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Abstract

Discrete-time susceptible—infective—susceptible (S—-I-S) disease transmission models can exhibit bista-
bility (alternative stable equilibria) over a wide range of parameter values. We illustrate the richness
generated by such ‘simple’ non-linear systems in the study of two patch epidemic models with disease-
enhanced or disease-suppressed dispersal. Dispersal between patches can have a profound impact on local
patch disease dynamics. In fact, dispersal between patches may give rise to bistability in parameter regimes
without bistability in single patch models. © 2001 Elsevier Science Inc. All rights reserved.

Keywords. Bistability; Dispersal; Geometric growth; Metapopulation; Patches

1. Introduction

The impact of ‘disease’ on animal populations in a broad sense is part of the study of host-
parasite interactions (see [3,30,32,37-40]). Over the last 20 years (with some notable exceptions)
the study of disease dynamics has focused on models with human hosts (see [3,5,12—
18,20,21,30,37,38]). Models that incorporate population and disease dynamics as well as dispersal
are rare, regardless of the type of hosts. Here, we study the role of dispersal on disease dynamics in
populations capable of supporting complex dynamics. Local (single patch) disease dynamics are
modeled via an S-I-S epidemic process that does not include disease-induced mortality. This is
unrealistic since most diseases in animal populations impact host mortality. However, our choice
of framework is a function of our driving questions: Are simple discrete-time epidemic models
bistable? Does dispersal give rise to bistability? Our setting assumes that complexity comes
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exclusively from the (disease-free) population dynamics so that we can focus exclusively on the
role of dispersal on disease dynamics.

Single patch discrete-time S—I-S epidemic models are capable of generating complex (chaotic)
dynamics, a situation not shared by classical continuous-time epidemic models [1,2,12,14-18].
Typically, the reproductive number of the disease Ry is the key threshold parameter. R, less than 1
most often guarantees the global asymptotic stability of the disease-free equilibrium (the disease
dies out) while R, bigger than 1 typically supports the existence and global asymptotic stability of
a unique endemic equilibrium (disease persists).

Non-constant transmission rates can generate multiple stable equilibria in single patch models.
Examples of epidemic models exhibiting this behavior were first established for continuous-time
epidemic models by Castillo-Chavez et al. [13-15], Dushoff et al. [25] and Huang et al. [35].
Recently, examples using simpler continuous-time models were constructed by Hadeler and Ca-
stillo-Chavez [30], Hadeler and van den Driessche [31], Feng et al. [27], Kribs-Zaleta and Velasco-
Hernandez [36], and van den Driessche and Watmough [46]. The results of Feng et al. [27], Huang
et al. [35] and Hadeler and Castillo-Chavez [30] have far reaching implications for the imple-
mentation of effective public health policies for HIV and tuberculosis, and that of van den
Driessche and Watmough [46] have important theoretical implications since they illustrate the
possibility of multiple stable equilibria for simple epidemic processes (S—I-S epidemic models
based on a Volterra integral equation). The results of Kribs-Zaleta and Velasco-Hernandez [36]
focus on diseases at borders, a topic first addressed in [28].

Multiple stable equilibria are possible in classical discrete-time epidemic models (that is, models
with typical forces of infection). An example using a discrete-time susceptible—exposed-infective—
susceptible (S—E-I-S) epidemic model has been recently developed [4]. Here, we show that bi-
stability in simple discrete-time S—I-S epidemic models with or without dispersion between pat-
ches is possible. Albeit, bistability in a single patch is generated following the approach in [46].
This approach can be avoided but it requires an additional dimension for the epidemic process
(see [4]). Since our desire is to look at the role of dispersal in the simplest possible setting, we
follow the approach in [46].

The paper is organized as follows: In Section 2, we study single patch discrete-time S—I-S
models and establish conditions for the occurrence of a unique stable endemic equilibrium point
under various recruitment regimes of new susceptibles (no bistability). In Section 3, we illustrate
the possibility of bistability in single patch discrete-time S—I-S models. Section 4 focuses on two
patch discrete-time S—I-S models with disease-enhanced and disease suppressed dispersal between
patches. Conclusions are in Section 5 and proofs are collected in Appendix A.

2. Single patch S-I-S epidemic models

In a single patch, the dynamics of the total population size in generation #, denoted by 7'(¢), is
typically governed by equations of the form

T(t+1) = f(T(0) +T(), (1)

where y denotes the ‘probability’ of survivorship per generation while /' denotes the local birth or
recruitment function. An epidemic process is built on ‘top’ of the demographic pattern generated
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by f. Density regulation, modeled by Eq. (1), can support complex dynamics for 7'(¢z). To guar-
antee control over the local dynamics (no matter how complex they are) it is assumed that the
disease does not affect T in a significant way, that is, we ignore disease-induced mortality. The
absence of disease-induced mortality does not imply that the population does not experience
death. Fixing the local population dynamics and building an epidemic processes on them is quite
common for continuous-time epidemic processes but less common for discrete-time epidemic
models [1,2,12-19].

S(¢) denotes the population of susceptibles; /() denotes the population of the infected, assumed
infectious; 7(z) =S(¢t) +1(¢) denotes the total population size at generation ¢, and,
T, = lim, ., T(¢) denotes the demographic steady state for the total population whenever it exists.
Individuals are assumed to survive with constant probability y (die with probability 1 — y) each
generation while infected individuals recover with probability 1 — ¢ (do not recover with constant
probability o). It is assumed that susceptible individuals become infected with probability 1 — G
per generation (remain susceptible with non-constant probability function G). Here, we further
assume that g(y) = G(ya(y)), where the transmission function o = a(y), that is, « models the
impact of prevalence (y = I(¢)/T(¢)) on G. In general, G : [0,00) — [0, 1] is a monotone concave
probability function with G(0)=1; G'(x) <0 and G"(x) >0 for all x€[0,00), and,
o:]0,1] — [0,00) is a smooth function.

It is also assumed that the disease is not fatal; all recruits are susceptible; the recruitment
function depends on the total population; time is measured in generations; and, recovery from
disease does not give permanent or temporary immunity. Model construction assumes implicitly a
sequential process. At each generation, the fraction (1 — y) of each class is removed (death); then
surviving susceptibles become infected with probability (1 — G); while, independently, surviving
infectives recover with probability (1 — g). The use of this sequential approach simplifies the
analysis without limiting the nature of the results.

These assumptions and definitions lead to the following discrete-time single patch S—I-S model
with no dispersion

S+ 1) = f(T(2) +yg((0)S(t) + (1 — 0)I (1),
I(t+1) = (1 — g(1))S(t) + yal(2),

where 0 < y, ¢ < 1 and T(¢) > 0. Model (2) reduces to the model of Castillo-Chavez and Yakubu
[10,18] whenever the transmission function « is a constant. Whether or not epidemics built on
populations with complex dynamics exhibit qualitatively similar dynamics is part of the questions
of interest (see [10,18]).

(2)

2.1. Asymptotically bounded growth

To gain some understanding on the role of dispersal, population dynamics, and disease on life-
history evolution, we look at the dynamics of our model under specific functional forms for the
recruitment function f (forms commonly found in the literature). If new recruits arrive on a single
patch at the positive constant rate A per generation and there is no dispersion (Eq. (1) with
f(T(t)) = A), then T,, = A/(1 — y). If the birth or recruitment process is governed by Ricker’s
Equation (f(7(¢)) = T(¢)exp(r — kT(t)), where r and k are positive constants) and there is no
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dispersion then Eq. (1) implies that the total population, on each patch, will eventually reach the
positive steady state

r—In(1-y)
I=——1-—"
k
whenever
2 1 —9)In(1 —1
oo, 2+ (=y)n(—)

(I=7)
(T(¢) would exhibit complex local dynamics for larger values of r (see [18])).

System (2) can be analyzed if one assumes that the total population has reached a demographic
equilibrium before the disease invades. In other words, it is assumed that the total population has
reached the positive steady state 7., that is, we set 7(¢t) = T, x(t) = S(¢)/ T, and y(¢) = 1(t)/ T
in System (2). The resulting one-dimensional autonomous ‘limiting system’ for y(¢) is therefore
given by

y(t+1) =91 =gW(0)(1 = x(1) + yoy(2). (3)
Simulations support the conclusion that Eq. (3) exhibits the same qualitative dynamics as those of
System (2). Theoretical results on the qualitative dynamics equivalence of autonomous and non-
autonomous systems have been established by Thieme [45], in the context of continuous-time
dynamical systems and by Zhao [48] for discrete-time dynamical systems. Their results support
this type of simplification under very general conditions. The following results depend on the
assumption that Eq. (3) and System (2) have the same qualitative dynamics whenever there is a
unique positive stable equilibrium 7, [10].

The basic reproductive number, %#,, determines the asymptotic behavior of System (3).

P Yo if «(0) =0, )
ORI i w(0) #0,
gives the average number of secondary infections generated by a small pioneer population of
infected (assumed infectious) individuals over their life-time. Epidemiologically (and typically), if
Ao > 1 the number of infectives grows while if 2, < 1 the number of infectives would decrease to
zero regardless of initial conditions. This is what happens when «(y) is a constant function. We

collect these results in the following theorem.

Theorem 2.1. Let oo = o be a positive constant.

(a) If Ry < 1, then the solutions (x(t), y(t)) of System (3) approach the disease-free equilibrium,
(1,0), as t — oc.

(b) If Ry > 1, then the solutions (x(t), y(t)) of System (3) approach a unique positive endemic
equilibrium, (1 —y,7) € (0,00) x (0,00), as t — oo.

Proof. The reproduction function for the proportion of infected individuals of Eq. (3) is given by
h(y) = (1 = G(ay))(1 = y) + yoy,
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where £ : [0,1] — [0, 1], 2(0) = 0 and 0 < y < 1. The set of iterates of / is equivalent to the set of
density sequence generated by Eq. (3). Differentiation with respect to y gives

H(y) = —=(1 = G(ay)) — 207G (%y) (1 = y) + 70,
H'(y) = 20007G (egy) — oy(1 — »)G" (2%y).

To establish the result, we will show that 2, < 1 implies 0 < #'(0) < 1, %, > 1 implies #'(0) > 1,
and, 4"(y) < 0 for y € (0, 1].

0 < % < | implies that 0 < #'(0) = —opyG'(0) + yo < 1. Therefore, the fixed point {0} is lo-
cally stable under /-iteration. Since G’ < 0 and G” > 0 we have that, 2”(y) < 0 for y € [0, 1]. The
monotonicity condition on /4’ and the fact that #/(0) < 1 imply that #'(y) <1 or A(y) <y for
y € (0,1]. Hence, {y(#)},- (. a strictly decreasing sequence bounded below by zero, converges to
the only fixed point of % in the interval [0, 1], zero. This proves condition (a).

Ry > 1 implies that #'(0) = —opyG'(0) + yo > 1 and, therefore, the fixed point {0} is locally
unstable under /A-iteration. Let y denote the smallest positive fixed point of % in [0, 1], and note
that 4(1) = yo < 1. The intermediate value theorem guarantees the existence of the positive fixed
point y € (0, 1) satisfying A(y) = y and A(y) > y for y € (0,¥) and, consequently, #'(¥) < 1. Since
'(y) < 0 implies that /'(y) < #'(y) < 1 fory € (,1), then [J#'(x)dx < [Z dx and, we have h(y) <y
for y > 3. Hence, & has a unique positive fixed point y € (0,1). Furthermore, A(y) >y for
y € (0,9) and h(y) <y fory € (3,1].

To establish the global stability of y, we first prove the non-existence of non-trivial two-cycles
for h. First, we show that 1-+7#'(y) >0. Note that 1+4(y)=1—7y(1— G(oy))—
%yG (9y)(1 —y) +y6 =1 —y+ yo > 0. Hence, 1 + 4'(y) # 0 for y € (0, 1]. Suppose / has a non-
trivial 2-cycle {p, ¢}, where p,q € [0, 1], then &(p) = q and h(gq) = p where p # q. The mean value
theorem guarantees the existence of a point r between p and ¢ such that
W(r)=h(p) —h(q)/(p —q) = —1, and 1 + /'(r) = 0, a contradiction. Hence, / has no non-trivial
2-cycles in [0, 1]. From a result of Cull [22]; McCluskey and Muldowney [41]; the non-existence of
non-trivial 2-cycles for 4 implies global stability of the positive fixed point y.

When the transmission function o = a(y) is not a constant function, Theorem 2.1 does not
apply. However, %, < 1 implies 0 < #’(0) < 1 and %, > 1 implies #'(0) > 1. If, in addition,
a(y) +yo'(y) > 0 and 20/ (y) 4+ yo (v) <0, then A"(y) < 0 for y € (0,1] and the following result
follows.

Corollary 2.2. Let
o(y) +yo' (v) > 0
and

24/ (y) +yo" (y) < 0.

(@) If Ry < 1, then the solutions (x(t), y(t)) of System (3) approach the disease-free equilibrium,
(1,0), as t — oo.

(b) If Ry > 1, then the solutions (x(t), y(t)) of System (3) approach a unique positive endemic equi-
librium, (1 —y,y) € (0,00) x (0,00), as t — oo.

The outline of the proof of Corollary 2.2 is in Appendix A.



40 C. Castillo-Chavez, A.-A. Yakubu | Mathematical Biosciences 173 (2001) 35-53

2.2. Geometric growth

If new recruits are assumed to arrive at the positive per-capita rate u per generation, that is, if
f(T(t)) = uT(¢), then Eq. (1) becomes the linear difference equation

Te+1) = (u+9)T0), (3)
that is,
(1) = (u+7)'T(0). (6)
The demographic basic reproductive number is defined by
%d = Lv
I=y

where %4 is a dimensionless quantity that gives the average number of descendants produced by a
typically small pioneer population (7(0)) over its life-time. %4 > 1 implies that the population
invades at a geometric rate while 24 < 1 leads to extinction. We now build an epidemic process on
a population with disease-free geometric growth.

The study of the dynamics of System (2) can be simplified via the use of proportions. In fact, the
use of the new variables

M) =g and 0 =70 )
reduces System (2) with f(7(¢)) = uT(¢) to

x(t+1) = L x(0gr(0)) + —— (1 — o)),

MTV Lty Lty (8)
Y+ 1) = w01 g00) o o)

Since x(¢) +y(t) =1 for all ¢ in System (8), then all solutions live on the invariant line
{(x,y) € 0,00) x [0,00) | x + y = 1}. The substitution x(¢) = 1 — y(¢) reduces System (8) to a one-
dimensional autonomous system for y(¢), namely,

Y
t+1)=——(1—-y)(1 —g()) + oy(t). 9
y(t+1) MJFV( y(0)(1 —g((2))) o (1) )
From Eq. (9) we compute the basic reproductive number
m lf O((O) = O,
Ry = (10)

—y(0)G () if 2(0) # 0.

AR, is easily derived from the linearization of Eq. (9) near (x.., 1) = (1,0), that is, from

Y '
m(—“(O)G (0) + a)y(2).

If 24 = 1 (no demographic impact), then %, reduces to Z, = yo or %, = —ya(0)G'(0)/(1 — yo),
where 1/(1 — yo) denotes the average death-adjusted length of the infectious period in genera-

yiE+1) =
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tions; y is the proportion of surviving susceptibles who can be invaded by the disease; and,
—o(0)G'(0) is the maximum rate of infection per infective (no dispersion) (see [18]). If Z4 # 1,
then demography impacts disease dynamics, that is %,. In fact, 1/((1 — y)(%4 — 1) + 1 — y0) gives
the demographic death-adjusted infectious period measured in generations. Hence, #, decreases
with population growth (%4 > 1) and increases with population decay (0 < #4 < 1) as all new
recruits are assumed to be susceptibles. We collect these results in the following theorem.

Theorem 2.3. In System (8), let
o(y) + o' (v) >0

and

20/ (y) + yo" (v) <0.

Then,
(a) if Ry < 1, the total population, T = S + I, decreases to zero at a geometric rate; Rq > 1 im-
plies that the total population increases at a geometric rate; R4 = 1 implies that the total popu-
lation remains fixed at its initial value.
(b) If R4 > 1 and Ry < 1, then the proportion 1] T of infectives in the total population tends to 0 as
t — oo, while the proportion ST of susceptibles in the total population tends to 1 as t — oc.
Hence, (S/T,1/T) tends to the disease-free equilibrium (1,0), where S is increasing at the same
geometric rate as T.
() If #q > 1 and Ry > 1, then the proportion 1/T of infectives in the total population tends to a
positive number, I /T ast — oo, and the proportion S/T of susceptibles in the total population also
tends to a positive number 1 — (I/T) as t — oco. Hence, (S/T,1/T) tends to an endemic equilib-
rium. 1, S and T are increasing at the same geometric rate.
(d) If 4 < 1 and Ry < 1, then the proportion I/ T of infectives in the total population tends to 0 as
t — oo, while the proportion S/T of susceptibles in the total population tends to 1 as t — oc.
Hence, (S/T,1/T) tends to the disease-free equilibrium (1,0). Hence, S is decreasing to zero at
the same geometric rate as T.
() If R4 < 1 and Ry > 1, then the proportion I]/T of infectives in the total population tends to a
positive number 1/T as t — oo, and the proportion S/T of susceptibles in the total population also
tends to a positive number 1 — (I/T) as t — oo. Hence, (S/T,I/T) tends to an endemic equilib-
rium. Hence, I, S and T are decreasing at the same geometric rate.

Proof. Recall that, T(t + 1) = (u+ y)T(¢) and %4 = p/(1 — 7). Hence, Z4 > 1 implies T increases
geometrically and %4 < 1 implies T decreases geometrically. To establish the result, we prove that
if Zy < 1, then the solutions (x(¢), y(¢)) of System (8) approach the equilibrium (1,0), as t — oc.
If #, > 1, we proceed exactly as in the proof of Theorem 2.1 and Corollary 2.2 to prove that the
solutions (x(#), y(¢)) of System (8) approach a unique positive endemic equilibrium,
(x,7) € (0,00) x (0,00), as t — 0.

For the proof of Theorem 2.3, the reproduction function for the infected individuals of System
(8) is
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Y Y
h(y) =——(1 — 1—y)+——oay,
) u+y( gy —y) T
where 4 : [0,1] — [0, 1]. Now, we proceed exactly as in the proof of Theorem 2.1 and proof of
Corollary 2.2 to establish the result.

3. Bistability

Typically, epidemic models have a unique stable equilibrium with the reproductive number of
the disease serving as a threshold parameter. If the reproduction number is less than 1, the disease
dies out and if the reproduction number is bigger than 1, the disease persists (Theorem 2.1,
Corollary 2.2 and Theorem 2.3). When the transmission rate o = «(y) is a non-constant function,
then two stable equilibria for System (3) are possible (bistability).

In order to illustrate this phenomenon explicitly, it is assumed throughout this section that
infections are modeled as Poisson processes and that a(y) = y so that g(y) = e [17,18]. The
approximation e’ ~ 1 —? is used instead to make it possible to compute explicit formulae.
Hence, the use of g(3°) = 1 —)? leads to the new well-posed system:

T ) 41— o
K1) = A (=0 01 o),

Y 2 Y (11)
y(t+1) :my(t) x(1) +M+V

oy (t).

System (8) is not capable of supporting bistability when the transmission rate « is a constant. The
use of a(y) =y in System (11) implies a(y) 4+ yo/(y) =2y >0 and 2¢'(y) +yo"(y) =2 > 0.
Ro =y0/((1 — Ra)y + Rq) simplifies to #y = yo/(pn+ y), that is, Z; < 1 always. An increase in o,
the probability that an infective does not recover in the time interval, can give rise to two stable
equilibria (bistability). Theorem 3.1 collects these results on bistability for System (11).

Theorem 3.1.
(a) If
Y
0<Rp<l——-"——,
! 4u+7)
then the solutions (S/T,1/T) of System (11) approach the disease-free equilibrium, (1,0), as t — oo.
(b) If
Y
Ry=1-— ,
' 4(u+7)
then System (11) has an unstable endemic equilibrium at (%, %) coexisting with the locally asymp-
totically stable disease-free equilibrium at (1,0).

(© If
v

Ry >1—— "t
’ 4(u+7)

then System (11) has an unstable endemic equilibrium at
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1 4(p+y) P 1 4u+7)
(E (H\/I_T(l_%))’ E(l_\/l_T(l_%)»

and a locally asymptotically stable endemic equilibrium at

1 4(p+7) g 1 4(u+7y) g
<§<1—\/1—T(1—JO)>, §<1+\/1_f(1_%)>>

coexisting with the locally asymptotically stable disease-free equilibrium at (1,0).

43

The proof of Theorem 3.1 is in Appendix A. %, is a function of ¢ (the probability that an
infective does not recover), y (the survival probability) and u (the per-capita birth rate). To

illustrate numerically this bifurcation for System (11), we vary ¢ while keeping y and u fixed.

Example 1. Set the following parameter values in System (11):

u=0.01 and y = 0.98.

The disease-free equilibrium (1, 0) is locally stable for all values of the parameter, and in Example
1 it is globally stable whenever %, < 0.7525. A saddle node (bistability) bifurcation occurs at
Ry ~ 0.7525. When %, =~ 0.7525, an unstable endemic equilibrium appears, and for values of %,
in the interval (0.7525, 1) the system has two stable equilibria (an endemic equilibria coexisting

with the disease-free equilibrium (see Fig. 1 and Theorem 3.1)).

0.8 I
0.6
0.41

0.2

0 0.8 085 _ 08 0.95

Fig. 1. The relationship between the proportion of infectives and .
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4. Two-patch S-I-S epidemic models with dispersion

Dispersal is a major mechanism for the generation and support of species diversity [37,38]. The
role that disease plays in the support of pathogen and host diversity is a central question in
evolutionary biology particularly in the study of disease evolution [3,16-19,38,39]. Extensive work
has been carried out on the role of dispersal on life-history evolution of plants. Should seeds go
‘dormant’, germinate or disperse [19,20,23,24,33]?

The study of the role of dispersal on human disease dynamics has been carried out in the
context of influenza (see [6-9,43,44]) and tuberculosis (see [13]). Boroyan et al. [6-9], Castillo-
Chavez et al. [13] and Rvachev et al. [43,44] have looked at the role of dispersal (travel) on the
spatial dynamics of influenza and tuberculosis. In the context of host-parasite interactions, it is
known that parasites often affect host behavior making them more susceptible to predators (fish
swimming closer to the surface or diminish mobility in mammals, see [34]). Rhinoviruses (caus-
ative agent of the common cold) reproduce inside the cells that line nasal passages. Viruses are
shed from these cells into nasal secretions which trickle out through a runny nose or blast out in
droplets during a sneeze. The possibilities of planting rhinoviruses from infected to susceptible
hosts occur after the infected host’s fingers contact the host’s nose and a handshake follows or
when susceptible hosts’ noses inhale droplets secreted by infected hosts who sneeze [26]. Conse-
quently, virus transmission depends on host’s mobility. If the virus were to reproduce so fast that
hosts become too ill to disperse then rhinoviruses released would be confined to a single patch.
Who should disperse, susceptibles or infectives? Dogs infected by rabies, for example, are more
‘mobile’ than those who are not [47]. The examples described above do not quite fit the framework
that we have introduced in this article but they are illustrative of the issues that we have ap-
proached in a simpler setting. Our primary objective here is to look at the role of dispersal as an
agent that promotes disease persistence. Hence, we formulate and analyze an S-I-S epidemic
model with dispersal of individuals between two patches, Patches 1 and 2.

In Patch i € {1,2}, S;(#) denotes the population of susceptibles; /;(¢) denotes the population of
the infected, assumed infectious; 7;(z) = Si(¢) + I;(¢) denotes the total population size at generation
t; and, T, = lim, ., T;(¢) denotes the demographic steady state for the total population whenever
it exists; individuals survive with constant probability y; (die with probability 1 — ;) each gen-
eration while infected individuals recover with probability 1 — ¢; (do not recover with constant
probability g;); and, it is assumed that susceptible individuals become infected with probability
1 — G; per generation (remain susceptible with non-constant probability function G;), and
&) = Giin(i)) and y; = 1,(1) /T ().

We couple Patches 1 and 2 with a simple exchange of a fixed fraction of the population per
generation. For each Patch i # j € {1,2}, let D;s and D;; be the fraction of the susceptible and
infective populations that disperse from Patch i to j, respectively. This leads to the following
system of equations for the two-patch disease dynamics:

Si(t+1) = (1 — Dis)S; (1) + Dys Sy (1),

Sz(t + 1) - Dls:s:l (t) + (1 - Dzs)gz(t), (12)
Li(t+1) = (1 = D) (1) + Dol (2),
L(t+1) =Dyl (t) + (1 — D)L (2),
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where  S;(1) = fi(Ti(2)) + 1:& W) Si(1) +7.(1 — o) li(2), 1) = 7:(1 — g:(34))Si(¢) + p,0:0i(z) ~ and
0 < D;s,Dy < 1. The dispersion coefficients, D;s and D;;, denote the probability of dispersion by
susceptible and infective individuals from Patch i to j, respectively; while y; denotes the probability
of survival in Patch i.

If Patch 2 is empty and there is no dispersion between the two patches (Dis = Dy =
Dys = Dy = S,(t) = I(t) = 0), then System (12) reduces to the single patch model, System (1). In
the absence of dispersal, System (12) models two independent patches. Next, we illustrate the
potential role of dispersal on patches with identical local dynamics (f; = f>) via simple examples.

4.1. Identical local patch dynamics

It is known that dispersion between patches could alter local dynamics [4,11,16,17,19,20,23,
24,29,33]. A disease destined to go extinct in Patch i, local basic reproductive number Z; < 1,
could persist in the full system in the presence of dispersion (Example 2). If dispersion rates be-
tween two patches are symmetric, then System (12) exhibits the same qualitative dynamics as
System (1), a one patch system with no dispersion. The joint dynamics live on the invariant set of
identical population sizes

M = {(SI,SQ,Il,]z) ‘ Sl = S2 and 11 :[2}

This result appears to be valid only under the assumption of identical local patch (f; = f), local
disease dynamics and identical initial conditions. Asymmetric initial conditions, even in the
presence of identical local patch dynamics, can generate multiple attractors. Some initial condi-
tions outside of the invariant set M (out-of-phase populations) give rise to dynamics that live
outside of M throughout the entire life-history of the local populations. We collect these results
below.

Lemma 1. In System (12), the set of identical local densities
{(S],Sz,]],]z) ’ S] = S2 and 11 :[2}

is invariant if 7, = y,,01 = 02, 0 = o, f1 = f2, G = Ga, Dis = Das and Dy = Dyy.

_ To prove Lemma 1, note that S,(z) = S,(¢) and I,(¢) = L,(¢) implies that Sy (f) = S»(r) and
I)(t) = I,(t) whenever 7y, =7v,, 6 =03, o =0, fi=f, and G, =G, Consequently,
(1 —Dls)Sl(l)—f—Dszz(l‘) :Sl(l+1) :Sz(t+ 1), and (1 —Dll)ll(l)—i-Dzl]z(l) :Il(l—l- 1) =
L(t+ 1). Therefore, {(S1,$,1;,5) | Si =S, and I} = I} is an invariant set.

4.2. Disease-enhanced versus disease-suppressed dispersion

Do disease-induced changes in behavior improve the chances of disease persistence? An ex-
treme case of disease-enhanced dispersal is modeled using System (12) with D;s =0, Dy > 0.
Susceptible individuals are confined to a patch while the infectives are allowed to disperse between
patches. Disease-suppressed dispersal occurs in System (12) whenever D;s > D;; while disease-
enhanced dispersal occurs when D; > D;s. If D;; = 0 while D;s > 0, then susceptible individuals
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disperse between the two patches while the infectives are confined to a patch. One-way disease-
suppressed dispersion from Patches 1 to 2 leads to the following system:

x1(t+1) = (1 — Dis)x1(2),
x2(t+ 1) = Disx(2) + %2(1)),
n(t+1)=y(),

n(t+1) = (1),

where 0 < Dig < 1, and from System (11),

Fi(1) = —H— ()1 = (1)) + —— (1)1 - ),

(13)

_.ui‘|’yi M+ M+ )
and
~ Vi 2 Vi
yi(t) = yi() xi(t) + oi(t).
M+ M+

Notice that Model (13) assumes geometric growth for the total population.
Whenever D;g = 0, System (13) reduces to System (11). System (13) has a locally asymptotically
stable disease-free equilibrium point at

<(1—DIS)H1 ( Dispy I Hy ).“2"‘?2 00)
w+yDis  \w +9Dis i+ w )

and some positive initial population sizes lead to the extinction of the disease in the two patches.

In fact, if
(/5= - p)a
2(1 — gqyo1) + (2\/%‘72—]72)6]1 g

4(1 —Q101)

Dig>1-—
5 q1(p1 +4(1 — q101))

or Dig <

then System (13), where

L Vi
p=—t and g =
M+ y; M+

for each i € {1,2}, has no endemic equilibrium population size. If

1—g>0
a1 4(1 — quon) _ <21 /—322 2 _P2>41
@ +4(1=qi01)) 21 —g5) + (2,/1‘5—22"2—192)(11

then System (13) has a unique unstable endemic equilibrium population size at the point

<2(1 — q101) 2(1 = Dis)pagi (1 — q202) 1 (1= Dis)prg1 + 2Dis(1 —6]10’1)>
g " (1 = Dis)pagr +2Dis(1 — qiov))” 27 2(1 = Dis)paqn '

Furthermore, the relationships
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Fig. 2. (Bistability) Some initial conditions converge to (0.2, 0.286, 0, 1.514) while others converge to (0.2, 1.8, 0, 0) in

Example 2 with D;s = 0.5.
(2\ /—1752202 - Pz) q1
2(1 = qio1) + (21/1*;’22”2 —pz>q1

imply that System (13) has two endemic equilibria. Hence, disease persistence depends on initial
conditions. Consequently, System (13) is capable of supporting two endemic equilibria coexisting
with the locally asymptotically stable disease-free equilibrium (bistability), with or without dis-
persion between patches.

The assumption of exclusive disease-driven dispersal, reduces System (12) to the following
system of equations:

4(1 — qy01)

Dis<1—
s q1(pr +4(1 — qi01))

and Dig >

xl(t+ 1) = }l(t)a

x(t+1) = x(1),

yi(t+1) = (1 = D)y, (1) + Dad (1), (14)
y2(t+ 1) = Dllyl(t) + (1 —Dzl)?z(t).

System (14) reduces to System (11) whenever D;; = D5y = 0. System (14), like the corresponding
single-patch model, System (11), has a locally asymptotically stable disease-free equilibrium at

(1,1,0,0).
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Fig. 3. Basin of attraction of (0.2, 0.286, 0, 1.514) (white region) versus that of (0.2, 1.8, 0, 0) (black region) in Example
2 with D;s = 0.5. On the horizontal axis 0 <x; <2 and on the vertical axis 0 <x, < 2.

Some positive initial population sizes lead to the extinction of the disease in Patches 1 and 2
regardless of the parameter values. System (14), like System (13), assumes geometric growth for
the total population and supports bistability with or without dispersion.

Disease persistence in multi-patch systems with dispersal between patches is possible even in
situations where the disease is on the brink of extinction without dispersal. To illustrate this
possibility we consider the disease-suppressed dispersal model, System (13). It has two fixed points
with infectives in Patch 2 and no infectives in Patch 1 at the following levels:

((1 D)y 1+ 7 (Bi m)’ 0, 2u,(1 — g202) )7

i+ iDis 24 (12 +72)q2(B £ /(B = C))

where

V2

Disp, n My C— 415 (1, + 7, (1 — 02))
Hy + 72

w4 Dis w Aty 72(ta +72)

Our simulations illustrate these possibilities:

,B>VC and ¢, =

Example 2. In System (13), let
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b= = 03a Y1 =" = 097 01 = 02 = 097
the local basic reproduction number in each Patch i € {1,2} is

Vi
i _0.8125.
4w +v;)

Theorem 3.1 implies that, regardless of initial conditions, the disease-free equilibrium is globally
asymptotically stable and the disease dies out on each patch if there is no dispersion. Adding
dispersal in Example 2 gives rise to bistability where there is no bistability in the single patch
models without dispersion. Example 2 with D;s = 0.5 supports two coexisting stable equilibria at
(0.2, 0.286, 0, 1.514) and (0.2, 1.8, 0, 0) (bistability, see Figs. 2 and 3).

Vi0i
(1— %

%0,‘ = )'})l + «@,‘d =0675<1-—

Adding dispersal of susceptibles from Patches 1 to 2 alters the local single patch dynamics. The
disease persists in Patch 2 with dispersion where there is no disease without dispersion. In Fig. 3,
the white region is in the basin of attraction of (0.2, 0.286, 0, 1.514) while the black region is in the
basin of attraction of (0.2, 1.8, 0, 0). The boundary of the basins of attraction in the x; — x, plane
is not fractal in nature (Fig. 3).

5. Conclusion

The study of the impact of disease and dispersal on life-history evolution has received little
attention. The focus has often been on dispersal [11,15,19,20,23,24,33] or disease [1-
3,8,10,14,15,18,27,30,35,36,42,46]. Here, we have focused on the joint impact of dispersal and
disease on the life-history evolution of populations with potentially complex population dy-
namics. We have looked at the role of dispersal in a metapopulation setting where in every
generation a proportion of the hosts moves from Patches i to j (where i # j). We have looked at
various examples and illustrated possible disease dynamics on populations with potentially
complex demography (e.g. complex life-histories).

In earlier work, we modeled a simple epidemic process on populations with rich and highly
complex population dynamics [10,18]. An S-I-S epidemic process was built on the life-history of a
population under a non-linear intraspecific competition. The 7-dynamics were governed by Eq.
(1), T(t+ 1) = f(T(t)) + yT(¢), and were clearly independent of the transmission function «. We
vary o while keeping all other parameters fixed in order to keep the 7-dynamics fixed. The earlier
work appeared to illustrate the possibility of having a population 7'(¢) living on a two cycle while
1(¢), infected individuals, remained at the same level [10,18]. Hence, in the presence of a non-fatal
disease, the T-dynamics may differ from /-dynamics in a single patch. This numerical result is
unlikely to be atypical since it is possible to increase the level of complexity of an epidemic process
within a single patch (bistability) even when the 7-dynamics are at a globally stable fixed point.
We illustrated this last result with a simple model (see [46] for the analogue and more general
continuous-time versions). Hence, disease is likely to have a dramatic impact on local life-history
evolution even when it is non-fatal. Many questions remain on the impact of fatal and non-fatal
diseases on life-history evolution on a single patch (see [4,26]).
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Disease-induced and disease-suppressed dispersal appear to play a critical role on the gener-
ation and support of multiple attractors and, in the process, increase the likelihood of disease
persistence. Example 2, a disease-suppressed dispersal model with new recruits under geometric
growth, shows the possibility of disease persistence and bistability (disease-free equilibrium is
globally asymptotically stable and the disease dies out on each patch). In other words, dispersion
enhances persistence and hence promotes diversity.

The fragmentation of the landscape (increasing the number of patches) gives rise to drastically
different aggregate dynamics of the full system and these results may have serious implications in
the fields of conservation and evolutionary biology. The re-establishment of connections via
dispersal corridors in fragmented landscapes not only reduces the level of fragmentation but may
in fact reduce the likelihood that a species goes extinct [19]. In other words, adding a number of
tiny non-connected patches to the total size of preserved areas may not be as critical as connecting
preserved areas via dispersal corridors.
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Appendix A

Proof of Corollary 2.2. The reproduction function for the infected individuals of Eq. (3) is given
by
h(y) =v(1 —g)(1 —y) + yoy,

where £ : [0,1] — [0,1], 2(0) = 0 and 0 < y < 1. The set of iterates of / is equivalent to the set of
density sequence generated by Eq. (3). Differentiation with respect to y gives

Hy)=79(-(1-y)gW) —1+gb) +0),
h'(y) =y2¢'(y) — (1 =»)g" (),

where

g = (@) + ()G (ya(y))

and
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g'(y) = 2 (y) + 3o ()G (ya(y)) + (a(y) + v (¥))*G" (V).

Now, proceed exactly as in the proof of Theorem 2.1.

Proof of Theorem 2.2. Recall that, T;(¢ + 1) = (u; + 7,)T3(¢) and Z:q = 1;/(1 — 7,). Hence, Z:q > 1
implies 7; increases geometrically and %4 < 1 implies 7; decreases geometrically. To establish the
result, we prove that if #y, <1, then the solutions (x;(¢),:(¢)) of System (8) approach the equi-
librium (1,0), as t — oo. If #y; > 1, we proceed exactly as in the Proof of Theorem 2.1 to prove
that the solutions (x;(¢),;(t)) of System (8) approach a unique positive endemic equilibrium,
(X:,7;) € (0,00) x (0,00), as t — oc.

For the Proof of Theorem 2.2, the reproduction function for the infected individuals of System
(8) is

hi(yi) = - (1 —g)(1 =y) + LO’:‘)’:&
M+ 7 M+

where #4; : [0, 1] — [0, 1]. We now, proceed exactly as in the proof of Theorem 2.1 to establish the
result. [

Proof of Theorem 3.1. The reproduction function for the proportion of infected individuals of
System (11) is
v (L —y) +

Vl
w) i +v, 1+ 7;
where 4; : [0, 1] — [0, 1].

Notice that {0} is a locally asymptotically stable fixed point of 4; for all values of the pa-
rameters. To prove (a), note that 0 < %; < 1 —y,/(4(w; + 7;)) implies that /; has no other fixed
points in the interval (0,1]. Consequently, 4;(y;) < y; for each y; € (0, 1], and the fixed point {0} is
globally stable under #; iterations. Hence, the disease-free equilibrium point (1, 0) is globally stable
in System (11). Z¢; = 1 —7,/(4(; +7;)) implies that the fixed points of /; are {0} and {}}. Since
{0} is locally asymptotically stable, the result is immediate.

To prove (c) notice that Zy; > 1 — y,;/(4(w; + y;)) implies that the fixed points of 4; are {0},

! At o,
(1 -o-m))

and

1 4(u,+v,
H O

Since {0} is locally asymptotically stable, the fixed point

1 4(u,—i—y
(a1

is unstable and

G.)i,
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1 ) )
Liys | A+ )
2 V;

1

(1 —%Ry)

is locally asymptotically stable. This establishes Proof of Theorem 3.1.
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