
A Model incorporating exposure to the disease

When a susceptible individual is infected, one may assume
that the infected susceptible goes through a latent period
before becoming infectious.

For this reason, we introduce a of exposed individuals

Diseases such as TB, HIV etc have this characteristic



The variables in this model are

S(t) Susceptible population

E (t) Individuals Exposed to the disease

I(t) Individuals infected with the disease

R(t) Removedindividuals



A model which includes the exposed class is given by

dS

dt
= bN − dS − λIS/N

dE

dt
= λIS/N − (ǫ + d)E

dI

dt
= ǫE − (γ + αd)I

dR

dt
= γI − dR



The total population is given by
N(t)S(t) + E (t) + I(t) + R(t)

Adding the model equations we obtain

dN

dt
= (b − d)N − αI

In order to work with state variables that add up to one,
we introduce the following variables

s = S/N, e = E/N, i = I/N, r = R/N

Now
s + e + i + r = 1.



The model equations become

ds

dt
= b − bs − λis + αis

de

dt
= λis − (ǫ + b)e + αie

di

dt
= ǫe − (γ + α + b)i + αi2

dr

dt
= γi − br + αir



Note that r does not appear in the first three equations.
This allows us to omit the equation for r

We study the subsystem

ds

dt
= b − bs − λis + αis

de

dt
= λis − (ǫ + b)e + αie

di

dt
= ǫe − (γ + α + b)i + αi2



ǫ + b

From biological considerations, we can study this disease
in the closed set

Γ =
{

(s, e, i) ∈ R
3

+|0 ≤ s + e + i ≤ 1

}

We can show that Γ is positively invariant with respect to
the reduced model

The reduced model has a disease free equilibrium at
P0 = (1, 0, 0)

First, we find the reproduction number of the reduced
matrix



(γ + α + b)(ǫ + b)

The Jacobian matrix of the reduced matrix at P0 is

J(P0) =





−(ǫ + b) λ

ǫ −(γ + α + b)





The Eigenvalues of this matrix are obtained from

σ2+((γ+α+b)+(ǫ+b))σ+(γ+α+b)(ǫ+b)−ǫλ = 0



The Eigenvalues are

σ = −(λ + αǫ + 2b)

± sqt(λ + αǫ + 2b) − 4 ((γ + α + b)(ǫ + b) − ǫλ)

= −(λ + αǫ + 2b)

± sqt(λ + αǫ + 2b) − 4(γ + α + b)(ǫ + b) (1 − R0)

> 0 for R0 < 1.

The disease free equilibrium point P0 is locally stable for
R0 < 1.



We can use the Lyapunov function L to prove global
stability where

L = ǫe + (ǫ + b)i

Global stability of P0 in Γ when R0 < 1 precludes the
existence of equilibria other than P0.

The study of endemic equilibria is restricted to the case
σ > 1.

We cannot determine the coordinates of the endemic
equilibrium point. One can use compound matrices to
prove the local stability of this point.



The Jacobian matrix at the point P = (s, e, i) is

J(P) =













−b − λi + αi 0 −λs + αs

λi −(ǫ + b) + αi λs + αs

0 ǫ M













M = −(γ + α + b) + 2αi



We shall prove the following result

Lemma: Let A be an m × m matrix with real entries. For
A to be stable, it is necessary and sufficient that

1 The second compound matrix A
[2] is stable

2 (−1)m
det(A) > 0



We want to prove that the endemic equilibrium point is
asymptotically stable if R0 > 1

Let A = (aij) for m = 3 the second compound matrix is
given by













a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33















The Jacobian matrix J [2](P) is

J(P) =













−2b − λi + 2αi λs + αe N1

ǫ N2 0

0 λi N3













N1 = λs − αs

N2 = −2b − λi − γ − α + 3αi

N3 = −2b − ǫ − γ − α + 3αi



For P∗ = (s∗, e∗, i∗) and the diagonal matrix
D = diag(i∗, e∗, s∗), the matrix J [2](P∗) is similar to
DJ [2](P∗)D−1



















−2b − λi∗ − ǫ + 2αi∗ M2 λi∗ − αi∗

ǫe∗

i∗

M3 0

0
λi∗s∗

e∗

M4



















M2 =
λi∗s∗

e∗

+ αi∗

M3 = −2b − λi∗ − α − γ + 3αi∗

M4 = −2b − ǫ − γ − α + 3αi∗



The matrix J [2](P) is stable if and only if DJ [2](P∗)D−1 is
stable

Since the diagonal elements of the matrix DJ [2](P∗)D−1

are negative, we can use the argument that the matrix
DJ [2](P∗)D−1 if it is diagonally dominant.

The diagonal sums are given by

g1 = −2b − ǫ + 2αi∗ + 2
λi∗s∗

e∗

g2 = −2b − λi∗ − γ − α + 3αi∗ +
ǫe∗

i∗

g3 = −2b − ǫ − γ − α + 3αI∗ +
λi∗s∗

e∗



From the left hand side of the reduced model (at the
DFE) we have the following relations

b

s∗

= b + λi∗ − αi∗

λi∗s∗

e∗

= (ǫ + b) − αi∗

λi∗s∗

e∗

ǫe∗

i∗

= λ + α + b − αi∗

Substituting these relations we obtain

µ = max−b + αi∗, −b − λi∗ + 2αi∗, −b − γ − α + 2αi∗



Using the relation λ < α we have µ < 0 which implies the
diagonal dominance as claimed.

It is easy to show that

det(J(P∗)) = −λbǫ(1 − s∗) + λbi∗

(

αi∗

e∗

)

+

(

bαǫe∗

s∗

)

= −λbǫ(1 − s∗) + λbi∗

(

αi∗

e∗

)

+ λbǫe∗

(

α

λs∗

)

≤ −λbǫ(1 − s∗ − i∗ − e∗) < 0.



We shall use the following variables to describe the
dynamics of a simple HIV/AIDS model

S(t) = Susceptible individuals

I(t) = Infected individuals

A(t) = Individuals who have developed AIDS



We want to use this technique to determine the stability
of the following simple HIV/AIDS model

dS

dt
= Π − µS − β1SI − β2SA

dI

dt
= β1SI + β2SA − (α + µ)I

dA

d
t = αI − (d + µ)A

Include treatment for AIDS patients and repeat the
analysis.

Modify the model to include (i) differential susceptibility
(ii) differential infectivity


