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If a healthy stable host population at the disease-free equilibrium is subject to the Allee effect, can a small
number of infected individuals with a fatal disease cause the host population to go extinct? That is, does the
Allee effect matter at high densities? To answer this question, we use a susceptible–infected epidemic model
to obtain model parameters that lead to host population persistence (with or without infected individuals)
and to host extinction. We prove that the presence of an Allee effect in host demographics matters even at
large population densities. We show that a small perturbation to the disease-free equilibrium can eventually
lead to host population extinction. In addition, we prove that additional deaths due to a fatal infectious
disease effectively increase the Allee threshold of the host population demographics.

Keywords: Allee effect; extinction; persistence

1. Introduction

In population models, the Allee effect refers to inverse density dependence at low population sizes.
A strong Allee effect occurs in these models when there is a positive equilibrium density, Allee
threshold, and the species goes extinct whenever population densities fall below the threshold
[1,7–11,13–15]. The presence of a strong Allee effect in host demographics makes the population
vulnerable to extinction as a fatal disease may tip it below the Allee threshold. In a recent paper,
Hilker et al. [14] showed that in the presence of strong Allee effect in host demographics, a simple
susceptible–infected (SI) epidemic model can exhibit stable periodic orbits (by Hopf bifurcation),
multiple stationary states, and catastrophic collapses of endemic equilibria. Using a similar SI
model with the strong Allee effect, Thieme et al. [16] established by mathematical theorems that
the transition from population decline to population collapse is mediated by a Hopf bifurcation
and a heteroclinic orbit. The SI models of Hilker et al. and Thieme et al. are structurally similar
to predator–prey models that have an Allee effect in the prey population and a linear functional
response (prey eaten per predator per unit time) [2,3,6,10,12–14,17,18]. However, most of these
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2 A. Friedman and A.-A. Yakubu

studies on the interplay ofAllee effects and infectious diseases, especially those in the conservation
biology literature, seem to be largely concerned with the role of theAllee effect at small population
densities [9].

In the present paper, we prove that the presence of an Allee effect in host demographics matters
even at large population densities. That is, we show that a small perturbation to the disease-free
equilibrium can eventually lead to host population extinction. We focus on the following question.
If a healthy stable host population at the disease-free equilibrium is subject to an Allee effect,
can a small number of infected individuals with a fatal disease cause the host population to go
extinct? To answer this question, we use the SI epidemic model of Hilker et al. and obtain model
parameters that lead to host population persistence (with or without infected individuals) and to
host extinction. We note that in epidemiological models with frequency-dependent transmission
and disease-related mortality, a small number of infected individuals can drive the host population
to extinction. In these models, when the strong Allee effect is missing in the host demographics,
the transition from host persistence to host extinction occurs ‘gradually’ or ‘slowly’ while the
model parameters vary. However, in the presence of a strong Allee effect, the transition from host
persistence to extinction is much more abrupt [12].

The paper is organized as follows. In Section 2, we introduce the SI model with the strong Allee
effect in the demographic equation. In Section 3, we state conditions for population persistence
(Theorem 3.3) and extinction (Theorem 3.5). Theorems 3.3 and 3.5 are proved in Sections 4 and 5,
respectively. In Section 6, we use specific parameter regimes to illustrate regions of host popula-
tion persistence (with or without infected individuals) and/or extinction. Section 7 is concerned
with the stability of a unique endemic stationary point, and concluding remarks are presented in
Section 8.

2. Model equations

To introduce the SI model of Hilker et al. [14] with a strong Allee effect in the host demographics,
we let P = P(t) ≥ 0 denote the host population at time t ≥ 0. In the presence of an infectious
disease, the total population

P = S + I

splits into susceptible (S) and infected (I) compartments. As in [14], to make the disease fatal,
we assume that there is no recovery from it. The disease transmission is assumed to be density
dependent by the mass action rate βSI , where β > 0 is the incidence coefficient. There is no
vertical transmission. The infected individuals reproduce into the susceptible class, and the per
capita net growth function is split into

g(P) = b(P) − m(P),

where b(P) is the fertility function and m(P) is the natural mortality. Since the disease is fatal,
the infected individuals suffer an additional disease-induced mortality, which is represented by
the constant virulence μ. The SI model is described by the following autonomous system of two
differential equations.

dS

dt
= −βSI + b(P)P − m(P)S,

dI

dt
= βSI − m(P)I − μI .

(1)

D
ow

nl
oa

de
d 

by
 [

H
ow

ar
d 

U
ni

ve
rs

ity
],

 [
A

bd
ul

-A
zi

z 
Y

ak
ub

u]
 a

t 0
6:

15
 0

2 
N

ov
em

be
r 

20
11

 



Journal of Biological Dynamics 3

As in [14], we specify the demographic functions and assume that a strong Allee effect in the host
demographics is manifested by the following per capita net growth rate

g(P) = a(k − P)(P − K), (2)

where K is the carrying capacity, k is the Allee threshold (minimum viable density of the disease-
free population) and 0 < k < K . The parameter a (a > 0) adjusts the maximum per capita growth
rate. As shown in [14], the functional form of g can be obtained by assuming a density-dependent
per capita mortality rate and a quadratic per capita fertility rate

b(P) = a(−P2 + (K + k + e)P + c),

m(P) = a(eP + Kk + c).

The demographic function b(P)describes a population with increasing mortality where the number
of encounters between the two sexes is proportional to P2 and a linearly decreasing offspring
survival in crowded habitats. The demographic function m(P) describes a population with linearly
increasing mortality rate and is introduced so that

m(P) = b(P) − g(P).

The positive parameters e and c determine the effect of density dependence and independence in
the demographic function, respectively, but they do not affect the per capita growth rate g(P).
As in [14], e is chosen so that P ≤ K + k + e, which ensures that the fertility function b(P) is
positive.

Following Hilker et al. [14], we non-dimensionalize the system (1) by the following change of
variables:

p = P

K
, i = I

K
, t′ = aeKt,

r = 1

e
, u = k

K
∈ (0, 1), d = c

eK
,

σ = β

ae
, and α = μ

aeK
.

In the new variables, Model (1) reduces to the following equations:

dp

dt′
= r(1 − p)(p − u)p − αi,

di

dt′
= [−α − d − ru + (σ − 1)p − σ i]i.

(3)

To simplify the notation, we drop the ‘prime’ on t′ so that Model (3) reduces to the system of
equations

dp

dt
= r(1 − p)(p − u)p − αi,

di

dt
= [−A + (σ − 1)p − σ i]i,

(4)

where

A = α + d + ru.
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4 A. Friedman and A.-A. Yakubu

3. Statement of results

In Model (4), we take initial conditions

0 < i(0) < p(0) < 1. (5)

Theorem 3.1 The solution (p(t), i(t)) of Equations (4) and (5) satisfies the inequalities

0 < i(t) < p(t) for all t > 0.

Proof Clearly, i(t) > 0 and then also p(t) < 1 for all t > 0. To prove that i(t) < p(t) for all
t > 0, we assume, to the contrary, that there exists a point t̃ such that i(t) < p(t) for all 0 < t < t̃
and p(t̃) = i(t̃). Then,

dp(t̃)

dt
≤ di(t̃)

dt
,

and by Model (4),

r(1 − p)(p − u) − α < −A − p at t = t̃,

which is a contradiction since A − α − ru > 0. �

Model (4) has three disease-free equilibrium points:

(p0, i0) = (0, 0), (p1, i1) = (u, 0) and (p2, i2) = (1, 0).

Any solution of Model (4) with p(0) < u satisfies

p(t) ↓ 0 as t −→ ∞,

and the host population goes extinct. In particular, (0, 0) is locally asymptotically stable. The
equilibrium point (u, 0) is unstable since one of the eigenvalues of the Jacobian matrix at (u, 0) is
the positive number r(1 − u)u; the other eigenvalue, −A + (σ − 1)u, may be positive, negative,
or zero.

If σ ≤ 1, then by the second equation of Model (4)

i(t) ↓ 0 as t −→ ∞
and the infected population goes extinct. That is, σ ≤ 1 implies disease extinction in Model (4).
In the rest of the paper, we assume that σ > 1.

As in [14], we introduce the critical host population density for disease establishment, the
disease threshold,

PT = A

σ − 1
, (6)

and the basic reproductive ratio,

R0 = σ

A + 1
,

where PT is the point at which the linear infecteds nullcline crosses the horizontal axis. Moreover,
PT > 1 is equivalent to R0 < 1, and 0 < PT < 1 is equivalent to R0 > 1.

Theorem 3.2 If PT > 1, then (1, 0) is locally asymptotically stable and the disease goes extinct.
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Journal of Biological Dynamics 5

Indeed, in this case, the eigenvalues of the Jacobian matrix at (1, 0), −r(1 − u) and
−A + (σ − 1), are both negative.

In the rest of the paper, we consider the case where 0 < PT < 1. We first state conditions for
persistence of the infected population of Model (4).

Theorem 3.3 If

0 < u < PT < 1 (7)

and

max
u≤y≤PT

{r(1 − y)(y − u)y} >
α(σ − 1)

σ
(1 − PT), (8)

then for any solution of Model (4) with p(0) ≥ u + ε0 for some ε0 > 0, there exists a δ > 0
depending only on ε0 and a time T = T(ε0, i(0)) such that

i(t) ≥ δ for all t ≥ T(ε0, i(0)). (9)

Remark 3.4 (a) Let

f (y) = r

α
(1 − y)(y − u)y and ycr = 1 + u + √

(1 + u)2 − 3u

3
.

Then, Equation (8) reduces to

(σ − 1)

σ
(1 − PT) < max

u≤y≤PT

f (y) =
{

f (PT) if u ≤ PT ≤ ycr ,

f (ycr) if u < ycr < PT.

In Figure 1, we illustrate that condition (8) holds whenever the maximum value of f , f (ycr), is
bigger than ((σ − 1)/σ )(1 − PT), where u < ycr < PT.

(b) If PT ≤ ycr (the first case), condition (8) reduces to

r(PT − u)PT >
α(σ − 1)

σ
. (10)

In Model (4), all trajectories (p(t), i(t)) with p(0) < u lead to host population extinction. When
0 < PT < 1, Theorem 3.3 asserts that in the presence of disease infection, the Allee threshold

Figure 1. Condition (8) hold where u < ycr < PT and the horizontal line, i = ((σ − 1)/σ )(1 − PT), is below the
maximum value of the p-nullcline, i = (r/α)(1 − p)(p − u)p.
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6 A. Friedman and A.-A. Yakubu

Figure 2. Condition (12) holds where PT < u < 1 and the p-nullcline is below the i-nullcline.

is effectively increased to u + ε0. That is, due to disease-induced death, the host population size
needs to be larger to ensure persistence of the infected population [10].

In Model (4), host population extinction is possible with 0 < PT < 1 and p(0) ≥ u + ε0. To
illustrate this, we next consider the case where instead of Equation (7), we have

PT < u. (11)

Theorem 3.5 If 0 < PT < min{1, u} and

max
u≤y≤1

{
r(1 − y)(y − u)y − α(σ − 1)

σ
(y − PT)

}
≤ ε (12)

for some sufficiently small ε > 0, then every solution of Model (4) with 1 − δ < p(0) ≤ 1 for any
δ > 0 sufficiently small and i(0) > 0 satisfies

p(t) −→ 0 and i(t) −→ 0 as t −→ ∞.

Condition (12) holds whenever the p-nullcline, �p, is below the i-nullcline, �i, of Model (4)
(Figure 2).

Theorems 3.3 and 3.5 are proved in Sections 4 and 5, respectively. In Section 6, we give
numerical examples and discuss the conclusion of these theorems in terms of persistence and
extinction of a healthy population in which a small but fatal disease was introduced.

4. Proof of Theorem 3.3

To prove Theorem 3.3, we first establish two auxiliary results, Lemmas 4.1 and 4.2.

Lemma 4.1 Assume that 0 < PT < 1. Then, for any ε0 ∈ (0, 1 − u), there exists a small enough
ε > 0 and a function T(ε, ε0, i(0)) such that if

0 < i(0) < ε and u + ε0 < p(0) ≤ 1,

then

i(t̃) = ε for some t̃ < T(ε, ε0, i(0)).
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Journal of Biological Dynamics 7

Proof We assume that

i(t) < ε for all t < T∗ (13)

and derive a bound on T∗ in terms of ε, ε0, and i(0). We claim that

p(t) > u + ε0 for all t < T∗. (14)

Indeed, otherwise there is a smallest t = t̃ such that p(t̃) = u + ε0, and then dp(t̃)/dt ≤ 0. But by
Equations (4) and (14)

dp

dt
> r(1 − p)(p − u)p − αε = r(1 − (u + ε0))ε0(u + ε0) − αε > 0

at t = t̃ if

ε <
r(1 − (u + ε0))ε0(u + ε0)

α
,

which is a contradiction.
We next claim that

dp

dt
> 0 whenever p(t) < 1 − ε′,

where ε′ = cε and c is a constant. Indeed, at any point t̂, where p(t̂) < 1 − ε′, we have, by
Equations (4), (13), and (14),

dp

dt
> rε′ε0(u + ε0) − αε = αε

if

ε′ = 2αε

rε0(u + ε0)
≡ cε.

It follows that for some T1 = T1(ε, ε0)

p(t) > 1 − cε if t > T1(ε, ε0). (15)

Next, from Equation (4) for i and inequalities (13) and (14), we get

1

i

di(t)

dt
= −A + (σ − 1)p − σ i > −A + (σ − 1)(1 − cε) − σε

= 1

PT
(1 − PT)A − c1ε = γ A − c1ε,

where t > T1(ε, ε0), c1 is a positive constant, and γ = ((1 − PT)/PT) > 0. Hence,

i(t) > i(T1(ε, ε0))e
(1/2)γ A(t−T1(ε,ε0))

if

ε <
1

2c1
γ A.

It follows that i(t̃) > ε for some t̃, where

t̃ ≤ T∗ ≡ T1(ε, ε0) + T2(ε, ε0, i(T1(ε, ε0))). (16)

Note that i(T1(ε, ε0)) depends on i(0), if i(0) → 0, then i(T1(ε, ε0)) → 0. Hence, the right-hand
side of Equation (16) is actually a function T(ε, ε0, i(0)), where T(ε, ε0, i(0)) → ∞ if i(0) → 0.

�
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8 A. Friedman and A.-A. Yakubu

If in the above proof i(0) is equal to ε, then T(ε, ε0, i(0)) becomes a function T(ε, ε0) which
depends only on ε and ε0. In the next lemma, we restate this case where instead of t = 0 we take
any initial time t = t1.

Lemma 4.2 Assume that 0 < PT < 1 and

i(t1) = ε, p(t1) > u + ε0 for some ε0 ∈ (0, 1 − u),

where ε is sufficiently small depending on ε0. If i(t) ≤ ε for t1 ≤ t ≤ t2, then

t2 − t1 < T(ε, ε0).

Proof of Theorem 3.3 In view of Lemma 4.2, we need only to bound i(t) from below in intervals
t1 ≤ t ≤ t2, where i(t) ≤ ε and t1 > 0. We may further assume that (t1, t2) is a maximal interval
for which i(t) ≤ ε so that i(t1) = ε. Then, i(t) > ε for some values t smaller than t1. Let t0 be
the largest value of t, t < t0, with the property that i(t) is monotonically decreasing from t0 to t1.
Then,

i(t) < i(t0) if t0 < t < t1 (17)

and

i′(t0) = 0,

or by Model (4),

−A + (σ − 1)p(t0) − σ i(t0) = 0. (18)

Hence, by Equation (7),

p(t0) = PT + σ

σ − 1
i(t0) > PT = u + ε1, (19)

where

ε1 ≡ PT − u > 0.

We claim that there exists an ε̄0 ∈ (0, ε1) such that

p(t) > u + ε̄0 for all t0 < t ≤ t1. (20)

Indeed, since p(t0) > u + ε1 > u + ε̄0, if the assertion (20) is not true, then there exists a t̃ ∈ (t0, t1)
such that

p(t) > u + ε̄0 if t0 < t < t̃, p(t̃) = u + ε̄0,

and therefore
dp(t̃)

dt
≤ 0,

or by Model (4),

r(1 − (u + ε̄0))ε̄0(u + ε̄0) − αi(t̃) ≤ 0.

Since, by Equations (17) and (18)

i(t̃) ≤ i(t0) = 1

σ
((σ − 1)p(t0) − A) <

1

σ
((σ − 1) − A),

we get

r(1 − (u + ε̄0))ε̄0(u + ε̄0) <
α

σ
(σ − 1)(1 − PT).

But this is a contradiction to Equation (8) if we choose ε̄0 such that y = u + ε̄0 is the value at
which the maximum is attained for the left-hand side of Equation (8). Consequently, with this
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Journal of Biological Dynamics 9

chosen value of ε̄0, we conclude that Equation (20) is satisfied, and in particular,

p(t1) > u + ε̄0.

We can therefore apply Lemma 4.2 to deduce that

t2 − t1 < T(ε, ε̄0).

Note that the way ε̄0 was determined, T(ε, ε̄0) may be viewed as a function T = T(ε) (of ε

only). We next observe that
di

dt
≥ −c0i for all t > 0,

where c0 is a positive constant. Hence,

i(t) ≥ εe−c0(t2−t1) ≥ εe−c0T(ε) ≡ δ if t1 < t < t2.

This estimate applies to any interval t1 < t < t2, where i(t) ≤ ε and i(t1) = ε. Combining this
estimate with Lemma 4.1, it follows that i(t) > δ if t > T(ε, ε0, i(0)). �

5. Proof of Theorem 3.4

We denote by �+
i the union of

�i ∩ {(p, i) ∈ [0, ∞) × [0, ∞) | i > 0 and PT < p < 1}
and the interval

{(p, i) ∈ [0, ∞) × [0, ∞) | i = 0 and 0 < p ≤ PT},
and by �+

p the union of

�p ∩ {(p, i) ∈ [0, ∞) × [0, ∞) | i > 0 and u < p < 1}
and the interval

{(p, i) ∈ [0, ∞) × [0, ∞) | i = 0 and 0 < p ≤ u},
where �i and �p are, respectively, the i- and p-nullclines of Model (4).

Hence,

dp

dt
> 0 below �+

p and
dp

dt
< 0 above �+

p ,

di

dt
> 0 below �+

i and
di

dt
< 0 above �+

i .

Consider first the case where

max
u≤y≤1

{
r(1 − y)(y − u)y − α(σ − 1)

σ
(y − PT)

}
< 0, (21)

so that

�i ∩ {(p, i) ∈ [0, ∞) × [0, ∞) | i > 0}
lies strictly above

�p ∩ {(p, i) ∈ [0, ∞) × [0, ∞) | i > 0}.
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10 A. Friedman and A.-A. Yakubu

Figure 3. In Model (4), �i (straight line) is tangent to �p (cubic) and a solution (circles) with initial condition (1, 0.0001)
converges to (0, 0) as t → ∞. Here, α = r = 0.016667, d = 0.00482, σ = 1.241, and u = 0.2.

Hence,
di

dt
≥ ε1 below �+

p and
dp

dt
≤ −ε1 above �+

i , for some ε1 > 0.

It follows that, every trajectory of Model (4) must cross �+
i at some time, entering the region

above �+
i (unless it is initially already above �+

i ), and thereafter it remains above �+
i so that

p(t) → 0 and i(t) → 0 as t → ∞.
Consider next the case when equality holds in Equation (12) with ε = 0. Then, �+

p and �+
i have

one point of intersection, Q = (p̄, ī), where they are tangent to each other. As easily computed,
the eigenvalues λi of the Jacobian matrix at Q are λ1 = 0 and λ2 = (α/σ)(σ − 1) − σ ī. Hence, Q
is a saddle point, so that no trajectory (p(t), i(t)) which is above �+

i , for some t = t̃, can converge
to Q as t → ∞. It follows, as illustrated in the phase diagram in Figure 3, that any trajectory
(p(t), i(t)) with (p(0), i(0)) = (1 − δ1, δ2), where δ1 ≥ 0 is sufficiently small and δ2 > 0, must
cross successively �+

p and �+
i and then, as in the case considered above, (p(t), i(t)) → (0, 0) as

t → ∞. In particular, p(tδ) < (1/2)u for some finite time tδ .
Under the condition (12) with ε sufficiently small, the i-nullcline intersects the p-nullcline at

two points Q1 and Q2, where |Q1 − Q| and |Q2 − Q| are small enough, so that, by continuity, the

Figure 4. Phase plane of Model (4) with two interior positive steady points and a solution (circles) with initial condition
(1, 0.0001) converges to an interior fixed point as t → ∞. Here, α = r = 0.016667, d = 0.00482, σ = 1.23, and u = 0.2.
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corresponding trajectory (p̃(t), ĩ(t)) with (p̃(0), ĩ(0)) = (1 − δ1, δ2), where δ1 ≥ 0, is sufficiently
small and δ2 > 0 satisfies p̃(tδ) < u, and hence p̃(t) → 0 as t → ∞.

Remark 5.1 The assumption that ε in condition (12) is small is essential. Figure 4 shows an
example where the two points of intersection of the nullclines, Q1 and Q2, are not sufficiently
close, and in this case, the solution (p(t), i(t)) converges to Q2 as t → ∞.

6. Extinction and persistence

We are interested in the following question regarding system (4). Given a healthy stable population
with p(0) = 1 but subject to the Allee effect in the host demographics, can a small number of
individuals infected with a fatal disease cause the host population to go extinct? If this is the case
no matter how small the initial number of infected individuals, i(0), then we say that the model
parameters are in the host extinction phase; otherwise we say that the parameters are in the host
persistence phase.

We shall, for illustration, focus on the parameters u, the Allee threshold, and the infection
parameter σ , keeping all the other parameters fixed. When 0 < PT < 1, under conditions (7) and
(8), Theorem 3.3 asserts that if p(0) > u + ε0 for some ε0 > 0 (and, in particular, if p(0) = 1),
for any small number of infected individuals i(0), the inequality (9) holds. Thus, (u, σ) is a point
of persistence of the infected population and, hence (by Theorem 2.1), also of the host population.
On the other hand, Theorem 3.5 asserts that (u, σ) is a point of host population extinction if
0 < PT < min{1, u} and condition (12) holds.

We illustrate the regions of persistence versus extinction in Figure 5 in the case

α = 0.1, d = 0.25, r = 0.2, u ∈ (0, 0.5), and σ > 1.

The curve

�1 : σ = σ1(u)

is defined by PT = 1, that is, σ − 1 = A. The curve

�2 : σ = σ2(u)

is defined by u = PT. The curve

�3 : σ = σ3(u)

is such that, with σ = σ3(u), equality holds in Equation (8); then, Equation (8) holds if σ > σ3(u).
Finally, the curve

�4 : σ = σ4(u)

is such that, with σ = σ4(u), equality holds in Equation (12) with ε = 0; then, Equation (12) with
ε = 0 holds if σ > σ4(u).

Theorem 3.3 asserts that the region between �3 and �2 is a region of persistence of the infected
population. Theorem 3.5 asserts the region σ > σ4(u) + η for some small η > 0 is a region of
extinction of the host population. Points in regions between �1 and �3 and between �2 and �4

may be either points of disease population extinction or persistence. Simulations in Figure 5 with
initial condition (p, i) = (1, 0.0001) show points of host population persistence without infected
individuals by open squares, points of disease persistence by open circles, and points of host
population extinction by asterisks. Note that by Theorem 3.2, every point below �1 is a state of
host population persistence with no infected individuals.
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12 A. Friedman and A.-A. Yakubu

Figure 5. Region of host persistence with no infected individuals (disease extinction) is denoted by ‘open squares’,
region of disease persistence is denoted by ‘open circles,’ and region of host extinction is denoted by ‘asterisks’ in
(u, σ)-plane with initial condition (p, i) = (1, 0.0001). Here, α = 0.1, d = 0.25, r = 0.2, u ∈ (0, 0.5), and σ > 1.

It follows from Figure 5 that if we increase the infection rate (respectively, the Allee threshold)
while all the other parameters are kept fixed at their current values, then it is possible for the
system parameters to shift from host population persistence phase to host population extinction
phase. In Figure 5, stability questions (equilibrium versus oscillation) are not considered.

7. Stability of the unique endemic equilibrium

Let

F(x) = d

dx
[r(1 − x)(x − u)x].

Theorem 7.1 If 0 < u < PT < 1, then Model (4) has a unique stationary point

(p̄, ī) with PT < p̄ < 1, ī > 0,

and (p̄, ī) is locally asymptotically stable if

F(p̄) < (σ − 1)(p̄ − PT). (22)

Proof Note that (p̄, ī) is a stationary point with ī > 0 if and only if x = p̄ is a zero of the function

f (x) = rx(1 − x)(x − u) − α(σ − 1)

σ
(x − PT).

This may only occur for x in the interval PT < x < 1. Since f (1) < 0, f (PT) > 0, and f ′′(x) < 0
if u < x < 1, f (x) has precisely one zero x = p̄ in this interval. The slope of the i-nullcline at
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(p̄, ī) is clearly larger than the slope of the p-nullcline, that is,

F(p̄) <
α(σ − 1)

σ
. (23)

The Jacobian matrix of Model (4) at (p̄, ī) is

J(p̄, ī) =
(

F(p̄) −α

(σ − 1)ī −σ ī

)
,

and ī = ((σ − 1)/σ )(p̄ − PT). Both eigenvalues of J(p̄, ī) have negative real parts if

F(p̄) < σ ī and − σF(p̄) + α(σ − 1) > 0.

But these two inequalities are, respectively, inequalities (22) and (23). �

Hilker et al. [14] showed that Model (4) is capable of exhibiting an interior periodic orbit via
a Hopf bifurcation of the interior stationary points.

8. Conclusion

Many plant and animal species are known to exhibit the Allee effect [9]. Examples of species that
exhibit the Allee effect and suffer from fatal diseases include the endangered African wild dog
Lycaon pictus [4,5,8] and the island fox Urocyon littoralis [1,7]. Studies of systems that exhibit the
Allee mechanism seem to be focused on the role of the Allee effect at small population densities.
However, in combination with an infectious disease, we prove that a small perturbation to the
disease-free equilibrium can lead to the catastrophic extinction of the host population. That is, a
small number of infected individuals can lead to host population extinction. To prove this result, we
use the relative position of a disease threshold to the Allee threshold and host population carrying
capacity and obtained verifiable conditions that guarantee the persistence (with or without infected
individuals) or extinction of the host population of the SI model of Hilker et al. [14]. In the presence
of the Allee effect in the host demographics, population models which exhibit multistability and
transitions from host population persistence (with or without infected individuals) to extinction
become much more abrupt. Mathematical proofs of these bifurcation phenomena and how they
impact host population extinctions at high densities are open questions.

Also, we prove that when there is an Allee effect in the host demographics and a fatal disease
invades the host population, then the Allee threshold is effectively increased. Deredec and Cour-
champ [10] reported a similar result. At large population densities, the Allee effect and infectious
diseases can work together to drive otherwise stable healthy host populations to extinction even
at large population densities. Thus, understanding the interplay between the Allee effect and dis-
ease epidemic models may have important implications in conservation biology, ecology, and
epidemiology.

With view to the effects of migration on populations of endangered species, for example, the
endangered African wild dog, it would be interesting to investigate how the extinction threshold
of one population is influenced by the collective migrations of several populations with different
Allee thresholds.
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