Introduction: What one must do to analyze any model

@ Prove the positivity and boundedness of the solutions

@ Determine the disease free equilibrium point and the
model reproduction number

@ Prove the stability of the disease free equilibrium
@ Prove the persistence of solutions

@ Prove the stability of the endemic equilibrium point

@ Simulate the model



Model Variables and parameters

Susceptible population

Vaccinated population

Infected individuals

Recovered individuals - recovery with immunity

Cholera bacteria




The models are

@ Model 1:

ds
dt
dV
dt
dl

dt

dR
dt
dB
dt

based on a paper by X. Zhou and J. Cui

Recovery with immunity

(1 =p)A=B5(t)B(t) + bV(t) — 05(t) — S
pA+05(t) — bV (t) — V(1)

pS(t)B(t) = (d + a + )

al(t) — mR(t)

VB(t) +nl(t)




Recovery without immunity

@ Model 2: Recovery without immunity
‘(’]_f = (1—p)A—pBS(t)B(t) + bV(t) — 65(t)
— mS(t) + al(t)
‘;_‘; = pA+0S5(t) — bV(t) — 1 V(t)
& = S(0)B(t) ~ (d+ o+ m)
&~ B(e)+ (e




Change of force of infection

@ Models 1 and 2 assume a mass action force of infection.
The assumption is that every one who is in contact with
the bacteria is infected

@ in reality some people do not catch the disease and so a
more appropriate force of infection is

| BS(0B()
N(t)

where N(t
S(t) + V(
V(

) =
t)+ I(t) + R(t) for Model 1 or N(t) =
5(t) + +

t)+ 1 for Model 2




Positivity and boundedness of solutions of Model 1

@ Theorem: Given
5(0) >0, V(0)>0, /(0) >0, B(0)> 0, the solutions
(5(t), V(t), I(t), B(t)) of Model 1 are positively
invariant for all t > 0.

@ Let t; =sup(t>0/S>0, V>0,/>0, B>0).From
the first equation

ds

— = (1=p)A—(8B(t) + 6+ ) S(2)

@ The integrating factor is

exp (/Ot BB(s)ds + (6 + p11) t)




@ Multiplying the inequality above by the integrating factor,
we obtain

[S(t)exp { Jg BB(s)ds + (0 + 1) t}]
dt
> (1 p) Aexp ([ 3B(s)ds + (0 + ) t)

@ Solving this inequality we obtain

S(£)lexp {/0 BB(s)ds + (6 + ju1) t} ~ 5(0)

> ["(1=p) Aeo{ [ 5B(a)da+ (0 + ) v}




@ Therefore
S(0) 2 SE)ep{- [ BB+ (s +0) ¢}
+ exp {— /Ot BB(q)dg + (u1 + 6) t}
x [[@=p)Aeol [ 3B(a)dq
+ (04 p)vidr >0

@ Similarly, it can be shown that
(V(t) >0, I(t) >0, B(t)>D0).




Boundedness of the solution

@ Theorem: All solutions (S(t), V/(t), I(t), B(t)) of
Model 1 are bounded.

@ Proof: Model 1 is split into two, the human population
and the pathogen population

@ From the first three populations (human populations0, we

obtain

d(S+V+1

<%> = A—m(S+V+I)—(d+a)l
@ Then

: A
Jlim sup (S + V+I)SZ



@ From the first three equations, we obtain

%(tﬂﬁ(l—p)A—(S—i—V—l—/)—i-b(%—S)

@ Hence
A(b+(1—p)m)

S < pa (pa + b+ 0)




@ It is easy to show that

V(t)§< A0+ pm) )

pa (pa + b+ 0)

@ For the bacteria we have

dB(t) - nA
dt =

p2B(t)

@ Hence




@ All solutions of Model 1 are bounded. The feasible region
for the human population is

1251
A(b+(1—p)m)
S( pa (p + b+ 0) )7 °

§v<< A0 + ppa) ),/20,
pa (pa + b+ 0)

Qu=(S, V, /)|S+V+l§<ﬁ>, 0<S<S(t)

@ The feasible region for the pathogen population for Model

1is p
e
Pl




@ Define Q = Qy x Qp. Let Int2 denote the interior of €.
The region €2 is a positively invariant region with respect
to the Model 1. Hence the Model 1 is mathematically

and epidemiologically well possed in Q.



The reproduction number

@ Model 1 has a disease free equilibrium given by

Alb+(1—pm) AlO+pm) 0)
pr (g +b+60) " (pa+b+0) 7

(507 V07 07 0) = (




@ The Model 1 can be written as
daX
Z_F_
dt <
where
£5SB
0
F =
0




@ and
(d+a+p)l!
—77/+/L2B(1.')

—(1—p)A+BSB+ 1S +6S — bV

—0S + 1V + bV — pA



@ The Jacobian of F is

0 BS
F=
(0]

@ The Jacobian of v is

p+d+a 0
V —
=1 2

@ The inverse of V is




@ The spectral radius of FV~1 is

. nBA b+ (1 — p)u]
ARV = papa(pr + 60 +b)(pr +a+d)

@ The reproduction number is

__ nPA[b+ (1 = p)m]
papiz(pr + 0 + b)(p1 + a + d)

Ro




Stability of the DFE

@ We want to discuss the local and global stability of the
DFE of Model 1

@ Theorem: The DFE is locally asymptotically stable for
Ry < 1 and unstable for Ry > 1.

@ to prove this, we define new variables

X]_:S—So, X2:V—V0, X3:I, X4:B




@ The associated linear system is:
X = MX
@ Where
—(0+4m) O 0 —f5
0 —(b+p1) 00
0 0 0 BSo—(d+ au)

0 0 no —p2

@ X = (x1, x2, x3, x4)7) and T denotes transpose of a
matrix.




Eigenvalues

@ Two of the Eigenvalues of M are
M=—(b+pu) <0, A=—-(0+p)<0

@ The other two are given by

(—uz + \/u2 +4n(d + o+ m)Z)
A3

NI N -

(—2 iz + 40(d +a+ ) (Ro— 1))

P (ul( BAb+ (1 —pp) 1)

p1+b+60)(d+a+a)

@ Both A3 and )\, are negative hence the DFE is locally
stable for Ry < 1.




Global stability of the DFE

@ The DFE is globally stable for Ry < 1 and unstable for
Ry > 1.

@ The Model can be subdivided into two sets X; = (S, V)
and X, = (I, B) so that X = (X1, Xz)7

@ The sub-system Xj is given by

ds
dt
dV
dt

= (1—-p)A—-pBS(t)B(t) + bV(t) —0S5(t) — 1S

= pA+65(t) — bV(t) — u1V(t)




@ The sub-system X, is given by

dl
dt
dB
dt

= B5(t)B(t) = (d +a+ )

= 7B(t) +nl(t)




@ It is easy to show that the sub-system X; = (S, V) is
globally asymptotically stable at

X*:<A(b+(1—p)u1) A(9+pu1)>
' pn (pa+b+0) 7 i (1 + b+ 0)




@ The matrix Ay(X) from subsystem X; is given by

<—(,u1—|—d+oz) BS )

n — M2

A (X) =

@ The maximum of Ay(X) occurs at the DFE given by

(—(,ul—i—d—i—a) 650 )

n — M2

A2(X) =

@ The spectral bound of a(Ax(X)Ax(X)) is Ry < 1.




