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Why IPM rather than MPM?	


•  Matrix dimension: Moloney-Vandermeer 
algorithm or biological criteria or..,?	

– Small sample size: over(under)-estimation of matrix 

transition elements	


– Assumption of constant vital rates within each size-
class: the bigger the class the less this is true!	


•  Flexibility to test effects of multiple continuous 
covariates on population dynamics	




Matrix Population Model	
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n(t + 1) = An(t)



pop vec at t+1	


Survival - Growth	
 Fertility	


pop vec at t	


Easterling et al. 2000	


Integral Projection Model	


n(y,t + 1) = K(y, x)
Ω
∫ n(x,t)dx

KERNEL	


n(t + 1) = An(t)



Survival – Growth function	


Fertility function	


IPM (size-dependent) Functions	


p(x, y) = s(x)g(x, y)

f (x, y) = s(x) f f (x) fn (x)pg pe fd (y)



Survival function s(x)	

s(x) modeling the probability of survival at time t

+1 as a logistic function of size x at t	


log it s(x)[ ] = log s(x)
1− s(x)
⎡
⎣⎢

⎤
⎦⎥
= β1 + β2x

s(x) = exp(β1 + β2x)
1+ exp(β1 + β2x)

HOW TO IN R?: fit a generalized linear model ‘glm(y~x, 
family=binomial)’, with a binomial error structure, a log link 
function in R to obtain the βs and write the s(x) function.!



Growth function g(x,y)	

modeling size at t+1 as a (truncated) normal distribution 

with mean μy and standard deviation σy, x being the size at t	


g(x, y) = dnorm(µy ,σ y )

� 

µy = β1 + β2 x
σ y = f (x, covariates,...) or constant	


HOW TO IN R?: fit a linear model ‘lm(y~x)’ in R to obtain the 
βs and σy and write the g(y,x) function.!
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µy = β1 + β2 x
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Campanula thysoides	

Kuss et al. 2008 	


Onopordum illyricum	

Ellner & Rees 2006 	


Cirsium canescens	

Rose et al. 2005 	


Cirsium canescens	

Easterling et al. 2000 	




Size-dependent variance	


lm(var~x) 

σ2=Φ +γŷ	

Variance as a linear function of size	


Exponential variance function (varExp)	


σ2=Φ exp(-γŷ)	

gls(s1~s0, weight=varExp(form=~fitted(.))) 



Exponential variance	




Other variance functions	


varExp 	
 	
exponential of a variance covariate. 	
	

varPower 	
power of a variance covariate. 	
	

varIdent 	
constant variance (s), to allow different variances 
	
 	
 	
 	
according to the levels of a classification factor. 	
	


varFixed 	
fixed weights, determined by a variance covariate	

varComb	
 	
combination of variance functions. 	
	




Easterling et al. (2000); Fig. 1	


Survival - Growth	




Fertility function f(x,y)	


f (x, y) = s(x) f f (x) fn (x)pg pe fd (y)
ff(x): logit(y)=β1+β2x;  probability of fruiting (logistic)	

fn(x): log(μf)= β1+β2x;  number of fruits (truncated Poisson, 
	
 	
 	
 	
negative binomial, zero-inflated Poisson)	


fd(y): dnorm(μsdl,σsdl): size distribution of seedlings (Normal)	

pg : probability of seed germinating (field experiment)	

pe : probability of seedling establishment (field, experiment). 	


a combination of Poisson, logistic, normal distributions 
to obtain the size distribution of offspring.	


HOW TO IN R?: fit a logisic glm(y~x, binomial), Poisson model 
glm(y~x, Poisson), to obtain the βs, calculate μsdl, σsdl from data, 
build function dnorm and write the f(x,y) function.!



Easterling et al. (2000); Fig. 2	


Fertility	




Step-by-step IPM	


1.  Fit statistical models to obtain the parameters 
for s(x),	  g(x,y) and f(x,y)	


2.  Write R functions for s(x),	  g(x,y) and f(x,y)	  and	

3.  Combine functions to write the Kernel          

K(x,y)=s(x)g(x,y)+f(x,y)	  as R function	

4.  Numerical integration of K(x,y) by creating a 

“big matrix” (mid-point rule, integration,…)	

5.  Use basic matrix algebra to get the dominant 

eigenvalue, eigenvectors, and sensitivity analysis, 
LTRE (“popbio”)	




Kernel surface plot	

Survival-Growth	


Fertility	


Kernel K	


Easterling et al. (2000); Fig. 3	




Numerical integration	


2:  An integral is the 
area below the curve 
(pdf) bound by the 
limits of the integral	


1: A probability density 
function (pdf) is not a 
probability; the integral 
of pdf is!	




size of the “big matrix”	

50 x 50 or 100 x 100 or 300 x 300…?	


Check 1: Are the column 
sums of the big matrix =< 
1?	


Check 2: Is the big matrix 
non-negative and 
irreducible (I+Msxs)s-1 is 
positive?	
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Findings eigenvalues and eigenvectors in R 	


e<-eigen(M)      # eigenanalysis 
lambda<-Re(e$values[1])  # dominant eigenvalue 

## right eigenvector 
w<-Re(e$vectors[,1])   # stable (st)age distribution 
w<-v/sum(v)      # standardize to total density 

## left eigenvector 
et<- eigen(t(M) 
v<- Re(et$vectors[,1])    
v<-w/w[1]      # reproductive value    

   

Let’s M be the big matrix	
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demogR 



2 3 4 5

0.
00
0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

S
ta

bl
e 

st
ag

e 
di

st
rib

ut
io

n

2 3 4 5

0
50

10
0

15
0

20
0

R
ep

ro
du

ct
iv

e 
va

lu
es

Diameter at t (log scale)

Stable stage distribution and Reproductive value	




2 3 4 5

5
4

3
2

Diameter at t (log scale)

D
ia

m
et

er
 a

t t
+1

 (l
og

 s
ca

le
)

Elasticity: Harvest

2 3 4 5

5
4

3
2

Diameter at t (log scale)

D
ia

m
et

er
 a

t t
+1

 (l
og

 s
ca

le
)

Elasticity: Unharvest
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IPM: what for?	

•  Estimate of age-specific demography parameters	


–  age (not stage) at first reproduction	

–  age of tropical trees	


•  Testing effect of multiple continuous factors on 
population dynamics	

– multiple NTFP harvest (foliage and bark, …)	

– NTFP harvest and variation in soil contents/rainfall	

–  contribution of various reproductive strategies in 

variable ecological conditions	


•  Evolution of life histories strategies	
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