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CHAPTER 1 |

VECTOR SPACES

Definition 1.1. A vector space consists of a non-empty set X where its elements are called
vectors and a scalar field F in which its elements are called scalars, endowed with two opera-

tions one called addition and the other called multiplication that satisfy several properties.

Remark 1.1. Even though the scalar field F can be very general, in this course we just

consider F as being the real numbers R or the complex numbers C.

Addition operation: Scalar operation:
+: XxX — F G Fx X — X
(x,y) —> x+y (a,x) — a-x

These operations must satisfy the following properties:

1. (x4+y)+z=x+Wy+2z), VxyzecX

2. x+y=y+x, Vx,yeX

3. 30 € X suchthat x4+0=0+x=x, Vxe X

4. Given x € X,3x' € X suchthat x+x' =x"4+x=0
5 - (x+y)=A-x+A-y, VAEF, VxyeX

6. A4+p)-x=A-x+pu-x, VAucF, xeX
7.AMp) -x=(Au)-x, VA, ueFVxeX

8. Thereisanelement1 € Xsuchthatl-x=x, Vxe X

Remark 1.2. The set X endowed with these two operation and satisfying these eight prop-
erties is called a vector space, and denoted by (X, +, ).

Remark 1.3. The set X endowed with the operation addition and satisfying the first four
propoerties is called an additive group and is denoted by (X, +).
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Example 1.1. Take X = R the real numbers, endowed with the usual operations of

addition and multiplication. Then (IR, +, .) is the vector space of real numbers.

Example 1.2. Let X = R" = {x = (x1,---,x,) suchthat x; € R} endowed
with the operations definded by:
Forx = (x1, -+ ,xn), y=(y1, - ,yn) E R"and A € F

x+y:(x1+]/1,"',xn+yn)/ Ax:()\xll...,/\xn)'

One can show that these two operations satisfy the eight properties above so that

R", +,-) is a vector space.
p

Example 1.3. Let X = M« be the set of all n x m-matrices with n rows and m

columns, with the following operations:

a1 aip ..., by1 by ...biy
A a?1 a%Z ---.QZm B b1 by ...byy
Ayl A2 .. Aum b1 by ...bum
a1 +by app+ba ..ay + by Aapy Aapp .. Aayy
A+B = a1 + by1 ax + by ... ﬂzm. + bo NA — /\6?21 M.lzz o Aoy
anb,a  awp +bx .. apm + bum Ay Adpn .. Adgy

where A, B € M, xm. We can show that (M, x, +, -) is a vctor space, usually called
the vector space of the n x m-matrices.

Example 1.4. Let X = C[a, b] be the set of all continuous functions defined on the
interval [a, b]. We endow Cla, b] with the following operations:
Vf,g € Cla,bland YA € Ror C

L (f+8)(t) = f(t) +8(t)
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2. (Af)(t) = Af(1).

One can show that (Cla, b], +, ) is vector space usually called the space of the contin-

uous functions on [a, b].



CHAPTER 2 |

METRIC AND NORMED SPACES

Definition 2.1. Let X be an arbitrary non-empty set. A metric on X is a mapping d :
X x X — R satisfying

1. d(x,y) > 0and d(x,y) = 0 ifand only if x = y.
2.d(x,y)=d(y,x) Vx,yeX
3. d(x,z) <d(x,y)+d(y,z) VYx,yzeX

The set X endowed with the mapping d and sastisfying these three properties and
denoted by (X, d) is called a metric space.

Remark 2.1. Two different metrics defined on the same set X in general define two different
metric spaces.

Example 2.1. Let X be an arbitrary non-empty set X. Define on X the following
metric:

lifx#y

d: XxX—R (x,y)—d(x,y) :{ 0if xey

(X, d) is a metric space, usually called the trivial metric space.

Remark 2.2. This example tells us that any non-empty set can be made into a metric space.

Example 2.2. Let X = R",x = (x1,--- ,xu), ¥y = (y1,-- ,Yn). Define the follow-

ing metrics on R".

di(x,y) = |x1—yil+[x2—ya|+ -+ [xn — yul
da(x,y) = /I =Pt = el yal?

deo(x,y) = max|x; —yi|
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One can show that dq, dy, de are metrics and (IR”,d), (R",d,), (R",ds) are metric

spaces.

Example 2.3. Let X = C[a, b] be the set of all continuous functions defined in the
interval [a, b]; define the following metric on X:

doo(f,8) = max |f(x) — g(x)|

a<t<b

(Cla,b],d) is a metric space and known as the metric space of the continous func-
tions with the supremum metric.

Example 2.4. Let X = Cla, b, endowed with the folllowing metric.

af,8) = [ 1£0) ~g)la

where the integral is in the sense of Riemann. (Cla, b],d1) is a metric space.

Note that (Cla, b],d1) and (C[a, b], ds) are two distinct metric spaces.

Definition 2.2. A sequence in a metric space (X, d) is a mapping from the natural numbers
IN into X, usually denoted by (x,).
(xn) is said to be a convergent sequence to x € X if

Ve >0, IN=N(e)eN | n>N=d(xy,x)<e€

Definition 2.3. A sequence (x,) in a metric space (X, d) is said to be a Cauchy sequence if
Ve >0 IN=N(e)eN | nm>N=d(x,,xy) <€

Remark 2.3. It is a simple exercise to show that any convergent sequence in (X, d) is a
cauchy sequence.

Remark 2.4. A Cauchy sequence (xy,) in (X, d) is not necessarily a convergent sequence
in (X,d)
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Example 2.5.Let X = (0,1) and define a metric on X by d(x,y) = |x — y| where
the bars represent the absolute value Let x;,, = % It is obvious that (x,) is Cauchy se-
quence in (X, d), thatis d(xy, xp) = L Ll 0asn,m — cobutx, — 0where

0¢(0,1)

Definition 2.4. A metris space (X, d) is said to be a complete metric space if every Cauchy

sequence in (X, d) is convergent.

Example 2.6. The space in the Example 2.5 above is not complete.

Example 2.7. Let C[—1, 1] an define the metric

1
a(,8) = [ 1F(D) = g(nla

C[—1,1] is not a complete metric space. To prove that, let’s define the following se-

quence.
0 if—1<x<0

fu(x) = ¢ nx ingxS%
1 ifi<x<i
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1
Ao fu) = [ 1fal) = funl)

1
1 1
= / (mx—nx)dx+/”(1—nx)dx
0 =
1 1
_ monel (2oL,
2 no om/ 27|,
~om—n 1 1,1 1
2 E_E<F_E>—>O as n,m — Q.

Note that d(fu, fn) is the shaded area, so geometrically we can see that this area
tends to 0 as n,m — oo.

As d(fn, fm) — 0as n,m — oo, this implies that f,(x) is a Cauchy sequence in
(C[—1,1],d), but we can see that f,,(x) converges to the function

f<t):{o if-1<x<0

1 if0<x<1
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f & C[—1,1] since f is not continuous at x = 0, even though

1
— —0
m

1 1
AW f) = [ () = ()l = 5
Example 2.8. In C[—1,1] define the metric given by

d(f,g) = max {|f(x)—g(x)[}

—1<x<1
It’ not hard to show that C[—1,1] endowed with this metric d is a complete metric

space.

Example 2.9. Let R" endowed with any of the metrics d;, dy and d in the example
2.2, then (R",dq), (R",dy) and (R", d«) are examples of complete metric spaces.
Note that later one we will show that if we endow R” with any metric p, then (R", p)

is complete metric space.

Definition 2.5. Let (X, +, -) be a vector space over the scalar field F(RR or C).
A norm in X is a mapping denoted by || - || x from X into [0, 00), that is

- 1x : X —[0,00)

satisfying the conditions
1. ||x||x = 0ifand only if x = 0
2. JAxllx = [Alllxllx,Vx € X, A€F
3. x4+ yllx < llx[lx +lyllx, Vx,y € X

A vector space (X, +, ) endowed with anorm || - ||x is called normed vector space,
usually denoted by (X, || - ||x) or (X, +,-, || - ||x)

Remark 2.5. The condition 3 is usaully called the triangle inequality.

Remark 2.6. Any normed vector space (X, || - ||x) can be made into a metric space, by

defining the following metric d(x,y) = ||x — y||x
Remark 2.7. Under certain conditions, a metric space (X, d) ca be made into normed space.

9
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Example 2.10. Let X = R". Define in X the following mappings. For x =

(xll"' /xn)
[x[]1 = [xq| 4+ - |xn)

1l = /o + - -+ 23

[1¥[leo = max{|x], - -+, |2}

With some degree of difficulty, one can show that || - ||1,]| - ||2 and ||||e satisfy all
three conditions of norms, so that (R”, || - ||1), (R", || - ||2) and (R", || - || ) are normed
spaces.

Example 2.11. Let X = C|[a,b], the continuous functions defined in the interval
[a, b]. Define the mapping
1fllos = max {I£(x)]}

One can show that || - ||e is @ norm and (Cla, b}, || - ||«) is @a normed space.

Example 2.12. Let C[a, b]. Define the following mappings

1l = [ 17

1l = ( [ |f<t>|2dt>
17l = ( [ If(t)\Pdt>

We can show that || - [|1, || - [l2and || - ||, (1 < p < o) are norms in C[a, b] and the

N|—

4

integrals are taken in the Riemann sense.
Note that except for || - ||1, the proofs of the properties of norms for || - ||, (1 <p <
c0) is not very simple.

Example 2.13. Let X = R",x = (x1,---,x,) and for 1 < p < oo, define the

10
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mappings || - ||, by

1 n 1
x|lp = (lxt] 4+ [xalP) P = (Y [xilP)”
i=1

Again one can prove that || - [[, is a norm and so (R", || - [[,) is a normed space

usually denoted by [7,.

Example 2.14. The spaces [, for (1 << p < o). A sequence x = (x,) belongs to
the space I, for (1 < p < c0) and x/s in R if

xll, = (Y xif?) P <00 for (1 << p < oo)
i=1

|[x[|eo = Suplxy| < o0
n>1

Define the following operationsin I, for x = (x1, -+ ,xu,---)andy = (y1, -, Yu, " - -
Xty =ty Xt Yo

Ax = (Axq, -+, Axy, - +)

The mappings ||x||, and ||x|| satisfy the propoerties of norms. Therefore we can
show that (I, +,-,|| - ||;) is a normed vector space. Note that these spaces I, for

1 < p < oo are usually known as little [, spaces.

Remark 2.8. To show that || - ||, is a norm for 1 < p < co, we have to use the well-known

"Holder’s Inequality” that says:
1 1
Ux: (xll"'/xl’ll"') elpand]/: (yll"'/y}’l/"') EZE]/l < Pzﬁl<ooz—+a:1/

p
then
o) 0 1/p o0 1/q
Z [ XnYn| < ( Z |xn|p) ( Z |yn|q)
n=1 n=1 n=1

Example 2.15. Let X = C![a, b] the set of real-valued functions that is continuous

11
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differentialble functions in the interval [a, b]. Define the mapping || - || on C'[a, b] by

UfI1 = max {£(2)[}+ max {|7'(1)]}

a<t<b

One can show that with the usual operations of additions and scalar multiplication
of functions, (C![a, b], +, -) is a vector space and that || - || is a norm in C![a, b] and so
(Cla,b],+,-, || - ||) is a normed space.

Example 2.16. Define the space C = {x = (xy) ;nhinmxn exists} and a function

- Ilc by

|x[|c = Sup|xx|
n>1

Define the operations by for x = (x,),y = (yx)
X+y= (xn + ]/n)

Ax = (Axy)

one can show that || - ||c isanorm and (C, +, -) is a vector space and so (C, +, -, || - ||c)

is a normed space.
Remark 2.9. The space C is well-known as the space of convergent sequences.

Example 2.17. Define the space Cy = {x = (xy); hgl x, = 0} and a function
n [ee]

|- Il by

||xl[c, = Sup|xx]
n>1

(Co,+, 1] - ||c,) is normed vector space and is well known as the space of convergent

sequences to zero.

Remark 2.10. Note that we have the following inclusions of the spaces loo, C and Co:

Definition 2.6. Define the space BV [a, b] in the following way.
Let a = xy < x1 < --- < x, = b be a partition of the interval [a, b] and

Vs (f) = Sup 21 £ () — fxin)]

12



Metric and Normed Spaces

for all partitions and f a real-valued function defined in [a, b].
Then

f € BV]a,b] ifandonlyif Vi (f) < oco.

Define
[ fllBv = |f(@)] + Viap ()
One can show that with the usual operations of additions and scalar multiplication

of functions that (BV|[a, b], +, -) is a vector space and || - ||y is a norm on it so that
(BVla,b],+,-,|| - ||sv) is normed space.

Remark 2.11. The space BV [a, b] is well-known as the space on the Bounded variations
functions.
Definition 2.7. Define the space AC|a, b] as the following:
A function f € BV|a,b] is said to be absolutely continuous if for each € > 0, there is 6 > 0
n

such that Y _ | f(b;) — f(a;)| < € whenever (a;, b;),i =1, - - ,n are non-overlaapping subin-
i=1

n
tervals of [a,b] and Y |b; — a;| < 6.

n=1

The space ACla, b] is defined for intervals [a, b] and consists of all absolutely con-
tinuous functions on [a, b]. We endow AC|a, b] with

fllac = 1f(@)] + Via (f)

One can show that with the usual operations, (ACla,b],+,-) is a vector space and
|| - || ac is norm. ACla, b] is called the space of absolutely continous functions.

Example 2.18. Let H?(ID) be the set of analytic functions F defined in the unit disc
D such that

n .
||F||gr = Sup (/ |F(relg)|pd6> <o for 1<p<oo
-7

0<r<1

and

||F||ge = Sup|F(z)| < 0o, for p=o0

|z| <1

13
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One can show that (H?(ID), +, -, || - ||g») is a normed vector space. This space is well-
known as the Hardy space.

Example 2.19. Let X = Lip,,0 < a < 1, be the space of all continous functions f
defined in the interval [a, b] such that

flx+h) = f(x)
htX

[ 1Lip, = [Ifllec + Sup < oo

X
h>0

(Lip,, +, [| - |ILip, ) is normed vector space and is well-known as the Lipschitz space.

Example 2.20. Let X = A,,0 < a < 2 be the space of the continuous functions in
the interval [g, b] such that

fx+h) + flx—h) —2f(x)

1Ay = 1Iflleo 4 Sup i < o0
>0
(Aa,+, /1] - lla,) is normed vector space and is well-known as the Generalized

Lipschitz space.

Remark 2.12. Some properties of the spaces Lip, and A, for 0 < a < 2

1. For « = 1, A1 is well-known to be the Zygmund class in the theory of approximations
and usually denoted by A..

2. for « > 1, Lip, only contains the constant functions.
3. Ay & Lipg & Lip,, « <p.

4. Lip, & Ny, 0<a<l

5. Lip, =Ny, 0<a<1

Definition 2.8. Define the space S, of all analytic functions F defined in the unit disc such
that

|Flls, = Sup (1—|z])'™¥|F(z)] <00, O0<a<1

0<|z|<1

14



Metric and Normed Spaces

The space (Sa, +,-, || - ||s,) is a normed vector space and is well-known as the analytic char-
acterization of the space Lip,, for 0 < a < 1o0n [0,27].

Example 2.21. Define the space BMO as the space of all periodic functions f of
period 27t and defined in [0, 27] such that

1
Hﬂbmo:=Hﬂh+&?ﬁlﬂmﬂ0—ﬁwh<w
27T
Ul = [l

Lis an interval in [0,277] and f; = ﬁ [; f(t)dt
(BMO, +,-,|| - ||lsmo) is a normed vector space and is well-known in the area of Har-

monic Analysis as the space of Bounded Means Oscillations.

Example 2.22. De Souza’s Spaces B'.

Let f be a function defined in the interval [a, b] that can be represented in the form

ﬂﬂzi%Mﬂ

where ¢,,’s are numbers such that ;" |c,| < oo and the b,’s are functions of the form

= e — (0], b =1

bu(t)
where the I,,’s are interval in [a, b].
XR,, XL, are the characteristic functions of the interval R, and L, I, = R, UL, with
R, and L,, the halves of the interval I,,.

(o]
|||z =Inf ) _ |cu|, where th infimum is taken over all possible representations of
n=0
f. The space (B!, +,-,]| - ||g1) is a normed vector space, usually mentioned in the area

of harmonic analysis as the De Souza Space.

Remark 2.13. The space B! now well-known as the De Souza’s space was introduced by
Geraldo De Souza in his PhD dissertation in 1980 in the department of mathematics at the
University of Albany, the capital city of the New-York state, under the supervision of professor

15
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Richard O’Neil.

Example 2.23. The complex form of the De Souza Space.
Let A be the space of analytic functions defined in the unit disc ID such that

1 /27 .
I|F||a = / / IF (re'®)|d6dr < oo
0 JO

where the dash means the derivative of F. The space (A, +, -, || - || 4) is normed vector

space.

Remark 2.14. The space A is known as the analytic characterization of the De Souza’s
space B! and it was published in the journal of London Mathematicaal Society in 1983. It was
a very old unsolved problem to characterize the boundary values of a function in the space A,
in other words, characterize the space of functions defined on the inteval [0, 27| that are limit

of the real part of these analytic functions in A.

16



CHAPTER 3 |

BANACH AND HILBERT SPACES

Let (X,+,-, || - ||x) be a normed vector space. We always look ||x|x as the length
of the vector x. As we saw earlier that d(x,y) = ||x — y||x, defines a metric on X
and we usually assume that the normed space X is endowed with this metric and the
topology associated with this is called the metric topology. Therefore, a sequence (x;,)
in X which converges to x € X in the norm topology if and only if ||x, — x||x — 0 as
n — oo that is,

X, — x in the norm topology <= |jx, —x|[x — 0 as n —

Similarly, we say that a sequence (x,) in X is a Cauchy sequence in the norm topology

if || xy, — xm||x —> 0as n,m — oo. More precisely,
Ve >0,dN = N(e) € N suchthatif n,m >N then |x;,—xulx<e€

Definition 3.1. A normed vector space (X, +, -, || - ||x) is said to be a Banach space if every
Cauchy sequence in X is convergent in X.

Remark 3.1. An equivalent way to define a Banach space is that the associated metric space
to the normed vector space is complete, that is (X, d) where d(x,y) = ||x — y||x is a complete

metric space.

Remark 3.2. The concept of completeness in a normed space is very important in functional
analysis and the varieties of normed space which are complete in analysis is enormous. It does
not mean that one is more important that the others, all that depends on the area we are working

on and what our goals are.

Remark 3.3. The completeness of a normed vector space X depends on the norm we define

on it. the same space can be complete with one norm but not complete with another.

Example 3.1. Let’s get back to the Example 2.7 and 2.8.

17
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In C[—1,1] we define the norm || f||c = r?azb{|f(x)|}
a<x<
One can show that (C[—1,1], 4, - ||) is @ complete normed space,that is a Banach

1
space. On the other hand, if we endow C[—1,1] with the norm ||f||; = / | f(¢)]dt,
-1

then we can show that the sequence

0 if-1<x
fu(x) =< nx ifOSxS%
1 ifl<x<t

IN

0

is a Cauchy sequence in (C[—1,1],+,-, || - ||1), thatis || fu — fml|l1 — 0asn,m — oo.
Moreover, we can show that f,(x) converges to f(x) in the norm topology where
f(x) =0if =1 <x <0, f(x) =1if 0 < x < 1. Indeed we showed that

== [ 10— fOla =3 L —0 a5 n—s oo

The conclusion is that the sequence ( f,,) is a Cauchy sequence in (C[—1,1],+,-, || - |[1)
which converges to f but f is not a function in C[—1, 1] since it’s not continuous at

x = 0. Therefore (C[—1,1],+,-, || - [[1) is not a Banach space.

Remark 3.4. The lack of completeness in a normd vectors space is not all bad. In reality, each
metric space(complete or not) can be viewed as a “dense” subspace in some complete metric
space. This complete metric space is usually called the complettion of a metric space.

Example 3.2. (R",|| - ||1), (R", || - ||2) and (R", || - ||c) in example 2.1 are Banach

spaces.
Remark 3.5. Examples 2.11-2.25 are examples of Banach spaces.

Remark 3.6. Example 3.2 and the examples in the remark 3.5 are Banach spaces quite often

seen in various areas of analysis.

Remark 3.7. Note that in a Banach space, the concept of convergent sequence and Cauchy
sequence are equivalent, therefore it gives us the luxury to know if a given sequence is conver-

gent just comparing the terms of the sequence for n, m very large, that is for n,m — oo.

Example 3.3. An important example of a normed space not complete is the rational

numbers Q endowed with the usual operations of addition and multiplication (F =

18
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Q) and a norm defined as the absolute value, that is for g € Q, ||9/lo = |4/
(Q,+,+ ] - |l@) is a normed space over the field F = Q. But it’s not complete.

For example, take g,,+1 = %(qn + qi), gn € Q. Note that (g,,) is a Cauchy sequence

n
in Q; moreover g, — V2¢Q
the completion of Q is the well-known set of real numbers.

Remark 3.8. A technique to how a normed space is complete or incomplete is the use of
the concept of absolutely convergent series in a normed space which generalize the concept of
absolutely convergent series of real numbers. For example, if (x,,) are real numbers, then every
absolutely convergent series is convergent.

Definition 3.2. Let X be a normed vector space and Z Xn, Xxn € Xaseriesin X. We

n=1
[e ) o0

say that the series Y x,, xn € X converges absolutely if the numerical series Y _ ||xu| x is
n=1 n=1
convergent.
Remark 3.9. The concept of series in a normed vector space X can be defined as: Let

X1, ,Xn, - € Xand Sy = x1 + - - - + xp, the partial sum. We say that

n

Y xi—x

i=1

—0 as n— o
X

Sp — x as n — co in the norm topology if

[e0]
, and so we say that the series Z x; converges to x
i=1

The next result is very important and useful to show that a given normed space is

complete or incomplete.

Theorem 3.1. Let X be a normed vector space and Y, x, a series in X.

X is complete if and only if every absolutely convergent series in X is convergent, that is
X iscomplete <= every absolutely convergent series in X is convergent

Remark 3.10. This theorem appears in any calculus book in section of numerical series in
the following form:

“Any numerical series that is absolutely convergent is convergent”

19
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This is true since the real numbers R as a normed vector space is complete but the
difficult part is to show that if any numerical series that is absolutely convergent is

convergent, then the real numbers as a normed space is complete.
Remark 3.11. To show Theorem 3.1, we need the following Theorem.

Theorem 3.2. Let X be a normed vector space. If (x,) is a Cauchy sequence in X which

contains a convergent subsequence (xy, ), then (x,) is a convergent sequance in X.

Proof. Let x, be a Cauchy sequence in X and (x,,) a convergent subsequence, i.e
Xn, — x fork — coor ||x,, — x||x —> Oask — co.

Writing x, — x = x;, — X, + X, — X and using the triangle inequality, we get:
[len =l < e = 2, [l + [l — x[[x

Now since (xy, ) is convergent, we can find an Nj so that for n, > Ny, ||x,, — x||lx — 0
On the other hand (x,) is a Cauchy sequence, so we can find an N, so that for n, n; >
N, ||%n — %y, |[x — 0. Consequently, for n > Max{Nj, N}, we get ||x, — x||x —
0 O

Proof. Proof of Theorem 3.1

[ee] n
—) Let (x,,) be a sequence so that ) _ ||x,||x < co. Define a sequence S, = ) _ x;,
n=1 k=1

m
then S, — S, = Z xi. Assume, without loss of generality, that n < m and so
k=n

m
lsn —smllx < Y llxllx
k=n

(o]
and as ) _ ||x||x < oo, we have

k=1
|Sn — Smllx — 0 as n,m — o
[,°]
That is Z Xy is convergent.
n=1

<=) The idea of the proof is to take a Cauchy sequence in X and show using the
hypothesis that we can construct a convergent subsequence and so the Theorem 3.2
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concludes that this Cauchy sequence is convergent.

Let (x,) be a Cauchy sequence in X, thatis given €, AN = N(e) so that ||x, — xu||x < €
foralln > N

Let’s take € = % and since (x,) is a Cauchy sequence. There is an N; and so that
|y — x| x < %,n,m > Nj.

For e = 21—2 and since (x,,) is a Cauchy sequence so there is an N; so that Ny < N, and
|y — x| < le,n,m > No.

For e = 2% and since (x,) is a Cauchy sequence, there is an N3 so that Ny < N, < Nj
and [|x;, — xp||x < %,n,m > Njs.

If we continue this procedure, we get for € = 217/ we will find an Ni, so that Ny < N, <
-+ < Npand [|x, — x| < Zl—k, for n,m > Nj.

We now consider the subsequence xy;, xn,, - -+ , XN, - - - . We will show that this sub-
sequence (xy,) is convergent. In fact, definde vy = xn, — xn,_, if Kk > 1 and y; = xy;.

We will show that 2 Yk is absolutely convergent i.e.
k=2

oo (o)

(o]

1
Y- el = X ln, = xnllx < 3 o < o0
k=2 k=1 k=2

(e °]
Therefore using the hypothesis the series ) _ yy is convergent i.e. thereis any € X so
k=1

n
that H Zyk—yHX — 0 as n — oo. Note that
k=2

n n
Yoy =Y (XN, —XN_,) = XN, — XNy F XNy — XN, 0 XN, — XN, = XN,
=2 =2

SO

n
Zyk_]/:an—}/ ie. Jxn, —yllx — 0 as n— o
k=2

This tells us that the Cauchy sequence (x;) in X has a convergent subsequence (xy, ).
Therefore by Theorem 3.2, it imply that (x,) is convergent so that X is complete.
O]

Remark 3.12. Theorem 3.1 is possibly the easiest way to show that the De Souza’s space in
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the example 2.25 is a complete and so a Banach.

Example 3.4. The Lebesgue spaces L,,0 < p < 0. The Ly, is a space defined as the
space of all measurable functions f on a measure space (X, F, u) for which |f(x)|? is

integrable in other words
L,={f:X—R or C sothat /X £ () |Pdy(x) < oo}
We define a “norm” in L, as

1
p

IIpr:( /. !f(X>|”dM(X)> for 0<p<eo

| flleo = EssSupf = Inf{M; |f(x) < M| ae.}

The L, spaces is not a space of functions since functions which agree almost ev-
erywhere have the same integral. Indeed L, spaces is a space formed by equivalence
classes. In fact the class [f] is defined as [f] = {g¢: ¢ = fa.e.} soif h, ¢ € [f], we have

1Ay = llgllp = (171l

Remark 3.13. L, is endowed with the usual operations of adition and scalar multiplication

and Ly, is closed under these operations To see the closedness of addition, we need the following

fact:
f gl < (IfI +1gD)P < 2Max{|f], |g[})P = 2"Max{|f|P, |g["} < 27 ([ f|P + |g]")

Therefore if f, ¢ € Ly, then f + ¢ € Ly,
For the scalar multiplication, it follows easily from the fact that |Af|F = |A|P|f|P

Remark 3.14. For 1 < p < oo, we can show that || f ||, is a semi-norm, that is, it satisfies all
the properties of norm except || f||, = 0 is not necessarily implies f = 0. Indeed, we have that
if | fllp = O then f = 0 almost everywhere which is, the set for which f # 0 has measure zero.
Therefore, to resolve this issue, we identify all the functions whose difference is a constant i.e.
f, f + c are considered the same. This identification can be formally done using the quotient
space defined with the equivalence relations f ~ 0 if u{x € X : f(x) # 0} = 0 that is
the measure of the set {x € X : f(x) # 0} is zero. This quotient space which is formed by
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equivalent classes is called the Lebesgue space L.

Remark 3.15. For 0 < p < 1,||f||, is not a norm since ||f + g, > || fll, + gl but if
we define the function d(f,g) = ||f — gllb, 0 < p < 1, we can show that d is a metric in
L, and that (Lp,d) is a complete metric space.

Remark 3.16. In the spaces L, we have two important inequalities that we state here:

Theorem 3.3. 1. Minkowski Inequality

1f+&llp < lIfllp + 118l forall f,ge€Ly1<p<eo

2. Holder’s Inequality

1 1
If fELp,geLq,lgp,qgoo,ﬁ—i—a:l then f,g € L.

Moreover, || fgll1 < |IfIl»llgllq

Remark 3.17. The proof of Theorem 3.3| follows from a simple lemma established for real
numbers which says :

P
If a, b are positives real numbers such that1 < p,q < co, then ab < % + % and the equality
holdsifa ="

For p = oo, the theorem is immediate.

The proof of this assertion can easily be done if we use geometric considerations.

For example, define the functions ¢(t) = tP=1 0 < t < a whose inverse is go_l(t) =

tq_l,Ogtgbforl+1:1
p 4
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-

=i
|
0 | a

A-—/aawr—/Z%Mr—ﬂ
1_O(P _O _P

b b 2
AZ::/‘q)l(ﬂdt::/,tq1dt:-—
0 0

Geometrically, we can easily se that the area of the rectangle of dimensions a2 and b

P q
is smaller than the area A; plus area A;. Thatisab < Ay 4+ Ay orab < % + % also

geometrically, one can see that the equality holds if a = b.
Proof. Proof of Theorem [3.3| part 2

ol TIO]
e = sl

In the lemma, take a = and integrate to obtain

L@VUNﬂﬂMWOSHﬂM@M

Proof of Theorem [3.3| part 1
1 1
Note |f +¢|P = |f +gllf +gP~ L. As p +§ = 1, we can show that |f + ¢|P~! € L,

indeed since p = q(p — 1), we get/ If + 7P Ddy = / |f+g|Pdp < oo
X X
Part 1 follows from part 2.

/X f +glPdpu = /X f+gllf +81P tdu < /X FILf+glP~ dp +/X 8llf+glP~ldu < oo

Using part 2 in these last integrals, we conclude that
1f +gllp < 11A1lp + Ny
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]

Definition 3.3. Let X be a vector space, we define an inner product in X as a function
<,>: X x X — R or C. That satisfy the following properties forall x,y,z € X,,u € Ror
C.

1. <x,x>>0,<x,x >=0ifand only if x = 0.
2. < x,y >= < y,x > where the bar means the conjugate of complex numbers.
3. <Ax+py,z>=A<x,z>+u<y,z>.
The vector space X endowed with a inner product is called an inner product space.
Example 3.5. Let X = R", define <, > inR" by forx = (x1,--- , %),y = (y1,- - , Xn),
n
<X, Yy>=x1Y1+ -+ XnYn = inyi
i=1
One can show that <, > is an inner product in X = R". in case that we take X =
Cl’l,u = (ull e lui’l)lv = (Ul//vi’l)
n

<U,0>=uU101+ -+ uUyoy = Zuiﬁi
i=1

Example 3.6. Let X = [ (Example 2.14)
X = (xll... ’xn’...)’y: (yll... ,yn’...) E lZ-
<Xy >=)_ X7 (3.1)
i=1
is an inner product. The bar means the complex conjugation in C, the complex num-

bers. If we use the real numbers R, we don’t need it.

Remark 3.18. The convergence of the series |3.1| follows as a consequence of the Cauchy-
Schwarz inequality below.
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Example 3.7. Let X = C[a, b]. Define <, > as

< fg>= [ fsx

is an inner product.
Example 3.8. Let X = L,(S, F, u). Define <, > as

< fig>= [ F3®du)
is an inner product.

Remark 3.19. The next results are very important for spaces endowed with inner product.

Theorem 3.4. (Cauchy-Schwarz inequality) Let X be an inner product space and x,y € X.
Then

l<xy>P< <xx>-<yy>
Equality holds of and only if x abd y are linearly dependent.

Proof. Let’s consider the inner product of the vector Ax — uy by itself where x,y €
R", A, u are scalars.

<Ax—py, Ax —py >= AP <x,x> +Hplf <yy>-Ap<x,y>-AE<y,x>>0

Since < Ax — uy, Ax —uy >> O forall A, u scalars, let'stake A =< x,y >, u =< x,x >
then

l<xy>PP<xx>+<x,x>PP<yy>-2<xx>|<xy>[>>0

which implies
l<xy>2P< <xx>-<yy>

It is trivial to show that the equality holds if and only if x, y are linearly dependent. [

Theorem 3.5. The functions || - ||x : X — R defined by ||x||x = /< x,x > is a norm in
X.
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Theorem 3.6. The inner product <, >: X x X — Ror C is a continuous funtion in X x X.

Remark 3.20. The proof of 3.5 and [3.6] are immediate consequence of the propeties and
results on inner product.

Theorem 3.7 (Parallelogram Law). Let X be an inner product space; then for any x,y € X,

we have:
Ix +ylI% + llx —yl%x = 2(lIx11% + [lylI%)

Proof. To see this equality, just expand the left-hand side and take into consideration
that ||x||3 =< x,x >
O

Remark 3.21. Not every norm comes from an inner product, for example from the 3 norms
we defined in the example 2.10 for R", || - ||1, || - ||eo and || - ||2, just || - ||2 comes from an inner

product. Indeed, x = (x1,- -+ ,xy),

lxllz = /234 +of = V<x x>

Remark 3.22. For the spaces L,, 1 < p < oo defined in the example 3.4, just for p = 2 the
norm || - ||, comes from an inner product. In fact

1/2

1/2
1712 = ( /. \f(t)zdﬂ(tﬂ) ( /Xf(t)f(t>du(t>) RE

Remark 3.23. A vector space X endowed with an inner product is a normed vector space

where the nom is given by

|x]|x = V< x,x >.

Remark 3.24. It is important to note that if the norm in X comes from an inner product

space, then this norm have to satisfy the parallelogram Law (Theoem 3.7).

Definition 3.4. An inner product X which is complete is called a Hilbert space.
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1
Example 3.9. Let X = C[—1,1]and < f,g >= / f(t)g(t)dt.
-1
C[—1,1] is an inner product space, but is not a Hilbert space, since it is not com-
plete(Example 2.7)

Example 3.10. Let X = lhand < x,y >= Y70 ; X,y where x = (xq,- -+ , Xy, -+ ),y =
(y1,-*+ ,Yn,- ). I is a Hilbert space.

Example 3.10. Let X = L1[0,1] and ||f||; = /01 |f()]dt.
We can show that this norm || f||; does not come from an inner product. To see that,
take f(t) = xa(t), g(t) = xp(t) where A =[0,1/2) and B = [1/2,1].
Then ||f +glIf + IIf — gllF # 2(1£117 + lIglI3)-

In fact x4 +xslh = [ xa®dt+ [ xpdr= [ ars [ ar=
Likewise ||x4 — xgll1 = 1 whereas ||xall1 = 1/2and ||xg|1 = 1/2.

Therefore we get: 2 = |[xa + x5l% + lxa — xs8l1? # 2(|lxall? + xsl?) = 2(1/4 +
1/4) =1

Definition 3.5. Let X be an inner product space. We say that the vector space x is perpen-
dicular to a vector y € X and denote by x L yif < x,y >=0

Theorem 3.8 (The Pythagorean Theorem for an inner product space ). Let X be an inner

product space, then
If x Ly then |x+ylk=Ilx[%+llyl3
Yy Yiix x T IYix

Geometrically:
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CHAPTER 4 |

LINEAR TRANSFORMATIONS AND
CHARACTERIZATION OF BOUNDED LINEAR
FUNCTIONALS

Definition 4.1. Let X, Y be vector spaces over a field F. A function T : X — Y is said to

be a linear transformation if

T(ax+ By) = aT(x)+ BT(y), Vx,ye€ X,a,BEF

Remark 4.1. Some author use the terminology of Linear Operator rather than Linear

Transformation. Moreover the condition in the definition split into two, namely:
1. T(x+y)=T(x)+T(y), VxyeX
2. T(ax) =aT(x), Vx e X,Va €F.

Definition 4.2. If in the definition 4.1, the space Y is replaced by the field F, then the linear
transformation is usually called linear functional.

Example 4.1. Differentiation, Integration are examples of linear transformation

i) P=the vector space of polynomials:

D:P—>P,p»—>Dp:§—Z

ii) Cla,b] = the vector space of the continuous functions in |4, b].

b
I1:Clab] — R, f s I(f) = / F(b)dt
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Example 4.2.

i) T:R> — R? T(x,y) = (ax,ay). x,y € R%a € R. (Multiplication by a

scalar)
ii) T:R? — R?, T(x,y) = (y,x). T is reflection through the diagonal line.
iii) T:R*? — R?, T(x,y) = (x,0). Tis the projection of IR? onto the x-axis.
(iv) T:R? — R?, T(x,y) = (0,y). Tis the projection of R? onto the y-axis.
These are examples of linear transformations.
Example43. T:l, — I, x=(x1,- - ,xp,---) T(x)=(0,x1,%, 3, ,%%,
T is linear.

Note: Some elementary properties of linear transformations are given the next theo-

rem.

Theorem 4.1. Let X, Y be vector spaces over a field F and T : X — Y be a linear Transfor-

mation. Then:
i) T(0)=0
ii) Therange of T, R(T) ={y € Y: T(x) =y forsome x € X} issubspaceof Y.
iii) T is injective if ans only T(x) =0 = x = 0.
iv) If T is injective, then T~ exists in R(T) and T~' : R(T) — X is also linear.

Definition 4.3. Let X, Y be normed vector spaces and T : X — Y a linear transformation.
We say, that T is a bounded linear transformation if there is an absolute constant M > 0 such
that || Tx[|y < M|x[|x

Definition 4.4. Let X, Y be normed vector spaces and T : X — Y a linear transformation.

We say that T is continuous is X if for any sequence (x,) in X such that
Xp —x in X then T(x,) —T(x) in Y

Theorem 4.2. T : X — Y is continuous in x € X if and only T is continuous at zero.
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Remark 4.2. The proof of Theorem 4.2 is a direct application of the properties of linearity of
T.

Theorem 4.3. A linear transformation T : X — Y is bounded if and only if T is continuous.

Proof. =) Let (x,) in X be a convergent sequence, say x, —> x as 1 — oo, that is
|xn — x||x — 0as n — oco. Now since T is bounded,we have:

T (xn —x)|ly < M||xy —x||x. As ||xy — x||x — Oasn — oo,s0is || T(x, — x)||ly —
Oasn — oo.

<=). The proof of the other direction will be made by contradiction, that is assume
that there isno M > 0 so that || Tx||y < M||x||x. Then for any positive integer n, there

T
is x, € X, x, # 0so that | T(xy)|y > n||xn| x, this implies that W > 1.
ni| X
. xn xn 1
Define the sequence u, = so that [[u, — 0||x = || —— = - — 0as
n|xn|] n|xnl|x n
n— oojie. u, — 0in X.
T T
On the other hand, ||Tu, — 0|y = ||Tux|ly = (x) = ITGen) Iy > 1 so that
nxn||x n|xn||x

Tu, - 0 contradiction.
]

Remark 4.3. The idea of the proof by contradiction is to negate the hypothesis that T is
not bounded and to construct a sequence (uy) in X that converges to 0 € X, but the sequence

T (uy) does not converges to T(0) = 0.

Remark 44. If T : X — Y is a bounded linear transformation, then we have the
inequality ||Tx|ly < M]||x||x for some absolute constant M > 0 and for all x € X. it is
obvious the constant M in this inequality is not unique. Indeed if | Tx||y < 7| x||x, then
ITxlly <8[x|x <---

However, in general M is bounded from below. in fact 0 is a lower bound of M. This will tell
us that Inf{M : || Tx|ly < ||x||x} exists for all x € X. This observation suggests the next
definition.

Definition 4.5. Let T : X — Y be a linear transformation defined in the normed spaces
X and Y, then we define the norm ||T|| as

IT|| = InfiM > 0 : || Tx|ly < M||x|[x,Vx € X}
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Remark 4.5. The definition 4.5 immediatly implies that |Tx||y < ||T||||x||x and that for
every € > 0, there exists an xe € X, xe # 0o that || Txe|ly > (||T]| —€)||xellx

) T
Remark 4.6. If ||Tx||y < M||x||x, then we can write W
X

define || T|| by

< M; Therefore we can also

HTH S ||Tx||Y
x;«éO HxHX

Theorem 4.4. Let T : X — Y be a bounded linear transformation X,Y normed spaces, then
ITCx)lly
we have [|T|| = Sup | T(x)[ly = Sup [|T(x)[ly SMP—

¢l x<1 x| x=1 [E1M
p Let ||T]|'= S T T||I"= S T dIIT" =5 ||T()HY
roof. Let ||T||" = Sup |T(x)ly,[[T||" = Sup ||[T(x)[[y and ||T|| Py
[[x[[x=1 [ x]]x<1

Define the set B = {x € X;||x||x < 1}; then 0B = {x € X,||x||X = 1} so that
dB C B = Sup||Tx||y < Sup||Tx||y, thatis || T||" <

x€0B x€B
IT||"” (1)
Note that —— € 9B, x # 0. Since =1, then
[[x]Ix Hx [[x[Ix «
T(x X
sup IO _ gl X )| < sup | T(x)]l,
xneq0 HxHX x#0 Hx”X y llx]|x=1
so that
ITI" < [IT|" (.
1
Finally, if ||x||x < 1,x # 0, then ||T(x)||y < Tlx |IT(x)|ly. Since —— Tlx || > 1, there-
fore IT()|
Y
Sup [IT(x)|ly <S p—
Ixlx<1 Ixllx
that is

IT” < T @)

Putting (1), (2) and (3) together, we get || T||" < ||T||” < ||T||”” < ||T||" which implies
that | T = [[T[|" = | T||" O
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Example4.4. Let T : [, — I, bedefinedby T(x1,- - xy,---) = (0,x1,%,%,- -+, 3%, -

1 1 1
00 X, 2\ 2 © 1 ) 2 0o ) 2
Tl = L) < (XS] < X
n=1 n=1 n=1

that s |[Tx|;, < [|x]ly.
So T is a bounded linear transformation. Moreover, || T|| < 1.

Now if we takee; = (1,0,---,0,---), thenT(e;) = (0,1,0,---,0,---) and || T(e1)|1, =
1.

Consequenly ||T|| = Sup||T(x)||y > 1. So putting together || T|| < 1and ||T|| > 1, we

[l

get |T] =1 .
Example 4.5. Let T : Cla,b] — R be defined by Tf = / f(t)dt,Cla, b] endowed
a
with the Sup norm || f|| = Sup |f(t)].

a<t<b
T is a bounded linear transformation, moreover

71| = ‘ [ swal < [ 1pwan <l [ dt= 0 —a)lflls

that is,

ITAl < (b=a)|lflleo-
Therefore by definition of || - ||, we get || T|| < (b — a). On the other hand, if we take
g(t)y=1fora <t <b,|g|lc =1and |Tf| = /abldt = b — a so that

ITll = Sup |Tf|>b—a
[ fllo=1

consequently ||T|| = b —a.

Example 4.6. P[0, 1]=Set of polynomials defined in [0, 1].

D:P0,1] —s P[0,1]

d
p o DPZd—Z:P/
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Define the following norms in P[0, 1] by

|//

Ipllee = sup [p(5)] [Ipll” = max{|[plles, [[P"llo}

0<t<1

D: (P[0,1], [|.lle) — (P[0, 1], [|.[|ec)

d
Note that D(t") = nt"~! where p(t) = t", |Dpllc = ||P]lcc = n and ||p|lec = 1.
Therefore D is not bounded

if)
D: (POALIN") — (PO,1],]-]l)
p — Dp=yp
IDplle = [IP'llee < max{[[plleo, [lp'[lw} = [p[|". Therefore [|Dplleo = |lp[|".
Hence D is bounded.
Note that the boundedness of a linear transformation depends on the norms in

the spaces.

Definition 4.6. Let X and Y be normed spaces and denote B(X,Y) the set of all bounded
linear transformations from X to Y; moreover define the operations of addition and scalar
multiplication by (T + L)(x) = T(x) + L(x), (aT)(x) = aT(x), forall T,L € B(X,Y)
and « a scalar. Then B(X,Y') endowed with these operations becomes a vector space; moreover
if we define

ITIl = sup [[Tx]ly,

[[x]|x=1
then B(X,Y) is a normed vector space.

Theorem 4.5. Let X and Y be normed vector spaces. Then B(X,Y) is a Banach space if Y is

a Banach space.

Remark 4.7. Given any two normed spaces, X and Y, it is almost impossible in general

to characterize all the bounded linear transformations T : X — Y; in other words, to char-
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acterize explicitly the normed space B(X,Y). However in several cases, this is possible. For
example for X = R" and Y = R™. Also whenY is a scalar field R or C and for some X.

Theorem 4.6. Let X = R"and Y = R", T : R" — R™ a bounded linear transformation,
then there is a m x n matrix A so that Tx = Ax. Conversely if a m x n matrix A is given,
then T defined by Tx = Ax is bounded linear transformation. This means if we denote the set
of all m x n matrix by My, xn, the transformation  defined by

¥ : BRL,R™) — Myxn
T — p(T)=A

is a bijection. Therefore B(R",IR™) is identified as the vector spaces of the matrices My, xn,
that is, B(R", R™) = M, x .

Remark 4.8. In the particular case when Y = R or C, B(X,Y) is called the dual space of X
and it is denoted by X*. It is a very difficult and important problem in analysis, to characterize

the dual space of a given Banach space X. From a corollary of the Hahn-Banach extension
theorem, we have that Banach space X # {0}, then X* # {0}.

Remark 4.9. If we take X = R" then the Riesz’s representation theorem claims that
B(R",R) = (R")* is equivalent as a Banach space to R", that is, (R")* = R". Indeed we
have the following result, well-known as the Riesz’s Representation Theorem.

Theorem 4.7. Let fix y € R" and define ¢, (x) = (x,y) where (, ) is the inner product in R".
Then vy, is a bounded linear functional. Conversely if p € (R")*, there is a unique y € R" so
that 1 = ,; moreover

[l = lyllre-

Proof. To see that ¢y, is linear, all we need is to use the properties of the inner product.
For the boundedness, we need Theorem 3.4(The Cauchy-Shwarz inequality), that is

9y ()] = [(x )| < [y llre | %[ rn,

moreover

[yl < lyllre- (4.1)

On the other hand, if p(R")*, x = (x1, %, ..., x») € R" and {e;}} ;, the canonical basis
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n
forR" i.e.ey = (1,0,...,0),e2 = (0,1,0,...,0),...e, = (0,0, ...,0,1). Then x = Zx,-ei and
i=1
n
P(x) = )Y xip(e;), therefore if we take y = ip(eq, ..., P(en)). We get that ¢ = ¢y, that

i=1
is, ¢ is an inner product. If we evaluate ¢(y), then

P(y) = (v, y) = ylRe, s0 ¢y (y) = lyllrellyllre,

Py (v)
|y|lRe

consequently = ||y|lr and so

¥y (y)

=sup ——— > n. 4.2)
H‘/’y” y;élg HyH]R” ”yH]R

Putting together and (4.2), we get [|¢y|| = [|¢]] = [ly[lr:. One way to see what we
have done is: Define
T:R" — (R"*
y — T(y) = ¢y, wherep,(x) = (x,y).

T is an isometry, that is T is bijective and

ITW) | Ry = [y l|n-
O
Theorem 4.8. (Riesz’s Representation Theorem for Hilbert space ) Let H be a Hilbert space

and ¢ € H*. Then
i) There is a unique y € H so that P(x) = (x,y)

i) ([l = llylla-

Remark 4.10. The Cauchy-Shwarz inequality for inner product space (Theorem 3.4), claims
that if we fix y € H and define ¢, (x) = (x,y), then ¢, is a bounded linear functional,
therefore the Riesz’s Representation Theorem, claims that only bounded linear functional on H
are the inner product. Moreover, if we define T : H — H* by T(y) = ¢, where i, (x) =

(x,y), is an isometry and so H* = H.
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Proof. (Proof of Theorem[4.8) Let p € H*. If p(x) =0, Vx € H,theny =0 € His
sufficient. Let’s assume that i # 0, define M = {x € H: ¢(x) = 0}. As ¢ is bounded
(continuous), it is easy to show that M is a proper closed subspace of H. Therefore
the theorem of orthogonal complement, implies that there is 0 # yo € H \ M so that
Yo L M (x)ie. (x,yp) =0, Vx € M.

Idea: Find a scalar « so that y = ayj is the desired element in H satisfying our require-
ment. Note for x € M, it does not matter what « is. In factif x € M, ¢(x) = 0. On the
other hand (x,y) = (x,ayp) = a(x,yo) = .0 = 0, therefore ¢(x) = (x,y), Vx € M.
Let find « so that ¢(x) = (x,y) for y = ayp, it is true for x = yp, that is,

P(vo) = (vo,av0) = a(yo,vo) = llvollF,

so that &« = 9¥(yo)|lyol|3. Now get any x € H and let’s find a scalar f so that x —

Byo € M. In fact ¢(x — Byo) = 0 = ¢(x) — BY(yo) = O and so B = f((;)) Indeed
0

for this B, x — Byo € M. Let x be any element in H, then we can write x as x =
v v ()
$(yo)”"  ¥(vo) lyoll3;

P(x) p(x) - Pyo)
(o) " $(y0) 7" ||y0||%4>
_ <x . l[)(x) 1/«’(]/0) > + < llj(x) 1/)(}/0) >

X

Yo, now take y = Yo then (x,y) = ¢(x). Indeed

(vy) = (x—

w00) " ol 900 ™ ol
¥(x) ¥yo)
w(vo) ol
= ().
that is, p(x) = (x,y) fory = |1|Py(y||02) Yo and so ¢ = ¢,,. This prove part i). To see part
0llH

ii), notice |P(x)| = |(x,y)| < ||x||glly||g- Therefore

1l < llylla- (4.3)

On the other hand, ¢ (y) = (x,y) = |yl = llyllullyllx and so

w1 = o ()| = Iyl
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which implies that sup |¢(x)| > ||y| g since LH = 1and so
] =1 1yl
[l > llylla- (4.4)
Putting and together, we get ||¢|| = ||y||g- O

Remark 4.11. y € H in the theorem is unique.

Remark 4.12. In (*) above, we said that there is yo € H \ M so that yo L M. If such y
does not exist, then M = {x € H: x 1 M} = {0}, this implies M*+ = {x e H: x L
Mt} = {0} = H. But M+ = M, so M = H which is a contradiction since M is a
proper subspace of H.

Theorem 4.9. If M is a proper closed subspace of H, then M+ = M.

Example 4.7. Define ¢; : I, — R by ¢;(x) = ¢;(x1, ..., Xj, e X, ..) = Xj. Pjis a

bounded linear functional. Indeed,

1/2
1/2 ©
i) = |l = (Ia?) < (Z |xn|) = |lx2
n=1

ie. [hi(x)| < ||x|l2Vx € Ip,i = 1,2,3,... Since ¢; is a bounded linear functional
in the Hilbert space I, let’s find y € I; as in the Riesz’s Representation Theorem so
that ¢;(x) = (x,y). Lety = (y1, ..., Yn,...) and x = (xq,..., Xp,...), we want to find y
so that (x,y) = x;, in order to get this, sety; = 1, y, = 0if n # i. So taking y as
y=¢=1(0,0,..0,1,0,..), we get (x,e;) = x;, thatis, ;(x) = (x,¢;).

Example 4.8. Define ¢ : L,[0,27t1] — Rby ¢(f) = /Oznf(t)dt V f € L,[0,27]. Us-

ing properties of integrals, we show that 1 is linear; moreover the Hélder’s inequality
theorem 3.3 part 2, above imply that

] < [T ([ ﬁit)m ([ vrwpa)

which implies that |¢(f)| < v27r|[f||l2, so ¥ is also bounded. Let’s find a function

1/2

Yl =

0
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¢ : Lp[0,27t1] — R so that

27 2n

v = (£ = [ Fgar= [ o
We can easily see that ¢(#) = 1 on [0, 277] and so ¢(f) = (f, g)-
Theorem 4.10. (Riesz’s Representation Theorem for Ly, for 1 < p < o0)
¢ € (Lp)* if and only if there is a unique g € L, % +$ =1,1<p < oosothat ¢ = @q
where ¢(f) = /Xf(t)g(t)du(t), moreover || || = [lggll = llgllg-
Proof. We are going to present the steps of the proof, but without much details.
Letg € Ly, % + % =1,1 < p < oo, define ¢4 (f) = /Xf(t)g(t)dy(t), then the Holder’s
inequality Theorem 3.3 above imply that ¢ (f)| < [Igll4]lf]lp- Then ¢, is bounded
and || @¢|| < [|g]l4- On the other hand, if we get ¢ € (L,)* and define the set function

A by A(A) = ¢(xa), where x4 is the characteristic function of the measurable set A.
Then the boundedness of ¢ implies that

AA)] = lo(xa)l < llolllixallp-

As [lxally = (4(A4))/7, we have

A(A)] < llgll(u(A))?

Consequently A is absolutely with respect to y i.e. A < u. Therefore the Radon-

Nikodym Theorem, implies that there is an integrable function g so that

olea) = AA) = [ gdn(t) = [ xag(Han(v).

One can show that this can be extended to all f € L,, and so we get
o(f) = / f(t)g(t)du(t). Moreover, we can show that ¢ € L, and ||¢| = ||g||4- O
X

1 1
Remark 4.13. The Riesz's Representation Theorem tell us that B(L,,R) = L, for v + 7 =

1,1 < p < oo, since one can show that the linear transformation T : Ly — (Ly)* defined by
T(g) = @q where o (f) = / f(t)g(t)du(t) is an isometry.
X
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Example 4.9. cg = {x = (x,,) : nh_r)n xn = 0}, ||x]|¢, = sup |xn]-
* n>1

Define ¢ : cg — Rby ¢p(x) = Y xuyn, wherey = (yu) € 1.

n=1

We can show that B(cp, R) = (co)* = 1.

Example 4.10. Let ¢ = {x = (x;,) : (xy) is a convergent sequence}. ||x||. = sup |xn|,
n>0
define ¢ : c — R by

P(x) = 2 XnYn + Hm x,(yo — ) Yn)
n—=0 n—reo n—=0

or

$(x) = (lim x,)yo + k;yk Jim (2, — x)

where (y,) € I1. Again we can show that B(c, R) = ¢* = ];.

Remark 4.14. A little more details on the Example 4.9 above. Fix y = (Yn)n>1 € l, that
is, Y |yn| < co. Define 1 by y(x) = Y xpyn. It is immediate that ,, is linear; moreover

n= n=1
| x]l¢, = sup |xn| > |xn| V1 > 1, so that we have
n>1

[Py ()] < Y [xullyal < llxlleg Y yal
n=1 n=1

and so |y (x)| < ||y||1, ||x||cy- Therefore ¢, is bounded. On the other hand, if i € (co)*, there
isy = (yn) € Ly sothat = . Indeed, definey = (¢ (en)) wheree; = (1,0, ...,0,...),....en =
0,...,0,1,0,...),...

Claim: y = (yn) € I1, y = (¢(en)). To see that take x = ( N Y2 Yn ,0,0,...)

yal” [y2l” ™" ynl
I 1<n<k
xp =14 |yl (4.5)
0, n > k.
It can be easily seen that x = (x,) € cp. Moreover, for x € cy, since x = Z Xnen, We
n=1
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have
o0

P(x) = Z XniP(en) = ilxnynr

n=1

where y, = ¢(e,;). Consequently ¢ = 1. Also note that for x = (x,) in (4.5),

k k
21 [Yynl = len}/n =) = [p)] < l[¢lllxlle = NIyl

k o
since [|x|[c, = 1. Then ) _ |ya| < ||| and so Y |yu| < oo, whichis y = (y,) € L.
n=1 n=1
Example 4.11. (De Souza’s Representation Theorem or Duality for the De Souza’s
space)
Let B! be the De Souza’s space in the example 2.24, which is, f € B! if and only if

0 1 1
Cnbn, where by, (t) = I_[XL”(t) — xR, ()], bo = > I, C [0,27] interval,
n=0 |”| T

I, = Ly URy,, Ly and R, are the halves of I, and ||f|lp = Inf)_ |c,|, where the
n=1
infimum is taken over all possible representations of f. Let’s fix g € A, the space of

all continuous periodic functions of period 27t so that
g(x +h) + g(x —h) —2g(x)| < Mh.

This space A, is well-known and called the Zygmund class of functions.
2r

Define ¢ : B — R by p,(f) = /0 F(H)dg(b).

We can show that ¢, is a linear functional, moreover |i¢(f)| < |[gl/a,||f]lp1, Where
Al = {¢': g € A}, ¢ is taken in the distribution sense. As a consequence Yo isa
bounded linear functional. One can indeed show that B(B!,R) = (B!)* = Al

Example 4.12. Let ¢ be the set of convergent sequences with ||x||; = sup |x,|, x =
n>1
(xn). A linear transformation T : ¢ — ¢ can be represented in the form Tx = Ax
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where A is an infinite matrix of the form
a1 412 - d1p
ar1 dpp ... Ay ...
A= . . e (4.6)
Am1 Am2 - Amn

If x = (x1,x2, ..., Xy, ...), then

o o0 (o)
T(x) = (Y_a1ixi, Y @0iXiy ooy Y AppiXi, ...
i=1 i=1 i=1

Now if one want to characterize the bounded linear transformations T : ¢ — ¢,
we just characterize matrices A above, and this established in a result by Silverman-

Toeplitz, the following statement well-known as Toeplitz matrix.

Theorem 4.11. (Silverman-Toeplitz’ Theorem)
Let T : ¢ — c be defined by

e o0 o0
T(x) = () aixi, Y a0iXi, ooy Y, AyiXi -o0).
i=1 i=1 i=1

Ifx = (xn) € cthen Y1 ayix; € cand || Tx||c < M||x||¢ if and only if the matrix A satisfies
i) Y2 lan| <M,i=1,23,..
if) nlgx(}o a,; = 0 for each i
iif) nlglgog(:)ani =1
Remark 4.15. The theorem of Silverman-Toeplitz, say that B(c,c) are the matrices of the

form satisfying i), ii) and iii).

<k<n

S

Remark 4.16. If we define a,; = ' , then the matrix A in (4.6) can be

S
> =
\Y

n.
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written as
1 o .. 0

1/2 1/2 0 .. O
A= . C e
1/n 1/n .. 1/n O..

and the linear transformation T can be written as

X1+ X2 X1+ X2+ X3 X1+ ... + Xy )
2 7 3 YAXXYS n J oo

T(x) = (x1,
this is well-known as the mean convergence of a sequence.

Example 4.13. Let T : [y — [y, then for x = (x1, X2, ..., Xy, ...), T can be written as

oo o0 (o]
T(x) = (Z a1iXi, Z A2iXiy ooy Z ApiXis o),
i=1 i=1 i=1

and so Tx = Ax, where A is an infinite matrix as in Example 4.12,s0 T : [} — l; isa
bounded linear transformation if and only if ) |a,x| < oo (2). Therefore B(l1,1;) are

n=1
the infinite matrices satisfying (2).

Example 4.14. Let T : loo — o, then for x = (x1, X2, ..., Xn, -..) € loo,

(o] oo oo
T(x) = (Z a1iXi, Z A2iXjy -ees Z ApiXi, ...
i=1 i=1 i=1

and Tx = Ax wobere A is an infinite matrix. T is a bounded linear transformation if

and only if sup Z |a,k] < o0 (3) and so B(lw, I ) are the infinite matrices satisfying (3).
n>1 k=1

Example 4.15. The Hardy space HP (D) is the space of the analytic functions F

defined in the complex unit disc ID so that

27 . 1/p
IE|lr = sup (/0 |F(relg)\79d9> <00, 0<p< oo

O<r<1
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1 1
For 1 < p < oo, then the dual space of H? is H7 for v —|—5 =1,1< p,qg < oo, that

is, (HP)* = H1. Therefore B(H?,R) = (HF)* = HY. For p = 1, the dual of H' is
the space BMO of functions of bounded means oscillations, periodic of period 27 for
which

1
I lswo = sup J170) = filat < o,

where f; = ﬁ/lf(t)dt.

Comments: The dual of H' was an open problem for long time. It has been solved
in the earlier 1970 by Charles Fefferman, which in the process of finding the dual of
H!, he find a characterization for H! well-known now as the atomic decomposition
of H!. This characterization had a very far reach implication in Harmonic Analysis,
for example with the atomic decomposition came De Souza with the special atomic
decomposition and the dyadic special decomposition, and consequently came Yves

Meyers with the recreation of the wavelets.
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CHAPTER 5 |

HAHN BANACH THEOREM

In this section we will study one of the most important theorem in functional analysis:
the Hahn-Banach Theorem. For this section all the vector spaces are considered to be

over the real numbers.

Analytic form of the Hahn-Banach Theorem

Definition 5.1. Let X be a vector space, not necessarily normed and let p : X — R be a
function satisfying the following properties.

i) p(x) >0, VxeX

ii) plx+y) <px) +ply), YryeX
iii) p(ax) =ap(x), Vxe€ X, a € R, a > 0.

A function p : X — R satisfying all these properties is called a “convex functional”. If only
ii) and iii) are satisfied, p is called a "sublinear functional”.

Note:

1. Each norm in a normed vector space is a convex functional i.e. p(x) = ||x||.

2. Let ¢ : X — R be a bounded linear functional. Then p defined by

p(x) = [|¢]||lx||x is a convex functional.

Definition 5.2. Let M be a proper subset of a vector space X and f : M — W be a
function where W is a vector space. Then f can be extended to the space X if there is a function
F: X — Wsothat F|y; = fie. F(x) = f(x), Vx € M. The function F is said to be the
extension of f from M to X.

Example 5.1. Let M = (—o0,1) U (1,0) and X = R and define f : M — R by

] 0, if x € (—oo,1);
ﬂﬂ_{l,ﬁxe@w)
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Then F : R — R defined by

F(x) = 0, %f x € (—o0,1];
1, if x € (1,00).

extend f from M to R.
Example 5.2. Let M = (—00,0) U (1,00) and X = R and define f : M — R by

] 0, ifx € (—0,0);
) _{ 1, ifx € (1,00).

0, if x € (—o0,1];
F(x) =4 x, if x€10,1];
1, if x € [1,00).

extend f from M to R.
Yy Yy
f ' F
1 — 1
— 0 0 1 —00 0 1

Remark 5.1. In general the extension of a function f : M — R to a function F : X — R
(M C X) so that F(x) = f(x), Vx € M, is not very interesting or important. However to

extend f to F where F preserves the properties of f, is very important in Analysis.

Example 5.3. Let f(x) = Slzx, x #0, M =R\ {0}. Define

sin x
{ o’ x #0;

1, x=0.
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sin x

G(x) = L X7F0
2, x=0.

Both F and G are extensions of f, but F is a continuous extension of f while G is
simply an extension of f which is not continuous. Therefore F is an extension of f that

preserve the continuity of f.

Remark 5.2. The Hahn-Banach Theorem deal with an extension of a linear functional,
defined in a linear subspace to the all space preserving some properties of the functional.

Theorem 5.1. (Hahn-Banach, The analytic form) Let M be a linear subspace of a vector space
over the real numbers X and p : X — R a sublinear functional, i : X — Ra linear functional
so that ¢(x) < p(x), Vx € M. Then,

i) There is a linear functional F : X — R that is an extension of  i.e.
F(x) =¢(x), Vx € M.

ii) F(x) < p(x), Vx € X.
Below are some consequences of the Hahn-Banach Theorem.

Theorem 5.2. Let  be a bounded linear functional defined on a linear subspace M of a normed

vector space X, then,

i) There is a bounded linear functional F : X — R that extend  to the all X i.e.
F(x) =¢(x), Vx € M.

i) |[F[l = [l

Comments about the proof of Theorem 5.2 If M = {0} then set ¢ = 0 so that
F = 0 is the desired extension.
Now assume that M # {0}. So one can say there is an x € M, x # 0. Moreover ¢ is
bounded, thatis |¢(x)| < ||¢]|/||x]|x, Yx € M. Define p(x) = ||¢||||x||x, Vx € X. It

is easy to see that p is a convex linear functional, therefore applying Theorem 5.1, we

get Theorem

Theorem 5.3. Let X # {0} be a normed vector space and xo € X, then there is bounded
linear functional ¥ on X so that ||¢|| = 1 and Y (x0) = ||x0]|x-
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Remark 5.3. Theorem is a very important one which claims that if X # {0} then
X* # {0}.

Comments about the proof of Theorem 5.3 Define M = {axy; « € R}, xg € X
fixed, xp # 0. One can show that M is a linear subspace of X. Define

p:M — R

x — P(x) = af[xo|x.
¢ is a linear functional over M. Indeed,

P(x +y) = Pplaxo + pxo) = p((a + p)xo) = (a + p)l|lxollx = alfxollx + Bllxollx
= () +9().

Moreover ¢(ax) = ap(x), Vx € M, « € R. Also note that

[p(x)| = lallxollx| = llaxol[x = [lx[|x (5.1)

Therefore ||| < 1. Indeed, ||| = 1, otherwise there is a constant k < 1 so that
l(x)| < k||x||x, Vx € M, which contradict (5.1). On the other hand, ¢(xg) = ||xo]|x
and applying Theorem 5.1, we get the conclusion of Theorem

Remark 5.4. If x € X so that Vi € X*, p(x) = 0, then x = 0.

Remark 5.5. Let X be a normed vector space and

F: X — X*

X 'H Fx

where Fy is defined by Fx () = ¢(x), Vi € X* and X** is the dual of X*, then,
|| Fx||x+ = ||x||x i.e. F is an isometry.

Proof. Note that Fy : X* — R. Then |Fx(¢)| = |¢(x)| < ||¢] ||x||x. Therefore,
[Exll < flxllx (52)

On the other hand, if x # 0, there exists € X* such that ||i||x+ = 1and ¢(x) = ||x||x,
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this follows from Theorem 5.3 But |F, ()| = |[¢(x)| = ||x||x = ||x||x[/®||x+ and so
[Fxll = [l (5.3)

Putting (5.2) and (5.3) together we get ||F||x++ = ||x||x, so F is an isometry. O

Remark 5.6. Let ¢ be the space of convergent sequences and lo, the space of bounded

sequences, both with the supremun norm i.e. (c, ||.||co) and (lss, ||.|| o). We are going to show
(o]

that not of all the bounded linear functional on le are of the form (x) = Y xuyn with
n=1
y=(yn) €h.

Proof. We define ¢ : c — R as ¢(x) = li_I>n Xu. @ is a linear functional. Moreover
n—oo

[p(x)| = [ lim x| < sup |x4| = [[x]leo and |- <1 (5.4)
n—00 n>1

If we take x = (x,,) an increasing sequence, then

|@(x)| = | lim x,| = sup [xu| = [|x[|c and so [|@[lc= > 1 (5.5)
n—s00 n>1

and together imply ||¢||c+ = 1. Note that ¢ C I and by Theorem [5.1{Hahn-
Banach Theorem), ¢ can be extended to all /., indeed there is ¢ : lo — R so that

¢lc = ¢ Now if p(x) = ) _ ayx, for some a = (a,) € I;. Then for x =¢;,

n=1
i=1,23,..wheree; = (1,0,...,0,..),es = (0,1,0,...,0,...),... ore = (1,1,..,1,1,...),
we have

¢(e) = p(1) = lim (e) = 1

n—o0

and
plex) = gleg) = lim e, = 1.

k—o0

Therefore -
1=¢(e) =) an.

n=1

On the other hand

0= ¢(€k) = Z ayey = dy, Vk.
k=1
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So we have

which is a contradiction.
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Geometric form of the Hahn-Banach Thorem

Definition 5.3. A hyperplane H in a normed vector space X is defined as

H={x € X: ¢(x) = c} where  is a non-zero linear functional on X.

Example 5.4. Let X = R, define H = {x € R: 3x = —2} where ¢(x) = 3x. Then
H = {—2/3} is a single point.

Example 5.5. Let X = R?, define H = {(x,y) € R*> : 3x+4y = 5}. Here
¢(x,y) = 3x + 4y and H is the line of equation: 3x + 4y = 5.

Example 5.6. Let X = R?, define H = {(x,y,z) € R® : 3x —2y + 5z = 1}. Here
¢$(x,y) = 3x — 2y + 5z and H is the plane of equation: 3x — 2y + 5z = 1.

Theorem 5.4. The hyperplane H = {x € X : (x) = a} is closed if and only if ¢ is a

bounded linear functional on X.

Remark 5.7. A consequence of Theorem |5.4|is that the closed hyperplane are generated for
those linear functionals on the dual space.

Definition 5.4. Let A C X and B C X. We say that the hyperplane
H = {x € X: y(x) = a} separates A and B in the general sense if

D y(x)<a VxeA
2) ¢(x) >wa, Vx € B.
Also we say that H separates A and B in the strict sense, if there is an € > 0 so that
D yx)<a—e VxeA
2) Y(x) >a+e, VxeB.

Remark 5.8. Geometrically we say that A and B are separated by the hyperplane H, means
A and B are situated in opposite side of H.
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CHAPTER 6

CLOSED GRAPH THEOREM

Definition 6.1. Let X and Y be metric spaces and T : X — Y a function, then we define
the graph of T as
Gr={(x,Tx): x € X}.

Note that the graph of T is a subset of X x Y, that is Gr C X x Y and (x,y) € Gr if and
only ify = Tx.

Example 6.1. Let X = [0,1], Y = Rand T : [0,1] — R defined as T(x) = x2. Then
the graph of T is given by Gt = {(x,x?) : x € [0,1]}.

Definition 6.2. Let X, Y be normed vector spaces and T : X — Y a function, then T is
said to be a closed function if, the graph of T, Gr, is a closed subset of X x Y.

Remark 6.1. The norm in the cartesian product space X X Y can be defined as one of the
following:
G, y) oo = max{{x|lx, lyllv},

1Ce )l = llxllx + llylly,

1/
1)l = (lxllh+ lyllh) 7

These are equivalent norms in X x Y.

Theorem 6.1. Let X, Y be normed spaces and T : X — Y any function, then T is closed if
and only if (x,) € D(T), domain of T, with x, — x and Tx,, — Tx, then we have

i) x € D(T)
ii) Tx =y

Remark 6.2. We will give an example of a transformation that is i) linear, ii) closed and

iii) not bounded.
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Closed Graph Theorem

Example 6.2. Let X = Y = CJ0, 1] with the supremum norm, that is,

1flleo = sup |f(£)]

0<t<1

D = {f € C[0,1] : f’exists and is continuous in [0,1]} where f’ is the derivative of f.
Define T: D — C[0,1] by T(f) = f'.

i) T is a linear transformation, this follows from the linearity of the derivative.

ii) T is closed. We will show that Gr = {(f,f') : f € D} isclosed in X x Y. Let

1£,8)l1xv = | flloo+ lIglloo be anorm in X x ¥ and (fu, Tfu) = (f,g) in X x Y,
that is

| (frs Tfn) = (f:)Ixxy = [[(fu = F, Tha— &) lxxy = [ fn = fllo + | Tfu — glleo — 0,

as n — oo. Therefore ||f, — fllo — 0 and ||[Tfy — gl — Oasn — coie.
1 f — fllo = 0, || f# — gllo = 0 as n — oo.

Ifr—glleo = sup |fr(t) —g(t)] = 0asn — oo

0<t<1

and so as the convergence is uniform, we have lgn £, (t) = g(t). So if we inte-
n—oo

grate

t
/ dsokgh s = lim [ fi(s)ds

— lim [£(t) — £(0)
= £ (0)

0) + /Otg(s)ds

therefore f'(t) = g(t) thatis, Tf = ¢ and so (f,g) € Gt which means that Gr is
closed.

which implies
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iii) T is not bounded. To see that consider f,(t) = t". We have

| fulleo = sup [t"] =1,

0<t<1

Tfu(t) = f1(t) = nt""1, so that

ITfullo = sup [nt""}] =n.
0<t<1

Thus T is unbounded.

Theorem 6.2. (The Closed Graph Theorem) Let X, Y be Banach spaces,
T : X — Y a linear transformation, then T is bounded if and only if G is closed.

Remark 6.3. If T is bounded, then it is immediate that Gy = {(x, Tx) : x € X} is closed
in X x Y. The other direction in Theorem [6.2]is the most important, which claims that if X, Y
are Banach spaces and Gr is closed, then T is bounded.

Remark 6.4. A very nice consequence of the closed graph theorem is that given a normed
space X endowed with two norms ||| and ||.||%, if these norms make X a Banach space
and are comparable, then these norms are equivalents, that is, if (X, ||.||%) and (X, ||.||%) are

Banach spaces and ||x||3, < x||x||%, there exist two positive constants a and B such that
all x|k < llxllx < Bl

To see this, consider the identity mapping
i (X% — (X LI)

but
lx[I% < xllx||,

SO

i) 1% < xllx%,
that is i is bounded; moreover
i (X R — (X %)
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is bounded by the closed graph theorem i.e.

17 () llx < BllxlI%

that is 1
x|k < Bllx|%,  with =

since i1 (x) = x and so
all x|k < llxllx < Bllxll%-

Hence ||.||% and ||.||% are equivalents.

Example 6.3. Let X = C|0, 1] endowed with the norms

1
HfWoZ;Egﬁﬂﬂlmﬂlvm:=A |f(£)lat.

Note that || f||1 < ||f||eo, but these norms are not equivalents; the reason is that (C[0, 1], ||.]|1)
is not a Banach space, see Example 2.7.
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CHAPTER 7

OPEN MAPPING THEOREM

We now consider one of the basic and important result in functional analysis, which
is “The open mapping theorem”. This result allows us to conclude that under certain
conditions, the inverse of an injective bounded transformation is bounded. We cannot
conclude this in general, as we can see in the following example.

Example 7.1. Let X the set of all continuous functions x(t) defined in the interval
[0,1] so that x(0) = 0. Define M = {x € X : x/(t) exists and is continuous}. Endow X

and M with the supremum norm i.e.

[xllec = sup |x(t)].
0<t<1

t
Define the transformation A : X — M by (Ax)(t) = / x(s)ds,0 <t <1
0

We can show that A is a bounded linear injective transformation. Indeed,
t t
[Axlle = 1| [ x(e)ds] < [ fx(s)lds < x|

t t

Let x1(t) and x,(t) in X so that Axy(f) = Axy(t), then/ x1(s)ds = / x2(s)ds and so
0 0

differentiating both sides with respect to ¢, we get x1(t) = x2(t). Thus A is injective.

But A~! : M — X is not continuous, in fact if we take x,(t) = sin nt, then

1-— t
Axy(t) = %sn. Therefore Ax,(t) — 0asn — oo in M but x,(t) does not have

the limit in X.

Remark 7.1. The hypothesis for which the inverse is bounded, is the completeness of X
and M with the supremum norm. But (M, ||.||) is not a complete space, since a sequence
of polynomials can converge uniformly to a continuous function without the derivative being

continuous. Indeed it can converge to a continuous function nowhere differentiable.

Definition 7.1. Let X, Y be any metric spaces and T : X — Y a transformation. We say
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Open Mapping Theorem

that T is an open transformation or open mapping if, for any open set A in X, T(A) is an open
set in Y that is T maps open sets in X into open sets in Y.

Theorem 7.1. (Open Mapping Theorem) Let T be a linear transformation from X onto 'Y i.e.
T : X — Y where X and Y are Banach spaces. Then T is an open transformation; that is, if
D C X is an open set in X, then T(D) is an open set in Y.

Remark 7.2. The open mapping theorem is the fundamental tool for proving the closed
graph theorem 6.2
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CHAPTER 8 |

UNIFORM BOUNDEDNESS PRINCIPLE

The theorem of the uniform bounded principle together with the closed graph, the
open mapping and the Hahn-Banach theorems are the basic theorems in Analysis.
This theorem basically claims that if we have a family of bounded linear transforma-
tions {Ty }yer from X to Y, where X and Y are Banach spacesie. T, : X — Y, a € I

such that the T,’s are pointwise bounded, i.e.

sup || Tax||y < 00, Vx € X.
acl

Then the T,’s are uniformly bounded, that is,

sup || Tx|| < oo.
ael

Remark 8.1. The completeness of X is essential. Indeed, consider the space X defined by
X = {x = (xy, sequence so that x; = 0) except for number of k}. Let X be endowed with

o 1/p
lx]|x = (Z Ixnl”) :
n=1

Take Y = R the real numbers. Define T, : X — R by Ty,x = nx,, n =1,2,3,....
Note that T,x = 0 for n large enough. Therefore T,x’s are pointwise bounded, but || T, || =

the lp—norm, 1 <p < oo, thatis,

n which shows that (T,) is not uniformly bounded. In fact the problem stands on the non
completeness of (X, ||.||x)

Remark 8.2. The uniform Boundedness principle is also well known as the Banach-
Steinhaus theorem.

Theorem 8.1. (The Uniform Boundedness Principle) Let X and Y be Banach spaces, T, :
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Uniform Boundedness Principle

X — Y, a € 1 where I is an index set, a bounded linear transformation so that

sup || Tex||y < oo, Vx € X,
acl

then

sup || Tx|| < oo.
ael

Example 8.1. Let X = {a = (a3,4ay,...,a,,0,0,...) }. Define T,, : X — I, by

Tn(ei):{ 0, i#mn

ne,, i =n.

where e; = (1,0,0,...), e2 = (0,1,0,...),....en, = (0,...,0,1,0,...),...Then x € X implies
x = Y kaje;. Therefore T,x = 0if n > k, hence
i=1

sup || Tyx||, < o,
n>1

but || T,|| = n and so

sup || Ty || = o0
n>1

Example 8.2. Theorem is a tool to prove that there is a periodic continuous
function f of period 27t in [—71, 7] so that the Fourier series diverges in some point.

We end this section with an important theorem in Real Analysis, namely the Radon-
Nikodym Theorem.

Definition 8.1 (Absolutely Continuous Measures).
Suppose v is a measure and y is a positive measure defined on a measurable space (X, M). v

is said to be absolutely continuous with respect to y and denoted by
VLU

if v(E) = 0 for every E € M for which u(E) = 0.

Example 8.3. Suppose f is a u-integrable function defined on a measure space
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(X, u, M). Then the set function defined as
v(E) = / fdu forevery E € M
E

is absolutely continuous with respect to p.
Definition 8.2 (¢ Finite Measures ). A measure y is said to be o-finite on a measure space
(X, M) is there is countable family { X, },cN such that

X =UpenXn, and u(Xy,) < oco.

Theorem 8.2 (Radon-Nikodym). Let (X, M) be a measurable space. Let v and p be a o-
finite measures on (X, M) such that v < p. Then there is a measurable function f : X —
[0, 00) such that

v(E) = /Efdy forany E € M.

Moreover, the function f satisfying the above equality is uniquely defined up to a null set,
that is, if g is another such function, then f = g a.e.

Remark 8.3. The relation v(E) = [; fdy is at times denoted by dv = fy.
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CHAPTER 9 |

EQUIVALENCE OF SOME BANACH SPACES

In this lecture we will discuss the equivalence of Banach spaces resulting in analytic
characterizations of some spaces of real-valued functions defined on the boundary of
the complex unit disc that is identified with the interval [0, 277] or any interval of length
27t with some spaces of analytic functions defined in the disc. This characterization
gives us a link between complex analysis and real analysis. We do not currently have
any book that deals with this subject in a systematic way.

We begin with the definition of equivalence of Banach spaces.

Definition 9.1. We say that two Banach spaces X and Y are equivalent if there is a linear
transformation T : X — Y which is bijective and

Nlix[[x < [[Tx[ly < Ml|x][x,

where N and M are absolute constants and || - ||x means the norm in X. Moreover, if || Tx ||y =

||x||x, then X and Y are said to be isometric.

Note: We denote this equivalence as X = Y.

9.1 ", Lipschitz, and Special Atom Spaces

Example 9.1. Let X = R™" be the space of all (x1,x2, ..., Xum) with n, m positive integers
and x; € R, i = 1,...,nm, where R denotes the set of real numbers. Let Y = My, be the
space of real n x m-matrices. It is well known that these two spaces are equivalent as Banach

spaces with their usual norms.
Theorem 9.2. R"" = M,,,,,.

Example 9.3. Let X = Lip,, 0 < a <1, the Lipschitz space

f € Lipy < f is continuous and |f(x +h) — f(x)| < Mh"
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9.1 Equivalence of Some Banach Spaces

with
= f@ oy
h ’ -

| fllLip, = sup

h>0,x

Let Y = Ay, 0 < & < 2, the space defined by
f € Ax & fiscontinuous and |f(x +h) + f(x —h) —2f(x)| < Mh*

with

x+h)+ f(x—h)—2f(x
[Fln, = sup L1+ 1621 =27 (2]
h>0,x
Theorem 9.4. Lip, = Ay for0 <a <1

L0 <o <2

Note: If &« > 1, then Lip, = {0} while A, # {0} fora € [1,2).
Note: We are considering real valued functions in Lip, and A, as defined on the

interval [0, 277].

Example 9.5. Let X = B? for 1 < p < oo, where f € BP if f is defined in [0,27] and f can
be represented as
f(t) =) cubu(t), where Y |cu| < oo;,
n=1 n=1
with .
bu(t) = G (XR, (1) = X1, (1)]
and I, Ry, Ly are intervals in [0, 27| with I, = R, U L, and R, N L, = @. We endow B
with the following norm

o
I fllr = inf ) |en]
n=1

where the infimum is taken over all possible representations of f. We can show that || - || gp is
indeed a norm and (BP, || - ||pr) is a Banach space.

Let Y = JP,1 < p < oo where f € JP if f is defined in the interval [0,27| and f can be
represented as

[e0]

f(t) =Y anBu(t), where i |y | < o0,

n=1 n=1
with .
Bu(t) = Un’—l/pm(t)
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9.2 Equivalence of Some Banach Spaces

and I, are intervals in [0, 27t]. We endow JP with the norm

Ifllyp = inf ) |an] < oo
n=1

where the infimum is taken over all possible representations of f. We can show that || - || is

indeed a norm and (J?, || - ||;») is a Banach space.
Theorem 9.6 (De Souza). B = JP for 1 < p < oo.

Note: The spaces B¥ and J¥ were introduced by De Souza in 1980 in his PhD disserta-

tion.

9.2 L7, Lorentz, and Special Atom Spaces Defined on General Mea-

sure

Definition 9.2. Let (X, A, u) be a o-finite measure space and suppose p > 1. A real-valued
measurable function on X is said to be in LP(X, A, i), or more briefly in LF, if the function
| f|P is integrable; that is, if

J O dutt) < oo

The LP space is endowed with a “norm”

ity = (frorann)

We wrote “norm” since ||f|| = 0 does not imply that f is the zero function but
that f = 0 u-almost everywhere; that is, u{x € X : f(x) # 0} = 0. The difficulty
vanishes if we agree to regard two members of L7 as the same if they are equal almost
everywhere. This tells us that L? is the quotient space with the equivalence relation
f(x) = 0a. e. With this in mind, || - ||, is a genuine norm.

Note: L7 is well-known as the Lebesgue space.

Definition 9.3. Let f be a real-valued function defined on X. The decreasing rearrangement
of f is the function f* defined on [0, c0) by

fr(t) =inf{y > 0:m(f,y) <t},
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9.2 Equivalence of Some Banach Spaces

where m(f,y) = u{x € X : |f(x)| > y} is the distribution of the function f.
The following are some properties of the decreasing rearrangement function:
(@ If[f(£)] < [g(t)], then f*(£) < g*(t).
b) (f-8)"(t) < fr(t)-&" ().
© m(f,y) =m(f*y).
(d) (kf)(t) = [KIf*(t).
(e) (f+g)*(t) < f*(at)+g*(bt),a+b=1,a,b>0.
(B Hm £7(t) = | fleo-
@) [Ifllp =11l

Definition 9.4. Given a measurable function f on a measure space (X, ) and 0 < p,q <

oo, define
T (% (s 5 (1) 1dt\ o
Hf”pq: <p/(1) ( ) t) rq <
ity 0 oo

The set of all measurable, real-valued functions f defined on X with ||f||pq < oo is called the
Lorentz Space with indices p and q and denoted by L(p,q)(X, u).

Notes:
1. Lorentz spaces were introduced by G. G. Lorentz in 1950 and 1951.

2. For some p,q, the quantity ||f||,; is a norm and for others it is equivalent to a

norm.

3. If g = oo, then the space L(p, o) is called the weak L space and it can easily be
shown that L? is continuously contained in L(p, o); that is, LP C L(p,o0) and
£l peo < M| fllp, p > 1, where M is an absolute constant. || f| s is a norm.

1/p

.18 p = g then [l = [0 007 dut) =171
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9.2 Equivalence of Some Banach Spaces

Note: In view of (4) in the preceding notes, the Lorentz spaces are generalization of
the L7 spaces.

Note: Among the L(p, q) Lorentz spaces, we are very much interested in L(p, 1) spaces
which seem to have rich properties. For example, L(p, 1) is continuously contained in
LP; thatis L(p,1) € LF and || f||, < C||f||,1, where C is an absolute constant.

Definition 9.5. For 0 < a < 1 and y a measure of sets in the interval [0, 27|, we define
the space B(u, «) as

B(u,a) = {f: [0,2t] = R: f(t) = icndn(t), il|cn| < oo} ,

where dy, (t) = m Xa,(t), Ay are y-measurable sets in [0,271], ¢, are real numbers, and
n

X A is the characteristic function of the set A. We endow B(u, a) with the norm

||f||B(;4,zx) = inf Z Cn s
n=1

where the infimum is taken over all possible representations of f.

Note: This space was introduced by De Souza.
Note: One can show that indeed | - [[p(;,«) is @ norm. Moreover, (B(p, &), | - [[(4,4)) i8

a Banach space.
Theorem 9.7 (De Souza). L(p,1) = B(u,1/p) for p > 1.

Definition 9.6. Let 0 < a < 1 and let y be a measure on sets in the interval [0,27t]. We
define the space A(p, «) as

A(p,a) = {f [0,2t] = R: f(t) = icnbn(t), i|cn\ < oo} ,

where by, (t) = ﬁ (xa,(t) —xB,(t)], Xn = Ay UBy, Ay N By = O, u(An) = u(By),

Ap, By are y-measurable sets in [0,27], ¢, are real numbers, and x is the characteristic
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9.3 Equivalence of Some Banach Spaces

function of the set E. We endow A(u, o) with the norm

HfHA(y,oc) = inf Z Cn s
n=1

where the infimum is taken over all possible representations of f.

Note: The space A(u,«) was introduced by De Souza.

Note: One can show that || - || 4(,,«) is @ norm. Moreover, (A(p, ), || - | a(q)) 15 @
Banach space.

Theorem 9.8 (De Souza). A(p, ) = B(p,a) for0 < a < 1.

9.3 Generalized Lipschitz Spaces

Definition 9.7. For 0 < a« < 1 and p a measure on sets of [0,27t|, we define the space
Lip(u, o) as
)| < M}

where A is a p-measurable set in [0,27t]. A norm is defined on Lip(u, «) as

Lipu) = { £+ (0,27 Rt | [ et

HfHLip(y,oc) sup

Note: This space was originally introduced by G. G. Lorentz in 1950.

Definition 9.8. For 0 < a < 1 and p a measure on sets of [0,27t|, we define the space

A(p, o) as
() — [ ()| < M

for all yu-measurable sets X, A, B in [0,27t] such that X = AUB, ANB = @. We endow
A(u, ) with the norm

Alr) = {f:10.27] -

wmmwzsp-——{/f () - [ fx)antx)

X=AUB Iu
ANB=Q
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9.4 Equivalence of Some Banach Spaces

Note: The space A(y, «) was originally introduced by De Souza.
Fact: We can show that || - |[1ip(ye) @nd || - || () are norms and Lip(p, a) and A(p, a)
endowed with these norms are Banach spaces.
Note: Lip(p, «) and A(y, «) are natural generalizations of the Lipschitz spaces. In fact,
if we take y as the Lebesgue measure, X = [x —h,x +h|,A = [x —h,x],B = (x,x + h],
and p*(X) = (2h)*. Then for f differentiable, we get

1

ya(x) /Af’(x)d‘u(x)—/Bf/(x)d‘u(x)‘ :'f(x-l'h)‘f'](fé;);h)—Zf(x) .

Theorem 9.9 (De Souza). Lip(p,a) = A(p, ) for 0 < a < 1.

9.4 Weighted Special Atom Spaces and Weighted Lipschitz Spaces

Definition 9.9. We will define a weight function p as p : [0,27t] — [0,27] which is
nondecreasing and with p(0) = 0. Several additional conditions on the weight function will
be needed:

1. pis Dini if
h
/ &:)dt < cp(h)
0

for h > 0 and an absolute constant c.

2. p is called almost decreasing if p(t) < cp(s) whenever s < t, where c is an absolute
constant.

3. pisintheclass b, for p > 1if

27 p(t) _ p(h)

no tptl = 7 pp
where h > 0 and c is an absolute constant.

Definition 9.10. We define the weighted special atom space By, where p is a weight function,
as

B, — {f: 0,271] = R; £(t) = icnbn(t); Y Jou] < oo} ,

n=1
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where
1
bu(t) = oL, (xR, (1) — x1,(t)] ,

and I, is an interval of length |1,| with right and left half intervals R, and L, such that
Iy = Ry ULy, Ly "Ry = @. B, is endowed with the norm

()
1fllB, = inf ) |eu| ,
n=1

where the infimum is taken over all possible representations of f.
Note: If we take o(t) = t!/? for p > 1, then B, = BF defined in Example
Definition 9.11. We define the weighted space ],, where p is a weight function, as

Bp = {fﬁ [0,27] = R; f(t) = iﬁmﬁ); il lcn] < 00} ,

where I, is an interval in [0, 277] of length |1,,|. ], is endowed with the norm

Ifll, =inf Y e,
n=1

where the infimum is taken over all possible representations of f.
Note: If we take p(t) = t1/7 for p > 1, then ], = J? defined in Example
Theorem 9.10 (Bloom and De Souza). If p € by, then By = Jp.

Definition 9.12. We define the weighted Lipschitz space as the set

Lip, = {f : [0,271] = R; continuous ;|f(x +h) — f(x)| < Co(|h|)} .

We endow Lip, with the norm

_ flx+h) = f(x)
||f||Lipp = Sup p(h)

h>0, x

Definition 9.13. We define the second difference weighted Lipschitz spaces as
Ao = {f :[0,211] = R; continuous ; |f(x +h) + f(x —h) = 2f(x)| < co(|h])} .
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9.5 Equivalence of Some Banach Spaces

We endow Np with the norm

)+ A=)~ 2f(x)
I7lla, = sup o(27)

Note:
1. If p(t) = t* for 0 < & < 1, then Lip, = Lip,.
2. Ifp(t) = t*for 0 < « < 1, then A, = A,.

Theorem 9.11 (Bloom and De Souza). If p is Dini and in the class by, then Lip, = A,.

9.5 Analytic Characterization of some Banach Spaces

In this section, we will see examples of equivalence between spaces of analytic func-
tions defined on the unit disc with spaces of real-valued functions defined on the
perimeter of the unit disc which is identified by the interval [0,27t] from the Banach
space point of view. To observe this, define X and Y as

X = {F: D — C; analytic in D satisfying some property &}

and
Y = {f:[0,27r] — R; periodic satisfying some property 2}

where D = {z € C: |z| < 1} and C is the set of complex numbers.

Question: What are the properties & and 2 such that X and Y are equivalent as
Banach spaces?

Geometrically:
We consider F € X and f € Y in the following manner:

If F € X, then define f(#) = lim,_,; Re F(re'?) a.e.
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9.5 Equivalence of Some Banach Spaces

Question: What property does X need to possess in order to guarantee the existence

of this limit almost everywhere?

For f € Y, define
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9.5 Equivalence of Some Banach Spaces

where

et +z 1—172 . 2rsin(6 —t)

— = = P(r,0 —t) +iQ(r,0 — t
eit — » 1_2COS(9_t)+7’2+11—21"COS(9—t)—|—1’2 (1’,9 )+1Q(V/9 )

P is the Poisson kernel and Q is the conjugate Poisson kernel. Consequently,

lim F(re®®) = lim [Re F(re) +i Im F(reig)} = £(0) + f(0),

r—1 r—1

where f(6) is the conjugate function of f. Moreover,

lim Re(iF(re’®)) = — () .

r—1

Therefore,F € X and f € Y defined as above must have
fey = fey;

that is, Y must be invariant under the conjugate function.

Recall that f can be represented by

zooy Lo f(t)
f(X)—pUE 0 2tan (5% )dt

Astant ~ tast — 0, we have

f l 2 Mdt

xX) = po
fy=po_ |
f is known as the conjugate operator or the Hilbert transform.

Note: pv in the definition of f represents the Cauchy principal value. That is,

~ 2 —
f(x):pv f()dt—hml Mdt
mwJo t—x e—0 7T Je<|t|<m t

Note: From the above, we see that for a real-valued function space defined on the
boundary of the disc to be equivalent to an analytic function space on the disc, it

must be invariant under the Hilbert transform.

73



9.5 Equivalence of Some Banach Spaces

In fact, it is well known that there are functions f € L[0,27] so that f ¢ L![0,27].
It is also known that if f € L1[0,27], then f exists almost everywhere and

apfx € [0,27] : [f(x) > a} <cl/flly

where c is a constant independent of f and y is the Lebesgue measure.
Again, in order for X to be equivalent to Y, Y must be invariant under the Hilbert

transform.

Final Comment: The type of question about the equivalence of X and Y leads to a

difficult question:
What spaces on [0, 27t| are invariant under the Hilbert transform?

Example 9.12. Tuke X = HF(ID), 1 < p < oo, the Hardy space. F € HP (D) < Fis
analytic and

27 ) 1/p
|Fllgr = lim (/ |F(rele)|pd9) < 00,
r—1 0

Take Y = LP(dID), where 0D is the boundary of the unit disc ID.

1/p
f € LP(0D) (:)fzalD—HRandHpr:(/B]D|f(t)|pdt) < o0
forp > 1.
Theorem 9.13. HP (D) = LF(dD) for 1 < p < oo.

Note: The equivalence in Theorem is a direct result of a famous theorem due to Marcel
Riesz:

Theorem 9.14 (M. Riesz). If f € LP, then f € LP. Moreover, || f|, < M||f]|, for

1 < p < oo, where M is an absolute constant.

Note: This theorem does not hold for p = 1 or p = oo. HP(ID) is an analytic charac-
terization of the space LP for p > 1.
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Example 9.15. Let

X =S, = {F: DD — C, analytic, ||F||x = sup (1 — |z|)}7¥|F'(z)| < oo}

|z| <1

for0 < a < 1. Let

Y= (0D = Ry = sup LSO < o)

for 0 < & < 1. Note that Y = Lip,. Here F' denotes the first derivative of F.

Theorem 9.16 (Hardy-Littlewood). X = Lip,, 0 < a < 1.
Fe X & feY. Moreover, |F|x = ||f|ly, where

27 Hit
F(z):%/o € T2 iy

eit —z

Note: It is well known that || - || x is a norm and (X, || - ||x) is a Banach space. The space X
is the analytic characterization of the Lipschitz space Lip, for 0 < a < 1.

Example 9.17. Let

X = 7y = {F:ID — C, analytic, ||F||x = sup (1 — |z|)?|F"(z)| < o} .
|z|<1

Let
[f(x+h)+ f(x—h) —2f(x)]

o < oo}

Y={f:9D =R |flly = sup

h>0,x

Here F"' denotes the second derivative of F.

Theorem 9.18 (Antony Zygmund). X =Y.

Note: The space Y is usually denoted by A, and is known as the Zygmund class. It is very
important in the study of the theory of Fourier series and approximation theory.
For0 <a <1, Ay C Lip, and if & < B we have

75
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The space A is considered the limit of Lip, as « — 1.
X is an analytic characterization of the Zygmund class A..

Example 9.19. Take X = H'(ID), the Hardy space defined in Example forp = 1.
Take

Y=A={f:]02n] - R, f(t) = icnan(t);ilkﬂ < oo},

where cy’s are real numbers and a,’s are functions a, : [0,271] — R so that

1. supp a, C I,, where I, C [0, 27| is an interval,

2 Jan(t)] < -, and

’
|1

3. / au(t)dt = 0.
Iy
Endow A with the norm

Ifllp = inf ) [ex|
n=1

where the infimum is taken over all possible representations of f.
We can show that || - || o is a norm and (A, || - || o) is a Banach space.

Theorem 9.20 (C. Fefferman and R. Coifman). X = A.

Note: A long standing open problem was finding the set of all bounded linear functional on
HY (D). That is, to find the dual space of H'(ID) denoted by (H'(ID))*. In 1972,
Charles Fefferman showed that the dual space of H'(ID) was the space BMO, the space
of function of bounded mean oscillation. BMO is defined by

1
g € BMOD,27] = llgliparo = sup 1y J1g(t) = gildt < oo,

where g1 = ﬁT‘/g(t)dt.

I
The space A is well known and denoted by A = Re H?, the real characterization of the
Hardy space H' (D).

Example 9.21. Tuake
1 21 .
X = {F:ID — C, analytic,||F|x = / / IF (re®)|dgdr < oo} .
0 JO
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Take - -
Y=B={f:10,2n] > R, f(t) = ;cnbn(t); ; len| < oo},

where ¢, are real numbers and

b(t) = ul—, () — xe, (D]

and I, C [0,27] is an interval of length |I,| with right and left half intervals Ry, and L, such
Endow B with the norm

Iflla=inf ) |cal
n=1

where the infimum is taken over all possible representations of f.
We can show that || - || is a norm and (B, || - ||g) is a Banach space.

Theorem 9.22 (G. De Souza and G. Sampson). X = B.

Note: De Souza introduced the space B in his PhD dissertation in 1980. He called these spaces
“special atom spaces”. Starting with Guido Weiss and Yves Meyer, these spaces are later
referred to as De Souza’s spaces.

Another long standing open problem involved finding a real characterization of the space
X. This was resolved by De Souza and Sampson in 1983 in a paper published in the
Journal of the London Mathematical Society under the title “A real characterization of
the pre-dual of Bloch functions”.

The space X is called an analytic characterization of the space B and, on the other hand,

B is called a real characterization of the space X.

Example 9.23. Take
1 1 p2m .
X =17 = {F: D — C, analytic,||F||x = E/ / |F'(re®)|(1 — r)V/P~1d0dr < oo} .
0 Jo

Take Y = BP, 1 < p < oo, the space introduced in Example[9.5 That is

(]

Y =BF = {f:[0,21] > R, f(t) = ilcnbn(t); Y Jon| < o0},

n=1
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where ¢,,’s are real numbers and

1

bu(t) = L7 xR, (8) = XL, ()]

| I
and I,, C [0,27] is an interval of length |I,,| with right and left half intervals R,, and Ly, such
that I, = R,UL,, L,NR, = Q.

Theorem 9.24 (G. De Souza). BY = [P.

Note: The space I? is an analytic characterization of the space BP. Also, in a paper that ap-
peared in the Proceedings of the American Mathematical Society in 1985, we have shown
that the Besov space A(1 —1/p,1,1) is equivalent to BF; that is, A(1—1/p,1,1) =
BP. Recall that A(1 —1/p,1,1) is the set of functions defined on [0,27t] so that

27T 271' _ >|
||f||A 1-1/p,1,1) / / y|2 T/ ——————dxdy < co.

Theorem 9.25. [" = A(1—1/p,1,1) for1 < p < oo.

9.6 Analytic Characterization of some Weighted Banach Spaces

In this section, we continue our study of characterization of Banach spaces. How-
ever, this time our interest is in weighted Banach spaces, specifically for the weighted

special atom spaces and weighted Lipschitz spaces introduced in Section[9.4]
Example 9.26. Let

X =5,={F:D — C, analytic, ||F[|s, = sup 1—H]F (z)] < c0}.
P S [2)

Take Y = Lip,.

Here the weight function p is Dini and p € by.
Theorem 9.27 (Bloom and De Souza). S, = Lip,.
Example 9.28. Take

152
X =Z, = {F:1D — C, analytic, ||F||s, = sup (1= Jz) |F"(z)| < oo},

|z]<1 o(1—|z])
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Take Y = Np
p(t)

The weight function p is Dini, p € by, and o is bounded below as t — oo.
Theorem 9.29. Z, = A,.

Example 9.30. Take
) 1 1 r2m p( )
X=1I,={F:D=C, analytzc,HFHX:E/ / [F(rel®)| 22— dedr < oo} .
0 JO

Take Y = B,
The weight function p is Dini and p € b.

Theorem 9.31 (Bloom and De Souza). I, = B,.

Note: The spaces Sp, Zo, and I, are the weighted analytic characterizations of the
respective weighted spaces Lip,, Ay, and B,.

9.7 Bounded Operators on some Banach Spaces

In this section, we give examples of important operators in harmonic analysis that are
bounded in some Banach space. Showing boundedness is possible by using charac-
terizations of the given spaces given earlier in these notes. We start by giving some

useful definitions.

Definition 9.14. A linear operator or linear transformation from a vector space X to a
vector space Y over the same field F is a function T : X — Y satisfying the condition

T(ax + py) = aT(x) + BT(y)
forall x,y € Xandwa, B € F.

Note: Some important estimators in harmonic analysis are not linear but behave like

one. These operators are called quasilinear operators and are defined as

| T(ax + By) (1) < K(|a|[T(x)(£)] + [BIIT(y) (£)])
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for all t and some K > 0. For example, Carleson’s maximal operator (defined

below) and the Hardy-Littlewood maximal operator defined as
1
MFf(x) = sup o [ [£(x)ldx
xe€l | | I

are quasilinear operators.

Definition 9.15. A linear or quasilinear operator T : X — Y, where X,Y are normed
spaces, is said to be bounded if
ITx[ly < Ml[x]lx

where M is an absolute constant and || - ||x and || - ||y are the respective norms in X and Y.

9.7.1 Carleson’s Maximal Operator

The Carleson’s maximal operator is defined as follows.

Definition 9.16. Let f be a periodic function of period 27t and let S,,(f, x) be the nth partial
sum of the Fourier transform of f. Then Carleson’s maximal operator is defined as

Tf(x) = sup [Su(f, x)]

n>0

A problem that stayed open for a long time was the so-called “Lusin’s conjecture”
that says

If f € L?[0,27]|, then the Fourier series of f converges to f almost everywhere.

An Argentinian mathematician, Alberto Calderén, transformed the conjecture into a

problem of operators. Indeed, he conjectured that

Tf(x) = sup [Su(f, x|

n>0
is bounded in L?[0,27] into L2[0,27] if and only if S,,(f,x) — f almost everywhere.
But it was the Swedish mathematician, Lennart Carleson, who in 1966 proved
Theorem 9.32 (Carleson’s Theorem). Tf(x) = sup |S,(f, x)| is bounded in L?[0,27] into

n>0

L?[0,27].
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The original proof of this theorem was much too complicated for most people to
understand. To simplify the argument, De Souza showed in 1984 that Carleson’s max-
imal operator T is bounded in A(1 —1/p,1,1) into L(p, 1). Indeed we have

Theorem 9.33 (De Souza). The Carleson maximal operator T : A(1—1/p,1,1) — L(p,1)
is bounded. Moreover, || Tf|| 1) < M| flla@=1/p11) for p > 1 where M is an absolute
constant.

The proof of this theorem was made possible due to the characterization of A(1 —
1/p,1,1) with the space B? as given in Theorem and Theorem Also, De

Souza showed that

Theorem 9.34. The Carleson maximal operator T : By — Ly is bounded. Moreover, || Tf| L, <
M| f ||, where M is an absolute constant and Ly is the weighted L(p, 1) space that is defined
as

: o [T e 20)
f €Ly ifandonlyif / f*(t)Tdt < 00
0
where ¢ is a weight function satisfying some conditions.

A consequence of Theorems and is the almost everywhere convergence of

the Fourier series of f in those spaces. Another interesting result is

Theorem 9.35 (De Souza). The Carleson maximal operator T : L(p,1) — L(p,1) is
bounded. Moreover, | Tf|[r,1) < M| fllr(pn) for p > 1 where M is an absolute constant.

Again, the proof of this theorem was possible because of the characterization of the
space L(p, 1) as given in Theorem[9.7]
9.7.2 Multiplication Operator

In this section we will deal with the multiplication operator on L(p,1) and A(1 —
1/p,1,1) for p > 1. The results are extended to the space L(p, q).

Definition 9.17. For a given function g, we define the multiplication operator Ty as
Ty(f) = f - g which is understood as the pointwise multiplication (G - f)(x) = g(x)f(x).

The following result was given by Shen in his Auburn University masters project:
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Theorem 9.36 (Multiplication operator on A(1 —1/p,1,1)). The multiplication operator
T:AN1-1/p,1,1) — A(1—-1/p,1,1), p > 1, is bounded if and only if g is bounded
almost everywhere and Vh € (0, 7t), Ya € [, 7t

T gx+ ) — g(x)
hl/p// e dxdt < A < co.

Once again, note that this result was possible due to the characterization of A(1 —
1/p,1,1) as B¥,1 < p < o0, as given in Theorem and Theorem [9.25|

More recently, Kwessi, De Souza, Alfonso and Abebe, showed

Theorem 9.37 (Multiplication operator on L(p, 1)). The multiplication operator Ty : L(p,1) —
L(p',1) for p’ > p > 1is bounded if and only ¢ € L. Moreover, | Tg|| = ||£]] co-

This result was previously found in 2008 by Arora, Datt and Verma on Lorentz-
Bochner spaces (Osaka |. Math.). The approach of Kwessi et al. depended on a new
characterization of L* which they called M}. This space is defined as f € M! if and
only if

1 X, _
Hf”Mf = i‘i]g (m/o f (t)tl/p 1dt) < 0.

In fact, Kwessi et al. defined the space M} which is the set of real-valued functions f
defined on [0, 277] such that

1/r
r (e at
£llp = sup(pxl/p [ (romr)yd) <o

where p,r > 1. They show that this space is a characterization of some weak L? space,
specifically M} = L(pr',c0) where 1/r +1/7' = 1.
The following result on L(p, q) can be obtained using Theorem[9.37/and the Marcinkiewicz

interpolation theorem.

Theorem 9.38 (Multiplication Operator on L(p,q)). The multiplication operator T,
L(p,q) — L(p,q) is bounded if and only if g € L® for 1 < p < 00, 1 < q < 00. Moreover,

I Tgll = llglleo-
Since L® = Mj C M} forr > 1, T, : L(p,q) — L(p,q) is bounded implies that
¢ € M}. A question of interest is
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When does g € M} imply that T, : L(p1,q1) — L(p2,q2) is bounded?

Noting that M/ is some weak L? space which is a special case of Lorentz spaces, the

question can be posed in a more general manner as

What are r and s so that f € L(p1,491) and ¢ € L(p2,g2) imply that
T, € L(r,s)?
Theorem 9.39 (Kwessietal.). If f € L(p1,q1) and § € L(p2,q2), where1 < p1,p2,q1,92 <
oo, then Ty € L(r,s), where 1/r = 1/py +1/py and 1/s = 1/q1 + 1/q2. Moreover,
I TeflLrs)y < W Iepnan 18 L(pagn)-

However, we still have not addressed the case where ¢ € M/ since the theorem does
not apply for go = oo. A result that includes g, = oo is given by Kwessi et al. as

follows.

Theorem 9.40. If g € M/, then Ty : L(q,s) — L(;Zf’iq,s) is bounded, where + + L =1
and fors > 0and p,q > 1.

9.7.3 Composition Operator

In this section, we will briefly discuss composition operators on Lorentz spaces L(p, ).

Definition 9.18. Let u be a measure on [0,27t| and g : [0,27t] — [0,271] be a p-measurable
function such that u(g=1(A)) < cu(A), where A is a u-measurable set in [0,271], ¢ is an
absolute constant, and g~ (A) is the pre-image of the set A. The composition operator Cg is

defined as Co(f) = fog.
Theorem 9.41. The composition operator Cy : L(p,q) — L(p,q) is bounded if and only if
there is an absolute constant c such that

n(g '(A) < cu(A) 9.1)

for all y—measurable sets A C [0,27] and for 1 < p < 00,1 < q < co. Moreover, ||Cg|| =
gl

In the theorem,

gl = sup
u(A)#0

i)
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EXERCISES

1. Let f, g be continuous functions from (X, d) to (Y,p) where X and Y are metric

spaces. Show that the set

M={xeX: f(x)=g(x)}
is closed in X.

2. Defined : R2 — [0,0) by d(x,y) = |x — y|*.
Show that (IR, d) is a metric space,0 < a < 1.

3. Give an example of two metric spaces that are homeomorphic and one is com-

plete but the other not.

4. Give an example showing that boundedness is not invariant under a homeomor-

phism.

5. Let p be the discrete metric in IR, that is,

0, x=y,
X, Y) =
pxy) { L x4y
Describe the Cauchy sequence in (R, p). Is (R, p) a complete metric space?

6. Let X be a vector space d a metric on X so that

i) dx+a,y+a)=d(x,y), Vx,y,a e X
ii) d(ax,0) = |a|d(x,0), Vx € Xand a € R.

Show that the function x — d(x,0) is a norm in X.

7. Show that if X is a normed space, then X is homeomorphic to
B, ={xeX: |x]|x <r}.
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10.

11.

12.

13.

14.

15.

16.

Let X be the set of positive real numbers with the usual operations of addition

and the scalar multiplication given by a.x = x*. Is (X, +,.) a vector space?

Let X be the set of all functions f defined on [0, 1] so that

| ' (0~ 1) dt < oo

Endow X with the usual operations of addition and scalar multiplication. Is
(X, +,.) a vector space?

Give two different proofs showing that the norms in a finite dimensional vector
space are equivalents, that is, if (X, +,.) is a finite dimensional vector space and
I/, |I.II% any two norms in X, then there are positive constants & and B such
that

aflxllx < llxllx < Bllxllx

Let M C X be a vector subspace of the Banach space X. Show that M is a Banach
space if and only if M is closed in X.

1/p
Show that for 0 < p < 1, [|f|l, = (/ ]f(t)\pdy) < o0 is not a norm in
(Lp, F, u), but if we define d by d(f,g) = ||f — gl|}), then d is a metric in L,.

Let B(X, Y) be the set of all bounded linear transformations from X to Y, where X
and Y are normed vector spaces with X # {0}. Show that if B(X,Y) is complete,
thensois Y.

Define ¢ : [{ — R where /; is endowed with the supremum norm i.e.

[x]leo = sup |xa], by @(x) =) x.
n=1

n>1

Show that ¢ is a linear functional that is not bounded.

Define T : 1, — 1,1 < p < coby T(x) = (x2,x3, ..., Xp, ...) Where (X1, X2, X3, ..., X, ...

lp. Show that T is a bounded linear transformation.

Let xp € [0,1] and define T : C[0,1] — Rby Tf(x) = f(xo). Endow C|0, 1] with
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17.

18.

19.

20.

21.

22.

23.

24.

the supremum norm i.e. [|x||e = sup |f(t)|. Show that T is a bounded linear
0<t<1
functional on C[0, 1].

Verify that C[0, 1] with the supremum norm is not an inner product space.

Is R" with the norm ||x||c =  max {|x;|} an inner product space? Justify your
<<i<n
answer. -

Let A : C[0,1] — C[0, 1] where C|0, 1] is endowed with the supremum norm, be
defined by

1
Af(s) = / k(s, ) f(1)dt.
0
Show that A is a bounded linear transformation and that

1
1Al = sup | [k(s,t)]dt

0<s<1

Lets > 0 and Lf(s) = / e ! f(t)dt, well-known as the Laplace Transform.
0
Show that:

i) L: Lo — Lo is a bounded linear transformation.

ii) L£:L; — L is also a bounded linear transformation.

n
Show that R"” endowed with the norm ||x[; = Y |x;[; x = (x1,x2, ..., x,) is not
i=1
an inner product space.

If1 <1< p; < pr < oo, then show that Ly, (X, F, u) <= Ly, (X, F, u), moreover

1fllpy < (X)) 772 [ £l s

where (X, F, u) is a finite measure space.

Show that if f € L, (X, F,u) and f € Ly, (X, F,u) then f € L,(X,F,n) for all

p1 < p < p2 and get a relationship between the norms || f||,, || f||p, and || f|| 5,

Let p,r € [1,00) with p > r. Define the product operator T by Tf = g.f. Then
1

T:L, — L;isbounded if and only if ¢ € Ls with % = % - E

86



Exercises

25.

26.

27.

28.

29.

30.

X
For1l < p < oo, L, = Ly((0,00)), F(x) = %/ f(t)dt. Show that
0

P
IFllp = FHfHP'

Let (S, A, 1) be a finite measure space and M(S, A, i) the set of measurable func-
tions on S. Define in M p by

_ [ _If) ()
08 = e gt

Show that

i) pisametric over M
ii) M is a complete metric space.

iii) A sequence {f,},>1 in M converges to f if and only if f, converges to f in
measure. Note that f, — f in measure as n — oo, if Ve > 0, IN so that
Vs € S such that | f,(s) — f(s)| > € has measure zero i.e.,

u{s €S: |fu(s)— f(s)| > €} <e, Vn>N.

Show that any linear transformation T : X — R” where X is a normed space is
bounded.

Use exercise 27. to show that any two norms in a finite dimensional vector space

are equivalents.

Use the closed graph theorem to show that any two norms in a finite dimensional

vector space are equivalents.

Let H'((D)) be the Hardy space, which is the set of all analytic functions in ID
satisfying

27 .
IFln = sup ([ FGe)la8) <o

0<r<i1

Let B}(ID) the analytic form of De Souza’s space, which is the set of all analytic
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31.

32.

functions in D satisfying
1 p2m .
|Fllg = / / |F'(re')|d6dr < co. F'is the derivative of F
0 JO
Show that B!(ID) is continuously embedded in H'(ID); that is,
BY(ID) C H'(D) and ||F||y1 < |[F|p:.

Define

B = {f:[0,21] = R: f(t) ch (t); Y. len| < o0
n=1
where {c, },,>1 is a sequence of numbers, 1 < p < oo,

bn(8) = 117175 0 () = 2, (),

where I, = L, U R, is an interval in [0,27], L, and R, the halves of I,,.

o
I fllgr = inf Y |cal,
n=1

where the infimum is taken over all possible representations of f. Show that

i) ||.]|pr is @ norm in B?

ii) BP is a Banach space.

Let
1
A:A(l—ﬁ,l,l):{f:[0,27T]—>IR: Hf||A<OO},
where
2 Z”If )|
1flla / / V) =T W geay, 1< p < oo

| 1
Show that B is continuously contained in A(1 — %, 1,1), that is,
BY — A(1— %, 1,1) for1 < p < co. Moreover

I flla < M| fl|lr, for some constant M > 0.
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33.

34.

35.

Show that B? as in exercise 31. is continuously contained in the Lebesgue space
Ly, that is,
BY < Ly for1 < p < oo and

Ifllp < Cllfllge, forsome constant C > 0.

Moreover show that ||b||zgp = 1 for

b(8) = iz e () = xe(0),

where I = L U R is an interval, L and R the halves of I.
Define the spaces
Lipa = {f : [0,27t] — R, continuous : |f(x+h)— f(x)| < Mh*}, for0<a <1,

Flx+h) - f(x)]
2=l

£ llLip, = sup

h>0,x

and
Ay ={f:][0,21] = R, continuous : |f(x+h)+ f(x—h)—2f(x)| < Mh*}, for0<a <2,

£+ 1) + f(x = ) = 2f(x)|
" + [ flle

[flla, = sup
h>0,x

Lip, is called the Lipschitz space and A, is the generalized space. Show that,
i) If « > 1, then Lip, = {constants}.
) A1 G Lipy G Lipg  for a < B.
iii) Lipa G Aq.
iv) Lipy = Ay for 0 < a < 1. Note: A1 is the well-known Zygmund class and is

i

usually denoted in the literature as A..

v) (Lipa,+, - ||IILip,) and (A, +, -, ||-]/a,) are Banach spaces.

Let L1 (X, F, u) be the Lebesgue space and f a function on X. Define

m(f,y) =p{x € X [f(x)] >y},
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36.

37.

38.

which is well-known as the distribution function of f. Show that
i) .
£ = [ \f®lanty = [ m(fy)ay.
Note that m(f,y) is the y-measure of the set {x € X : |f(x)| > y}.
it) tm(f,t) < ||f|l1 Vt > 0.

Let L, (X, F,u) be the Lebesgue space and f a function on X and m(f,y) the

distribution function of f. Show that
i)
1/p 00 1
I = ([ 1FPaue)) " =p [T tnir e 1< p<es
i) tm(f, )17 < ||f]l,, 1 < p < o.
Let’s define the weak L,-spaces, usually denoted by L(p, o), as the set
L(p,co) = {f: X = R: tm(f,t)1/? <M, Vt > 0}.

A “norm” in L(p, o) is defined as follows

£ 1IL(p,00) = sup tm(f, 1)/,
£>0

Problem 36. 2) implies that L, & L(p, ) 1 < p < co. Show that the inclusion is
proper, that is, there is an f € L(p, o) so that f ¢ L,.

Let ReH! be a space defined as
ReH' = {f: X = R: f(t) = Y cpan(t); Y |cn| < o0},
n=1 n=1

where a,,’s are atoms, that is, for any I, C [0, 27| intervals,
1
D |an(H)] < 7, YV,
| L]
2) supp{an} C I, and
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1
3) /1 an(£)dt =0, ao(t) = >, ¥t
Endow ReH'! with the norm ||f| g1 = inf Y _ |cu| where the infimum is
n=0
taken over all representations of f.

Show that

i) (ReH',||.||gop1) is @ Banach space.

ii) B! C ReH! where B! is the De Souza’s space in example 2.24
ReH! C Ly, where L; is the Lebesgue space.

If f € ReH! and g € BMO, (BMO in Example 2.23), then

(23

10

)
)
ii)
)

oznf(t)g(t)dt‘ < || fllrert &I BMO-

v) Knowing that L, C ReH' and || f|| gopyt < M| f]|2- Let ¢ € (ReH')* (the dual
of ReH'), and define A by A(A) = ¢(x4) and Ly = Ly([0,27], F, ). Show

that A is absolutely continuous with respect to p.

39. In problem 31. we define the BY, also in problem 34. we defined the Lip, and A,,
0 < a < 1. Now we C? the space defined on [0, 27t] as follows

CP={f:]0,2n] > R: f(t) = icndn(t); il]cn] < oo},

1

- ]I\—l/pXIn(f), where I,,’s are inter-
n

where the ¢,,’s are real numbers and d,, ()

vals in [0, 277]. Endow C? with the norm

o
I fllcy = inf Y |cnl
n=1

where is the infimum is taken over all possible representations of f. Show that

1) B C CPand ||f||cr < M||f||pr for 1 < p < oo, where M is absolute constant.
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40.

41.

42.

2) If fe BPand g € Lip1,1 < p < oo, then
P

[ o] < sl gl

) If fecCPand g€ A1,1 < p < oo, then
P

‘/ohf <f>dg<f>\ < Ifllsrligla,.

4) (CP)* = Lip1, where (CP)* is the dual space of C?. (Hint: use 2))
P
5) (BP)* = A1, where (B?)* is the dual space of B. (Hint: use 3)) Note: dg(t)
p

is to be taken in an appropriated sense.
6) Items in 4) and 5) lead to show that
i) CP and BY are equivalents as Banach spaces, that is, C¥ = B? with equiv-
alent norms.

ii) Lipy = Ay, for0 < a < 1.

Suppose that f is a function from a complete metric space (M, p) into itself such
that there is A € (0,1) for which p(f(x), f(y)) < Ap(x,y), ¥ x,y € M. Then,
there is a unique xg € M so that f(xo) = xo.

Note: this theorem is well-known as the fixed point theorem for metric spaces.

This is called the Contraction mapping Theorem; f is a contraction.

Let S = [0,1]. endow S with the usual metric i.e., d(x,y) = |x — y|. Show that

(S,d) is not a complete metric space. Also endow S with the metric p defined by

p(x,y) =

space.

i g‘ Show that indeed p is a metric and (S, p) is a complete metric

Show that there is a unique continuous function on [0, 1] that satisfies the nonlin-

ear integral equation
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43.

44.

45.

46.

Hint: Define B = {f € C[0,1] : 1 < f(t) <1+t Vt € [0,1]}. Show that B is
closed, then it is complete. Define

" 2
T:B— B, definedby Tf(t) =1+ (/ @ds) , Vte|o,1].
0
Show that T is a contraction, i.e.,
ITf = Tgllo < MIlf = gllo, M€ (0,1).

Show that a function satisfying the condition of the contraction mapping theorem

is an absolutely continuous function.

Let X be an inner product space. Prove that if x, — x and y, — y, then
(Xn,Yn) — (x,y). Thus the inner product (,) is continuous from X x X into
the scalar field.

A sequence {x, },>1 in a Hilbert space H is said to converge weakly to x if

lim (x,,y) = (x,y), Yy € H.

n—o00

a. Show that the sequence {e,},>1 in I?> converges weakly to 0 where ¢, =
0,...,0,1,0,...).

b. Show that if {x,},>1 converges to x in R”, then {x,},>1 converges to x in
norm.

c. Show thatif {x, },>1 converges weakly to x and ||x,| g — ||x||z, then {xp, }1>1

converges to x in norm.

Let C"[a, b] be the space consisting of all real valued functions f on [4, b] such
that the n*" derivative of f exists at each t € [a,b] and is continuous. Denote

Cla, b] the space of continuous functions in [, b] with the supremum norm, i.e.,

1 flleo = sup. OIS

Show that || f{lcnfer = Y. IIf #)||co, where f®) represents the k" derivative of
k=0
f, is a norm, with this norm, C"[a, ] is a Banach space. Moreover C"[a,b] is a

Banach space isomorphic to C[a, b] x R".
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47. the Sobolev space Wy[a, b] consist of all functions f defined on [a,b] such that

48.

49.

50.

f") exists for almost all ¢ € [a,b] and is in L[4, b]. Endow Wy with the norm
L k
1 llwg = 32 1LF© -

k=0

. Show indeed that || - ||y is a norm. Moreover W}, is isomorphic to Ly [a, b] x R".
Also show that forn =1,2,3,...andr > p > 1,

C" C WL C W] C W]

Show that if we endow W;} with

n—1
flle = 3 IO @1+ 1,
k=0
it is a normed space and, |||+ and |.|[wy are equivalents.
Show that if we endow C"[a, b] with
n—1 ”
IA1E = 3 1A 9 @)+ 1 o,

k=0

it is a normed space and, ||.||* and ||.||c» are equivalents.

Suppose 1 < p < oo and % + % = 1. Fix g € W and define ¢ by

n—1 ) '
Pe(f) = Z;)f(])(a)g(l) +/abf(n)(t)g(n)(t)dt'
]:

Then ¢, is a bounded linear functional on Wy. Moreover every bounded linear
functional on Wy} can be so obtained i.e., the dual space of Wy, denoted by (Wy)*
is W, ie., (Wp)* = Wy
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51. Let ¢ € BVN(a, b](normalized bounded variation functions) and define i, by
n—1 ) b
vo() = L ef V@) + [ f(0dg(t), ¥ feCab

j=0

Show that ¢, is a bounded linear functional on C"[a, b] and every bounded linear
functional on Wy can be described in this way i.e., (C"[a,b])* = BV N]a, b].

52. For each n > 1, W} is a Hilbert space with the inner product defined by
n b ) .
(F.8) =1 [ fOeg v
j=0

Show that (, ) is an inner product on W}'. The inner product determines the norm
|||« defined by

; 1/2
11l = (Z ||f(j)H§) :
j=0

|||+ is equivalent to the original norm defined in W}
53. Let T : E — F be a bounded linear operator where E and F are normed spaces.

a. Show that if {x, },>1 is a Cauchy sequence in E, then {Tx, },>1 is a Cauchy
sequence in F.

b. Prove that if F is isomorphic to E and E is complete, then F is also complete.

54. Let E and F be normed spaces. Define in E x F the following:

1Cey) oo = max{|[x[|e, [[yl[£},

1Ce )l = llxlle + llyllF

1/2
1wl = (=l + lwli3)

a. Show indeed that these are norms and they are equivalents in E x F.

b. Show that if E and F are Banach spaces, then so is E x F with the norm ||.||cc-

55. Prove that the operator T(s) = (s1,52 — 51,53 — S2, -..) is an isomorphism, in fact
an isometry from bv onto /5.
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56.

57.

58.

Note: x = (x,) € bvif Y |x,11 — x| < 0o with norm
n=1

(0]
1x|lpo = [x1] + Z | Xp41 — Xl

n=1

Let M/ be the set of all measurable functions on [0, 27t] such that

1 X * 1/p—1
p = Su —/ Dt/ P dE) < oo,
Il = sup (o [ 770
where p > 1 and f* is the decreasing rearrangement of f. Show that M} is a
characterization of L, the space of bounded functions with sup norm.
Let s = (su)y>1. Prove that the operator T(s) = (s1,52 — 51,53 — S,...) is an

isometry from bv to ¢1. Here bv and ¢; are sets of all sequences s so that

o
Is]lbo = Is1] + Y_ Isj+1 — s;] < o0
=1

and -
Islle, = Y Isjl < oo,
j=1
respectively.
Define
1 27 .
"= {F:D—C, analytic,/ / I/ (re®)| (1 — r)/P-1dgdr < oo} .
0 Jo
and

o ~ 1/2
bP =S F:D—D,F(z) =Y a,2", Y 2'K(n,p) (Z Iak|2> <o,
n=0

n=0 kel,

where I, = {k € N : 2""1 < k < 2"} and K(n, p) is a constant. Endow I? and b”

with the norms
1 1 p2m ) B
||l = E/o /O IF (re®)| (1 — r)V/P~1d6dr
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59.

60.

and

0 1/2
Fllw = 3 2K (n, ) (z W) |

n=0 kel

Show that

(a) if F € I?, then there is a constant C > 0 such that ||F||gr < C||F||pp-

(b) If F € 1?7 is a lacunary function, then there is a constant ¢ > 0 such that
IEllze = c[[Fl|pe-

(o°]
Note: Lacunary functions are analytic functions F(z) = Z agz'* with A =
k=1
n
inf L > 1,
k Ny

Let M/ be the set of all measurable functions f on [0, 27] such that
B 1 x . 1/p r dt 1/7
IFlg =sup {7 [ [roe] H T <o

for p > 1andr > 1. Show that M is the weak L?"" space; thatis, M! = L(pr’, ),
where 1/r+1/r = 1.

If we define
X dt
My = {g 10.27] = Rillgllu, =sup [ 5" (09 < oo} :
x>

then (My, || - ||m,) is a quasi-Banach space. Moreover, My = Lo provided that
¢ : [0,27t] — [0,27] satisfy
(a) ¢ isincreasing,

b 20

e is decreasing, and

© /O ' @dt < Co(x).
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