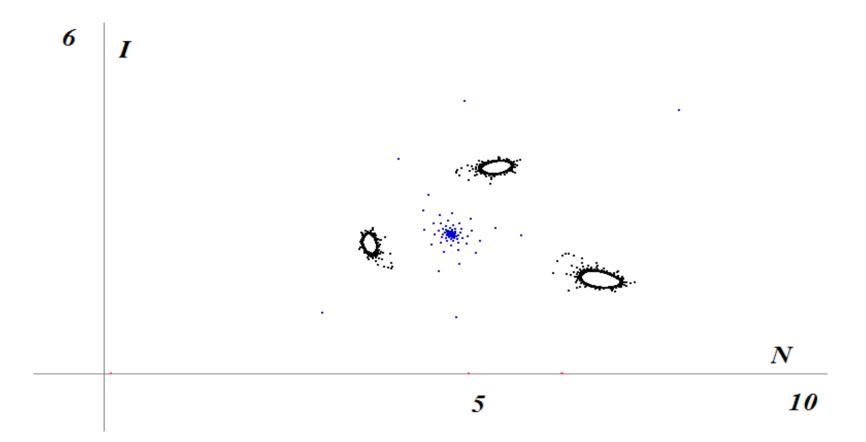
Let
$$f(N) = Nexp(r - N)$$
 and $\varphi(\frac{\alpha I}{N}) = e^{-\frac{\alpha I}{N}}$

where

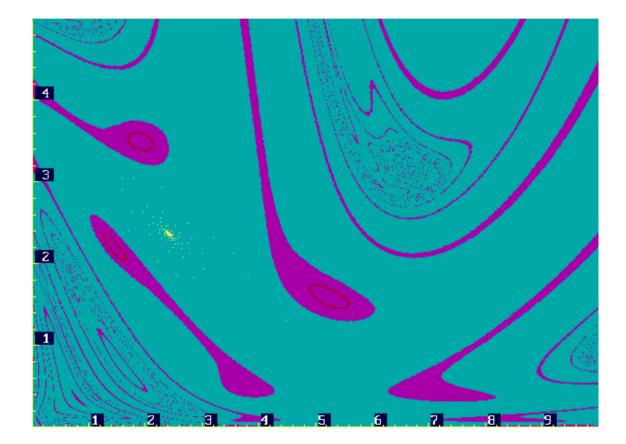
 $\alpha = 5$, $\gamma_1 = 0.9$, $\gamma_2 \in (0, 0.9)$, r = 4 and $\sigma = 0.9$. In the absence of the disease, the susceptible e population is on a globally attracting positive fixed point at $S_{\infty} = 6.303$.



Overcompensatory Dynamics



Fractal Basin Boundaries



Geometric Growth

Let $f(N) = \mu N$. In the absence of the disease, the suceptible (disease - free state) equation becomes

 $S(t + 1) = \mu S(t) + \gamma_1 S(t) = (\mu + \gamma_1)S(t).$ Hence,

$$S(t) = (\mu + \gamma_1)^t S(0) \text{ and } R_{D_1} = \frac{\mu}{1 - \gamma_1}.$$

SIS Model With Geometric Growth

Let
$$i = \frac{I}{N}$$
 and $s = \frac{S}{N}$.

Then i(t) + s(t) = 1 and our SIS model becomes

$$i(t+1) = \frac{F_1(i(t))}{\mu + \gamma_1 + (\gamma_2 - \gamma_1)i(t)}$$
(5)

R₀

Under geometric growth,

$$R_{0} = \frac{-\gamma_{1}\alpha\phi'(0)}{(1-\gamma_{1})(R_{D_{1}}-1)+1-\gamma_{2}\sigma}$$

Theorem : If R₀ \leq 1, then $\lim_{t\to\infty} i(t) = 0$. That is, the proportion of the infected eventually decreases to zero.

If $R_0 > 1$, then the proportion of the infected population is uniformly persistent .

Envelopes on Compact Intervals [Cull, 1986]

Let $F:[0,1] \rightarrow [0,1]$ have a unique critical point, i_c , and a unique positive fixed point, i_{∞} , where $0 < i_c < i_{\infty} < 1$. Also, let {0} be an unstable fixed point of F.

A function $E : [0,1] \rightarrow [0,1]$ envelopes the function F if and only if $E(i) \ge F(i)$ on $[0, i_{\infty}]$ and $E(i) \le F(i)$ on $[i_{\infty}, 1]$.

Globally Stable Positive Fixed Point

Theorem (Cull [1986]) : If E envelopes F on [0,1] and E(E(i)) > i for all i in $[i_c, i_{\infty})$, then i_{∞} is a globally asymptotic ally stable positive fixed point of F on (0,1].

Theorem [F - Y, 2008] : If $R_0 > 1$, our SIS epidemic model with geometric growth has a unique positive globally asymptotic ally stable equilibrium .

Conclusion

- Our model framework allows the population dynamics and disease transmission to be fairly general.
- We highlighted the role of disease-induced mortality, and the complexity of the interaction between infectives and susceptibles in discrete-time models.
- Disease-induced death can force the extinction of a population with R₀ >1, where the population persists without disease-induced death.
- Disease-induced death can generate multiple attractors with complicated basin structures.
- In epidemic models with disease-induced death, the disease-free dynamics do not drive the disease dynamics.

Thank You!