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Demographic Equation

T(n): population size at generation n
f.  models nonlinear birth or recruitment process

Y. constant probability of surviving

T(n+1)=K(T(n))+y T(n) (1)



* S
Examples of Demography

1) Constant rate A: f(T(n))=A
2) Constant per-capita recruitment rate U: f(T(n))= UT(n)

3) Density dependent per-capita growth rate: f(T(n))=T(n)g(T(n)),
where the per-capita growth function g: [0, 0 )=2>(0, © ) is a
strictly decreasing positive, smooth function with
lim;. g(T)<1.



" A
Demographic Equation
T(n): population size at generation n

f:  models nonlinear birth or recruitment process

y: constant probability of surviving

T(n+1)=f(T(n))+yT(n) (1)
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Asymptotically Bounded Growth

Equation (1) with constant rate A and initial condition
T, gives rise to the following

T(n+1)=yT(n)+A, T(0)=T,

Since

T(1)=y T, +A,

T(2)=y? T, +(y+1) A,

T(3)=\3 T, +(V2+y+1) A, ...,

T(n)=y" T, (Y 1+y"2+.+y+1) A
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Asymptotically Bounded Growth

The solution to Model (1) is given by the population sequence
{T(n)}n)II 0

where
TO+/\n if y=1,

T =N e N iy

° 1-y| 1-y

T(n)=

O<y<1 imply that
e T(n) 2A/(1-y) as n—> .
e T.=A/(1-Y)
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Geometric Growth

If new recruits arrive at the positive per-capita rate | per
generation, that is, if f(T(n))=HuT(n) then

T(n+1)=(H +Y)T(n),

that is,

T(n)=(k +y)"T(0).

The demographic basic reproductive number is R =L/(1-y)

R4, adimensionless quantity, gives the average number of
descendants produced by a small pioneer population (T(0)) over its
life-time.

Ry>1 implies that the population invades at a geometric rate.
R <1 leads to extinction.
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Density Dependent
Per Capita Growth Rate

If
f(T(n))=T(n)g(T(n)),

then
T(n+1)=T(n)g(T(n))+yT(n).

That is,
T(n+1)=T(n)(g(T(n))+y).

Demographic basic reproductive number is

R4=8(0)/(1-y)



Beverton-Holt Model
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Example 1

Beverton-Holt Model:

a
Tin) =

9(T(n)) 1 + 6T (n)

R; = 1 implies a globally stable positive

fixed point at T, = Tl;(ﬁa- — 1.
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Fixed point dynamics supported
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Ricker Model
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Example 2

Ricker’s Model:

g(T(n)) = exp(p — T(n))

Period-Doubling Bifurcation

Adtracior
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S-1-S Model

Recovery

New
Recruits

Death Death
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Epidemic Model

At generation n,

e S(n): population of susceptible;

e |(n): population of infected;

e T(n) =S(n)+I(n) : total population size;

e T,=lim 5, T(n): the demographic steady state;

o f: [0, ©)=2[0, ): denotes the recruitment function;
e V: survival rate;

e 1-0: recovery rate.

e g probability of surviving from the disease.
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Infection Process

Susceptible individuals become infected with probability 1-G
(remain susceptible with probability G).

g(y) = G(ya (y)) where the transmission function o = a(y) models
the impact of prevalence (y =1/T) on G.

In general, G:[0, © )=2[0,1] is a monotone concave probability
function with G(0)=1; G’(x)<0 and G”’(x) =0 for all x in [0, o0 ).

a :[0,1]=2[0, o ) is a smooth function.
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Model Assumptions

e When o =1, the disease is fatal (the nonlinear population dynamics
are fixed).

e The model assumes (implicitly) a sequential process. At the end of
each generation, a fraction (1-y) of each class is removed (death);
susceptible then become infected with probability (1-G) and,

independently, surviving infectives recover with probability (1-0).
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S-1-S Epidemic Model

S(n+1) = f(T(n))+yg(y(n))S(n)+y(1-0)I(n),
I(n+1) =y (1-g(y(n)))S(n)+yal(n).
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Questions

e What is relationship between model parameters and disease
persistence or extinction?

e (Can the infective population persist on a cyclic (non-
equilibrium) attractor?

e What is the relationship between the population and
epidemic attractors?
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Asymptotically Bounded Growth

Assume that the total population has reached the positive steady
state T_ and,

set T(n) =T, x(n)=S(n)/T  and y(n)=I(n)/T _ in System (2).

The resulting one-dimensional autonomous " 'limiting system'' for
y(n), is therefore given by

y(n+1) =y(1-gly(n))(1-y(n))+y o y(n). (3)



Limiting System

¥t + 1)
#lt + 1)

Gliyliﬂ:l:l, F(Dj':y ERi }(*}
Hlylt) #(2)), #0)=zc R}

where 7 R{I‘_ — Ri and H : Ri ¥ R_’I_“ — RT are continuous functions.
Agaumptions n Syatem [*):

1. Bquation (2 + 1) = Gly(t)) admita a globally attracting fixed point ¥,
in A}, and

2. z(t+1) = H{¥o, 2(¢)) admita a globally asymptotically stable fixed peint
Zre 10 BT

Theorem (BCY, 2002). (Yo, Zo) in A} x BT 42 o globally aftraching
fixed point of System ().
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Global Stability

Thearem {Cull): Suppose a conbinuovs reproduction funchion [0 00) —
[0, 00) sabtisfies oll the following propertics:

1.
Fidy=4
2. f hos o umique postlive flived poind, x.. salisfiing
flz) =z e < 2,

et el
flez) <z iz =2,

3. If f hos o movimuem velve of m € (@), then fis monofonieslly de-
erassing s (v, flm)).

Then z., @& a globally stable fived point in the open dnterval (0, flwm)) if and
ondy of [0, flm)) containe no S-cyeles.
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Basic Reproductive Number

The basic reproductive number, R,, determines the asymptotic
behavior of System (3).

yo If a(0)=1,

R=1 OGO it 4021

- 1o

gives the average number of secondary infections generated by a

small pioneer population of infected (assumed infectious)
individuals over their life-time, whenever the disease is not fatal.
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Global Stability (1)

Let O =0, be a positive constant.

a) If Ry<1, then the solutions (x(n),y(n)) of System (3) approach the
disease free equilibrium, (1,0), as n—> .

b) If R,>1,then the solutions (x(n),y(n)) of System (3) approach a
unique positive endemic equilibrium, (1-y, §) in (0, o )%(0, o ),

as n oo
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Global Stability (2)

Let a(y) +ya’(y) >0 and 2r'(y) +y a”(y) <0

a) If Ry<1, then the solutions (x(n),y(n)) of System (3p@ach the
disease free equilibrium, (1,0), aS .

b) If R>1,then the solutions (x(n),y(n)) of System (3prach a
unique positive endemic equilibrium, {1%) in (0, 00)%(0, ),

as my>oo
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Geometric Growth(1)

X(n)=S(n)/T(n) and y(n)=I(n)/T(n) reduces Systé&hWith
f(T(n))=pT(n):

X(N+1)=/(u+y)+ yi(u+y) x(n)g(y(n))+y/(u+y)(1-o)y(n),
y(n+1)=y/(u+y) x(n)(1-g(y(n)))+y/(u+y) o y(n).
X(n)+y(n)=1
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Geometric Growth(2)

X(n)=1-y(n) reduces the System to a one-dimensgysiem
of y(n):

y(n+1)=y/(u+y) (1-y(n))(1-g(y(n)))+y/(u+y) o y(n).

I if a(0)=1,
R =. (@-Ra)y+Ry
-a(OGO) if ar(0)#1
- -N(R-D+1-yo
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Geometric Growth

o 1 easly derved from the linearization of near (#pg,5w, = (1,0), that 1,
from

¥ |

1) = —al UG (0] + o ylin).

st Dx T (-al0)6 0+ ol
If Ry = 1 [no demographic impact) then Ry reduces to By = v or iy =
_T':i[ﬂg W yrhere 1_—1w denotes the average death-adjusted length of the intec-

tloug perlod in generationa; -y 18 the proportion ofaurviving auaceptibles who can
be invaded by the disease; and, —a{0)G (0) i the maximum rate of infection
per infective. If Wy # 1 then demoeraphy mnpacts dioease dynarmica, that s
EFF:[,._ In fact, [1_7353%41—1)4-1_?& gives the demographic death-adjmteci_l infectious
perlod measured 1n generations. Hence, 1y decreases with population growth

Iy > 1) and increases with population decay (0 < Rz < 1) as all new recruts
are agaumed to be auaceptibles.




Global Stability (1)

Let a(y)+y a’(y) >0 and 2a’(y) +y a’’(y) <0 . Then,

(a) If R;<1, the total population, T = S+I, decreases to zero at
a geometric rate; R >1 implies that the total population
increases at a geometric rate; R, =1 implies that the total
population remains fixed at its initial value.

(b) If R;>1 and R <1, then the proportion I/T of invectives in
the total population tends to 0 as n—=> 0, while the proportion
S/T of susceptible in the total population tends to 1 as
n—>o.Hence, (S/T,I/T) tends to the disease-free equilibrium
(1,0), where S is increasing at the same geometric rate as T.



Global Stability (2)

(c) If R;>1 and R,>1, then the proportion |I/T of invectives in the total
population tends to a positive number I/T as n approaches infinity, and
the proportion S/T of susceptible in the total population tends to a
positive number (1- I/T) as n approaches infinity. Hence, (S/T,1/T) tends to
an endemic. |, S, and T are increasing at the same geometric rate.

(d) If R; <1 and R,<1, then the proportion I/T of invectives in the total
population tends to 0 as n approaches infinity, while the proportion S/T
of susceptible in the total population tends to 1 as n approaches infinity.
Hence, (S/T,I/T) tends to disease-free equilibrium. Hence S is increasing
to zero at the same geometric rate as T.

(c) If R;<1 and R,>1, then the proportion |I/T of invectives in the total
population tends to a positive number I/T as n approaches infinity, and
the proportion S/T of susceptible in the total population tends to a
positive number (1- I/T) as n approaches infinity. Hence, (S/T,1/T) tends to
an endemic. |, S, and T are increasing at the same geometric rate.
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Illustrative Example (1)

o gd=y, edlMT) =G(al(n)/T(n) ) and &=0.

o f(T(n))=pT(n) implies that T(n+1)= (&) T(n) and
Re=H/(1- e?)

* R;=0%/(1+ued- ef)

e 3=0.1, d=In2 anqu=0.1 are fixed and the transmission

coefficienta Is varied.
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lllustrative Example (2)

prioportion af wifectives




Questions

e Can complex demographic dynamics drive disease
dynamics?

e Are simple discrete-time epidemic models bistable?
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K-Cycle Attractors

e S-ison a hyperbolic attracting k-cycle whenever the T-is on a
hyperbolic attracting k-cycle and a =0.

e |-is on a positive k-cycle whenever both the T- and S- are on
different k-cycles.

e Assume that {7,(0), Z,(0), ..., Z,,(0)} is a hyperbolic k-cycle for
(SIS) when a =0. Then, for a close enough to O,
there is a curve of k-cycles for (SIS) given by
{z,(a), z,(a), ..., 2 ,(O)}. This k-cycle is an attractor
for (SIS) if {Z,(0), Z,(0), ..., Z, 4(0)} is @ hyperbolic
attracting k-cycle when a =0.
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S-Dynamics

Infectives on
2-cycle attractor

Infectives on
4-cycle
attractor

Susceptibles on
2-cycle attractor

Susceptibles on
4-cycle attractor

Versus |-Dynamics

Infectives on a
chaotic attractor

Susceptibles on a
chaotic attractor
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S-E-I-S MODEL

Snt1) = (Tlw))+ 1Glem)S(n) +7(1-5)Iln)
Blntl) = 1= Glaln)))Stm) +90E(n)
lnt1} 11~ 0)Bln) + 1élln).

S
—
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S-1-S Epidemic Models With Delay

S(t+1)=f(T(t-k))+yS(t)G(al(t)/T(t))+Vi(t)(1-0),
I(t+1)=y(1-G(al(t)/T(t)))S(t)+y O I(t)

Demographic equation becomes

T(t+1)=F(T(t-k))+ yT(t)
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Geometric Growth

If new recrulta were to arrive at a conatant per-capita rate u then
F(T(n— &) = uTn - )
and the demographic equation becomes
Tln+1)= pfin -k +3Tn).
This last equation has geometric aclutions of the form
Tlm) = T(03A™

where A = -y 18 adgclution of the characteriatic equation

and T(0) # 0. In fact, whenever A™ 1 the unique largest real sclution of the
characteriastic equation then A" =| A | {where A 13 any real or complex aclution
of the characteriatic equation].

In fact, v < A" < 1 implies A" > ¥/3% while v < 1 < A" impliea A" <

H TIE—T Zonaequently, the demographic basic reproductive number 1a defined by



Ry

Rd=k\/ H
1-y

R 4 @ dimensionless quantity, gives the average number of
susceptible produced by a (typically small) pioneer population
(T(0)) over its life-time. The kth-root accounts for the fact that a
T(0) descendant must survive k-generations before it joins the
population of susceptible.




Ro

We assume that the T-population has been around long enough
(prior to disease invasion) for T(t) = T(0)(A")t, where A™> | A | .
Rescaling reduces the System with new recruits under geometric
growth (T(t) = T(0)(A")!) to the following one-dimensional
autonomous system' for y(t):

y(t+1)=(y/A")(1-y(t))(1-G(ay(t)+(yo /L") y(t)

—aG O)(y/ X)

AN 1-(yol X)
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T-Dynamics (1)

If new births or new recruits are governed by
f(T(n-k))=T(n-k)exp (r-T(n-k))

then the presence of delay increases the level of dynamic
complexity in the T- dynamics. We can now keep the

T- dynamics on a selected Hopf invariant closed curve or
a strange (chaotic) attractor.

The equation

T(n+1)=T(n-1)exp (r-T(n-1))+yT(n)

has a positive equilibrium that is capable of undergoing a
discrete-time Hopf bifurcation.
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T-Dynamics (2)

- T(n)

(3.5




T-Dynamics (3)

Two Coexisting Chaotic Attractors




"
Bistability in T-Dynamics (1)

o T(t+1)=f(T(t-k),T(t-(k-1)),...,T(t)), + YT(t)

The equation

T(t+1)=T(t)exp{r-cT(t-1)-T(t)} + YT(t)
Supports multiple attractors when ¢=0.9, r=2.3,
k=1, and y=0.01
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Bistability in T-Dynamics (2)
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Dynamical Systems Theory

e Equilibrium Dynamics, Oscillatory Dynamics, Stability
Concepts, etc

e Attractors and repellors (Chaotic attractors)

e Basins of Attraction

e Bifurcation Theory (Hopf, Period-doubling and saddle-node
bifurcations)

e Perturbation Theory (Structural Stability)
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Conclusions

e Complex internally driven population dynamics can
“drive" disease dynamics. Hence, disease is likely to

have a dramatic impact on local life-history evolution even
when it is non-fatal.

e (Contact rate and dispersal play key roles on diseases
survival and epidemic severity.

e Age-structure expands the class of attractors where
epidemics can live.
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Discussion

e Developing more realistic epidemic processes and adding
the impact of disease induced mortality leads to a class of
challenging nonlinear systems

e Role of dispersal, population dynamics, and disease on
life history evolution

e Connections with real data.
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SIS Epidemic Model Wi
Disease-Induced Deat

S(t+1) = T(N(t)) + Mﬂﬂ%)s(t) +y,(1-0)l (t)\

()

th
h

- (3)

I(t+1) = 1/1(1— Aa N—(t))js(t) +y,0 (1)

where0<y, <), <1,0< 0 <landN(t) >0.

Theescapdéunction:[0,») - [0,1] isa

monotoneconvexprobability function wth ¢(0) =1

andg< 0.
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Model Assumptions

e Disease increases mortality but does not affect fecundity;
e No acquired immunity;
e No latent period (or latent period is very short);

e Transmission is frequency dependent rather than density
dependent.
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Deterministic SIS Model

e QOur model is a deterministic SIS epidemic model and has no
“probability” of transmission. The assumption of
deterministic dynamics is valid in a large population, where
stochasticity is unimportant.

e This assumption places a constraint on the applicability of our
model. For example, stochastic transmission (including a
Poisson process) in a small population (close to extinction)
would not be described by our model.
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Disease Extinction or Persistence

- y10’¢ I (O)
Let R, = :
0 1- 2%

No diseasanduceddeath: Castillo — Chavezand Yakubu[2001]

Theorem(FrankeandYakubu, 2008):
Let N(O) = 1(0) > 0.
1.1f RO <1 thenlim, _I(t) = 0.Thatis, the

diseasegjoesextinct.

2. If RO > 1andthe total population is uniformly

persistent then thereexists; > 0
such thatlim, _1(t) =7 > 0.Thatis,
the diseasas uniformly persistent



Ro

e Without disease-induced mortality, it is known that R, >1
implies disease persistence.

e With disease-induced mortality, independent of initial
population size of healthy individuals, a tiny number of

infectious individuals can drive the total population to
extinction.
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Auxiliary Functions

1.D,(N) = f(N)+yN
Thetotalpopulationof newbirthsandsurvivors;

I
2.R(1)= M(l-qﬂ(aﬁ))(N —1)+p,0l
Infectivepopulationn thenextgeneration

3.6, (N=FT(N)+),(N=-1)+p,l
Totalpopulationn thenextgeneration

4.H(N,1) = (Gy (1), Fy (1))
Vectorof thetotalandinfectivepopulatiors.
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Disease-Free State

If 1(t) =0, then the demographic equation
N(t +1) = f(N(t)) +v,S(t) + v,I(t)
becomes

S(t+1) =f(S(t)) +v,S(1).

This reduced equation describesthe disease- free
state dynamics.
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Demographic Basic Reproduction

Number

-0
R 1o,

1.Letf(0) =0.1f R, >1, then thaliseasefree

susceptikepopulations persistent
2.Letf(0)=0.1f R, <1,then{(0,0)}islocally
asymptotially stableThatis, both
thesusceptil@andinfectedpopulatiors
goextinctatlow populatiorsizes.
3. Ry isthediseasefreestate

whenevef(0) =0.

demographabasicreproducibn number.
4.1f eitherf(0) > 0orf(0) =0andR, >1

then thetotalpopulationis uniformly persistent
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Dramatic Population Extinction

TheoremLetR, >1,f(0) =0andf(N) <f (O)N
forall N >0.Then theres afunction
¢ =¢{(, V., ¢a,0,F)>1such thatf 1<R, <¢

then theotalpopulationgoesextinctunderH iterations



lllustrative Example

al

andg(N) =e N

Let f(N) = 1flt\)||\|

where
0l<a< 02,b=1,a=5,)y, =009,
Y, = 0.8and o =0.9. 0.5

a 01

R, = > = limplies the
t1-y, 1-09

persistence of the susceptible population in the
absenceof the disease.

a 0.2
= < =1.
> 1-y, 1-08
As predicted by the theorem,0.1<a<0.177
gives the extinction of the total population.

Rp

1.0 4
Yo ol
0.8
0.6

0.4

0.2

0.5

Global
Extinction

R, <1

T T T
0z 0.4 064

T
0z



Multiple Attractors

f(N) +viN _
N
andR >1.Then H hasmultiple fixed points

Theorem : Let lim n - »

when G, "decreases'at low population sizes

while it "increases"at high population values.

f(N) +v,N _
N
If Ry, >1andthereis0< N, with

Gy, (I;Ny) > Ny, then the origin is

Corollary :Let lim n -«

not a global attractor and H has
at least two positive fixed points.

15

30
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Origin an Attractor

20
0%

10

10 50

0.01

0.0 245 5.0 7.5 10.0

. N

0.01
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Complex Disease Dynamics

Let f(N) = Nexp(r - N) and ¢( ﬂ) = e_O’LVI 10
N N
where s
a=5 v,=09,v,0(0009), r=4andc=09. |, ““'
In the absence of the disease, the susceptibl e \HHHHHHMH‘HHHHH‘HmIHHHHH|||II||||||| .

population is on a globally attracting positive
fixed point atS_ = 6.303.

0.1 0.2 Y 0.3
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Overcompensatory Dynamics

10
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Fractal Basin Boundaries
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Geometric Growth

Let f(N) = uN. Inthe absence of the disease,
the suceptible (disease - free state) equation
becomes

S(t +1) = uS®) +7v,St) = (u +v,)SO.

Hence,

S® = (u+7v,)S(O) and R, = -
1-1v,
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SIS Model With Geometric Growth

Let | :Landszé.
N N
Then i(t) +s(t) =1andour SIS model becomes

- R(3(0)
1) = 5
) 1y (1, = v)I) ®)
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Under geometric growth,

R — I_'Yl(X(P'(O) .
° (1_V1)(RD1_1)+1_720

Theorem: If R, <1, thenlim _ _i(t) =0.
That is, the proportion of the infected eventually
decreasesto zero.

If R, >1,then the proportion of the infected
population is uniformly persistent.
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Envelopes on Compact Intervals
[Cull, 1986]

Let F:[0,1] - [0,1] have a unique
critical point, i_, and a unique positive
fixed point, i, where0<i, <i_ <1.
Also, let{0} bean unstable fixed point
of F.

A function E:[0,1] - [0,1] envelopes
the function Fif andonly if

E(l) = F(@) on[0,1_]and

E(l) <F®@) on[i_,1].
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Globally Stable Positive Fixed Point

Theoren (Cull [1986]) : If E envelope Fon[0,1] anc
E(E()) >ifor alliin[i,i,), theni_ isa

globally asymptotically stable positive fixed

point of Fon (0,1].

Theorem|[F -Y, 2008]: If R, >1, our SIS epidemic model with geomteric
growth hasa unique positive globally asymptotically stable equlibrium .



Conclusion

e QOur model framework allows the population dynamics and
disease transmission to be fairly general.

e We highlighted the role of disease-induced mortality, and the
complexity of the interaction between infectives and
susceptibles in discrete-time models.

e Disease-induced death can force the extinction of a

population with Ry >1, where the population persists without
disease-induced death.

e Disease-induced death can generate multiple attractors with
complicated basin structures.

e |n epidemic models with disease-induced death, the disease-
free dynamics do not drive the disease dynamics.



Thank You!



