Biofilm-Induced Mineralization

Isaac Klapper

DEPARTMENT OF MATHEMATICAL SCIENCES & CENTER FOR BIOFILM ENGINEERING (CBE) Montana State University

US-Africa Advanced Study Institute, 12/12/11

Acknowledgements

 Jack Dockery, Tianyu Zhang (MSU Math) Robin Gerlach, James Connolly (MSU CBE) Erik Alpkvist (Lund Math) Paul Stoodley (Southhampton Engineering) Bruce Ayati (Iowa Math)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Conference organizers

PART I: REVIEW

▲口>▲□>▲目>▲目> 目 ろんの

Biofilms are collections of microorganisms (bacteria, archaea, algae, fungi, protozoa) contained in self-secreted matrices of polymers and other substances, a "city of microbes" (Kolter).

Left: algal-bacterial mat, Yellowstone Natl Park (P. Stoodley). Right: *P. aeruginosa* lab-grown biofilm (B. Klayman).

・ロット (雪) (日) (日)

Cartoon Biofilms

Top: *Mathematical Modeling of Biofilms*, Wanner et al. 2006 Bottom: courtesy of MSU CBE, P. Dirckx.

Extracellular Polymeric Substances (EPS)

Meiothermus biofilm SEM. (BR Johansson)

(日)

Spatial Structure

Left: Synechococcus, Chloroflexus, Meiothermus from culture.

Q. What are these cells doing?

Time Scales

Various time scales for biofilm processes (Picioreanu).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Box 1: bulk fluid (with respect to a biofilm length scale). Box 2: chemical processes (at biofilm length scales). Box 3: (some) biological processes

Mechanics

15day – 1min

15day – 2min

Chemistry and Environmental Impact

Left: struvite formation via of ureolysis (mineralization). Right: Periodontitus and caries (demineralization).

Application: Biobarrier

Sequestration of supercritical CO₂

<ロ> < @> < @> < @> < @> < @> < @</p>

PART II: PERSISTERS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Many antimicrobials fail to entirely kill bacterial cultures (Lieut.-Colonel Biggers, RAMC, Lancet (1944)):

Balaban, Merrin, Chait, Kowalik, Leibler, Science (2004)

More precisely, biophasic killing curves are observed:

Balaban, Merrin, Chait, Kowalik, Leibler, Science (2004)

• Persister cells are cross-resistant: Sufya, Allison & Gilbert, J. Appl. Microbiol. (2003)

• Persisters are not mutants:

Keren, Kaldalu, Spoering, Wang & Lewis, FEMS Microbiol. (2004)

Persister are slow growers:

Persister numbers are phase dependent:

Spoering & Lewis, J. Bacteriol. (2001)

・ロト・雪・・山・・山・・白・

Aging

- Bacteria cells age (and senesce): Upon cell division, one cell is "old" and the other is "newborn".
- Remark: senescence had already been observed in many asymmetric dividers.

Senescence May Explain Persistence

Idea:

- Persistent cells are, apparently, relatively inactive cells. This inactivity may explain their antimicrobial tolerance.
- Senescent cells are, apparently, relatively inactive.
- Hence perhaps senescent cells are the elusive persisters.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Quantities of Interest

- b = b(t, a) is bacteria/age. (t = time, a = chronological age which we identify with senescence.)
- c = c(t) is limiting substrate concentration.
- d = d(t) is the dosage concentration of applied antimicrobial.
- μ is death rate from natural causes, assumed for simplicity to be independent of a and c.

(日) (日) (日) (日) (日) (日) (日) (日)

μ_K = μ_K(d, a) is the killing rate due to application of biocide.

Batch Culture (With Killing)

$$egin{array}{rcl} \displaystylerac{\partial b}{\partial t}+\displaystylerac{\partial b}{\partial a}&=&-(\mu+\mu_{\mathcal{K}}(d,a))b, \quad a>0,\ b(t,0)&=&lphaeta c\int_{0}^{\infty}s(a)b(t,a)da,\ \displaystylerac{dc}{dt}&=&-lpha c\int_{0}^{\infty}s(a)b(t,a)da, \end{array}$$

where s(a) decreases from 1 to 0 monotonically, μ_K is a step function that switches off for *a* larger than a cutoff parameter λ (the senescence age).

Batch Culture (Experiments)

(a) antimicrobial is applied during stationary phase,(b) antimicrobial is applied during log phase. Recall

- Persister numbers are phase dependent.
- Biphasic killing curves are observed.

PART III: MECHANICS

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Growth Induced Mechanics

(1) Substrate diffuses into biofilm through a diffusion layer. (2)
Substrate is "eaten" in an active layer (not shown). (3) Growth generates pressure which in turn generates velocity.
(4) Interface moves.

Basic Continuum Model

Growth stress: limiting substrate diffuses into biofilm from "bulk fluid", biofilm eats and expands (homogeneously).

• Substrate reaction/diffusion:

$$\nabla^2 C = Gr(C)$$

C = limiting substrate concentration, $G^{-1/2}$ = active layer depth, $r(C) = r_0 \chi_b(\mathbf{x})$ is substrate usage rate.

- Biofilm deformation (force balance): $\mathbf{u} = -\lambda \nabla p$
- Growth stress:

$$abla^2 \rho = -\lambda^{-1} \nabla \cdot \mathbf{u} = -\lambda^{-1} g(r(C))$$

・ロト・日本・モン・モン ヨー りゅう

g(r(C)) is a biofilm growth function.

• Interface motion: $\mathbf{u} = -\lambda d\mathbf{p}/d\mathbf{n}$

Biofilms Are Not Flat (Not Always, Anyway)

Fingering of a sort (P. Stoodley & OS, YNP).

For mechanics, especially fluid-biofilm interaction, as well as for transport, one dimensional representations may not be sufficient. Stability: a bump on a flat biofilm has better access to substrate and hence will grow. (Mullins-Sekerka instability)

The most unstable wavelength is $O(G^{-1/2})$, i.e., about the same size as the active layer depth. This system is "self-regularizing". The most unstable wavelength is about the same width as the active layer depth.

Mullins-Sekerka Instability

Stability: perturbed 1D solutions are subject to a Mullins-Sekerka instability, even in simple growth models.

The most unstable wavelength is about the same width as the active layer depth. This system is "self-regularizing".

Growth Mechanics

3D Results: Growing mushrooms, multispecies version. Flat biofilm models exhibit Mullins-Sekerka instability.

remark: instability reduces overall growth rate.

Biofilm Viscoelasticity

Biofilms are viscoelastic fluids:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(collected from Nymph creek YNP)

Universality?

Elastic Relaxation Time: Approximately 20 min.

Viscosity η vs. shear modulus *D* for varied biofilms. Note large viscosities.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Immersed Boundary-Based Method: Biofilm

Use the method to model mechanical properties of the Biofilm: Rheometry and Detachment (E. Alpkvist).

・ロット (雪) (日) (日) (日)

PART IV: SOME CHEMISTRY

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Chemical Environment: pH and Biomineralization

Biofilms can produce microenvironments where mineral formation or loss can occur, e.g. biobarriers, urinary catheter mineralization, tooth decay.

Left: Stickler, *Nature Clinical Practice. Urology* **5**, 598-608 2008 Right: Mallette & Stewart 2009

・ロット (雪) (日) (日) (日)

Experimental System (Gerlach lab)

(a)-(d) biofilm developing in a porous media reactor.
(e)-(g) calcite formation by *Sporosarcina pasteurii* biofilm.
(h) effluent measurements of pH, Ca, Sr show an increase in pH within hours and decreases in Ca and Sr.

Mixture Model

Three phases: solvent and two non-soluble phases.

- ϕ_{s} = Solvent Phase Volume Fraction
- ϕ_b = Biomaterial Phase Volume Fraction
- ϕ_{c} = Calcite Phase Volume Fraction

Remarks:

- $\phi_{s} + \phi_{b} + \phi_{c} = 1$ with $0 \le \phi_{\alpha} \le 1$, $\alpha = s, b, c$.
- Mixture idea borrowed from polymer physics (N. Cogan).

Free Energy

Chemical Free Energy of Mixing: $F = \int e(\phi_s, \phi_b, \phi_c) dV$ with Flory-Huggins form

$$e(\phi_c, \phi_b, \phi_s) = \chi_b \phi_b \phi_s + \chi_c \phi_c (1 - \phi_c) \\ + \frac{\Gamma_c}{2} \|\nabla \phi_c\|^2 + \frac{\Gamma_b}{2} \|\nabla \phi_b\|^2 + \frac{\Gamma_s}{2} \|\nabla \phi_s\|^2 \\ + kT \left[\frac{1}{N} \phi_b \ln \phi_b + \phi_s \ln \phi_s + \phi_c \ln \phi_c\right]$$

Remarks:

- Top terms are mixing energies: $\chi_b < 0$ and $\chi_c > 0$.
- Middle terms are transitional energy density terms.
- Bottom terms are mixing entropies.

Chemistry

$$\begin{array}{ll} & \text{CO}(\text{NH}_2)_2 + 2\text{H}_2\text{O} \rightarrow 2\text{NH}_3 + \text{H}_2\text{CO}_3 & (\text{Urea hydrolysis}) \\ & 2\text{NH}_3 + 2\text{H}_2\text{O} \leftarrow \rightarrow 2\text{NH}_4^+ + 2\text{OH}^- & (\text{pH increase}) \\ & \text{H}_2\text{CO}_3 + 2\text{OH}^- \leftarrow \rightarrow \text{HCO}_3^- + \text{H}_2\text{O} + \text{OH}^- \leftarrow \rightarrow \text{CO}_3^{2-} + 2\text{H}_2\text{C} \\ & \text{CO}_3^{2-} + \text{Ca}^{2+} \leftarrow \rightarrow \text{CaCO}_3 & (\text{carbonate precip.}) \end{array}$$

Remarks:

- Urea hydrolysis carried out by ureolytic organisms, *S. pasteurii*, (this is the rate-limiting step), results in pH increase and production of carbonic acid (H₂CO₃).
- H_2CO_3 buffers pH, producing carbonate (CO_3^{-2}).
- Carbonate precipitates into calcite (in presence of Ca²⁺).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Precipitation: Saturation Layer

Precipitation occurs in a thin layer at the biofilm-fluid interface.

Generation of Electric Field by Diffusion

Left: t = 0, initial (charge neutral) seeding of NaCl in water. Right: t > 0, in the absence of electric field, ions diffuse at different rates ($D_{\text{Na}^+} = 1.33$, $D_{\text{Cl}^-} = 2.03$ in units of $10^{-5} \text{cm}^2/\text{sec}$) (not charge neutral!)

э

Solution

FIND THE ELECTRIC FIELD WHICH PREVENTS CHARGE SEPARATION.

Remarks.

 Charge neutrality is preserved, but electrical currents may be induced.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 This idea is similar to use of a pressure to enforce fluid incompressibility.

Q. HOW IS THIS ELECTRIC FIELD COMPUTED?

Nernst-Planck Equations

Consider *N* ionic species with concentations S_i , $1 \le i \le N$.

$$\frac{\partial \mathbf{S}_i}{\partial t} + \nabla \cdot \mathbf{J}_i = \mathbf{R}_i, \quad 1 \le i \le N,$$

where \mathbf{J}_i , the flux of S_i , is given by

$$\mathbf{J}_i = \mathbf{S}_i \mathbf{v} - \alpha_i \mathbf{S}_i \nabla \mu_i.$$

Here R_i is the reaction term for species *i*, α_i is the mobility of species *i*, and μ_i is the electrochemical potential of species *i*, with

$$\nabla \mu_i = \frac{kT}{S_i} \nabla S_i + \hat{a} z_i \nabla \psi$$

where ψ is the electric potential (discussed below), z_i is the valence, and \hat{a} is a units-related constant.

Electrodiffusion-Advection-Reaction Equations

Using the Einstein relation $D_i = \alpha_i kT$ for the diffusion coefficient D_i of species *i*, we obtain

$$\frac{\partial S_i}{\partial t} + \nabla \cdot (S_i \mathbf{v}) = \nabla \cdot (D_i \nabla S_i + a z_i D_i S_i \nabla \psi) + R_i, \quad 1 \le i \le N,$$

where $a = \hat{a}/kT$ with

- z_i = charge valency of species *i*
- ψ = electrostatic potential
- R_i = reaction rate of species *i*

Remark. In the multiphase system, replace S_i by $\phi_s S_i$.

Electric Potential: Computation

Equation for species concentration S_i (with reaction source R_i):

$$\frac{\partial S_i}{\partial t} + \nabla \cdot (S_i \mathbf{v} - D_i \nabla S_i - a S_i z_i \nabla \psi) = R_i$$
(1)

Assume

•
$$\sum z_i S_i = 0$$
 (Charge neutrality)

•
$$\sum z_i R_i = 0$$
 (Charge conservation).

Multiply (1) by z_i and sum over i to obtain

$$abla \cdot \left[\left(\sum S_i z_i^2\right)
abla \psi\right] = -\frac{1}{a}
abla \cdot \left(\sum z_i D_i
abla S_i\right),$$

a (non-constant coefficient) Poisson equation for the potential ψ which enforces charge neutrality. (Note (1) is independent of *a*.)

Electric Potential: 1D Example

Consider two species with $z_1 = -z_2 = 1$ and $S_1 = S_2 = S$.

The Poisson equation for ψ reduces to

$$abla \psi = -rac{1}{a}rac{D_1-D_2}{D_1+D_2}rac{
abla S}{S}$$

The electrodiffusive flux for both species 1 and 2 becomes

$$D_i \nabla S_i + a z_i D_i S_i \nabla \psi \equiv D_{\text{eff}} \nabla S_i = rac{2}{D_1^{-1} + D_2^{-1}} \nabla S_i,$$

(1) D_{eff} is the harmonic average of D_1 and D_2 .

(2) Note enhanced diffusion of less diffusive species.

(3) Given $D_1 \leq D_2$, then $D_1 \leq D_{eff} < 2D_1$.

Punchline

Chemistry in non-mixed systems leads to spatial variation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

- Spatial variation leads to diffusive transport.
- Solution in ion diffusivities leads to charge separation.
- Oharge separation leads to electric fields.
- Electric field leads to enhanced reaction rates.

Electro-Enhanced Chemistry

Electro-enhancement.

- Reactions locally deplete reactants
- Slowest diffusing reactant is limiting.
- Electric field generally increases diffusivity of the slowest diffusing chemical species.

 \Rightarrow electrodiffusion generally enhances reaction.

Example. Electrodiffusion of Ca^{2+} enhances carbonate precipitation $CO_3^{2-} + Ca^{2+} \leftarrow \rightarrow CaCO_3$.

Biomaterial and Calcite: No Flow

Contours of (a) ϕ_B at t = 0, (b) difference at t = 1 day of ϕ_c with and without electric field, (c) ϕ_c (with electric field) at t = 1 day, (d) ϕ_c (without electric field) at t = 1 day.

Biomaterial and Calcite: With Flow

Contours of (a) ϕ_B at t = 0, (b) difference at t = 1 day of ϕ_c with and without electric field, (c) ϕ_c (with electric field) at t = 1 day, (d) ϕ_c (without electric field) at t = 1 day.

Electrodiffusive Enhancement Effect

Largest difference between ϕ_c calculated with and without the electric field, plotted against the ratio of calcium and carbonate ion diffusivities.

Example Computation

Biomaterial

Calcite

▲口 → ▲園 → ▲国 → ▲国 → ▲日 →

Conclusions

- Electrodiffusion is at least moderately important.
- 2 Electrodiffusion is at least moderately inconvenient.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Where Next?

◆□▶◆□▶◆□▶◆□▶ □ のへで

Thank You for Listening!

S. epidermidis biofilm, courtesy of Betsy Pitts, Center for Biofilm Engineering, MSU

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

THINK SNOW!!

(Bacillus biofilms, Alessandra Agostinho)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ