Analysis of ODE II

A. J. Meir
Department of Mathematics and Statistics
Auburn University

US-Africa Advanced Study Institute on Analysis, Dynamical Systems, and Mathematical Modeling of Biological Systems Dec. 2-Dec. 12, 2011

This project is supported by a grant from the NSF

Outline

(1) Modeling Background
(2) Phase Plane Analysis
(3) The General Setting
(4) Advanced Models

Balance Law of Population Dynamics

Balance law
The rate of change of population density equals reproduction rate plus migration rate minus dispersal rate

- Reproduction rate - birth rate minus death rate
- Migration rate - immigration rate minus emigration rate
- Dispersal rate - diffusion (random walk), convective transport, chemotaxis

Models accounting for dispersal lead to partial differential or integro-differential equations

Scope of Talk

Competition of two species

- Closed system, i.e., no migration
- Few comments on dispersal
- Weak law of determinacy, i.e., no memory effects

Geometric approach

Malthus Law

$$
\frac{d u}{d t}=r u(t)
$$

Solution

$$
u(t)=u(0) e^{r t}
$$

- Malthus law - here $r \in \mathbb{R}$ reproduction rate (birth rate minus death rate)
- Examples - bacteria in a petri dish

Model Prediction: prediction of long-term behavior is unrealistic if $0<r$

Logistic Growth

Limited Resources

Replace r by $r\left(1-\frac{u}{C}\right)$

- $0<C$ carrying capacity
- $0<r$ intrinsic reproduction factor, i.e., reproduction factor in case of unlimited resources.

Logistic equation

$$
\frac{d u}{d t}=r u(t)\left(1-\frac{u(t)}{C}\right)
$$

Logistic Growth

Geometric interpretation

- $F(u):=r u\left(1-\frac{u}{C}\right)$ is the slope field
- A solution curve $t \mapsto(t, u(t)))$ has the slope $(1, F(u(\hat{t}))$ at $(\hat{t}, u(\hat{t}))$

Phase Portrait

Phase diagram

Solution Curves

Solution curves

Two-Species Competition

Two species densities u and v
Reproduction rates

- Species $1 r\left(1-\frac{u}{K}-\alpha v\right)$
- Species $2 \rho\left(1-\frac{v}{L}-\beta u\right)$

Now we have a system of o.d.e.

$$
\begin{aligned}
& \frac{d u}{d t}=r\left(1-\frac{u}{K}-\alpha v\right) u \\
& \frac{d v}{d t}=\rho\left(1-\frac{v}{L}-\beta u\right) v
\end{aligned}
$$

Geometric Interpretation

$$
\begin{aligned}
& \frac{d u}{d t}=u(t)\left(a_{1}-b_{1} u(t)-c_{1} v(t)\right) \\
& \frac{d v}{d t}=v(t)\left(a_{2}-b_{2} u(t)-c_{2} v(t)\right)
\end{aligned}
$$

Solution Curve

$$
t \mapsto\binom{u(t)}{v(t)}
$$

is a curve in the u, v-plane which is tangent to the slope field

$$
\binom{u}{v} \mapsto\binom{u\left(a_{1}-b_{1} u-c_{1} v\right)}{v\left(a_{2}-b_{2} u-c_{2} v\right)}
$$

Example

Slope field and solution curves

Example

Biological Issue co-existence or extinction of one species
Mathematical analysis provides the answer - equilibria and their stability tell the story

Example

Equilibria and Nullclines

Slope Field

$$
\binom{u}{v} \mapsto\binom{u f(u, v)}{v g(u, v)}
$$

Equilibria are the zeroes of the slope field, i.e., points (y, z) such that $y f(y, z)=0$ and $\operatorname{zg}(y, z)=0$

Nullclines are the sets of all points in phase space (here the first quadrant) where the slope field has horizontal or vertical slope, i.e., either $x f(x, y)=0$ or $y g(x, y)=0$

Previous Example Revisited

Slope field, nullclines, and soluteion curves

Equilibria

Solve

$$
\begin{aligned}
& u\left(a_{1}-b_{1} u-c_{1} v\right)=0 \\
& v\left(a_{2}-b_{2} u-c_{2} v\right)=0
\end{aligned}
$$

Solutions $u_{0}=0, v_{0}=0 ; u_{1}=0, v_{1}=\frac{a_{2}}{c_{2}} ; u_{2}=\frac{a_{1}}{b_{1}}, v_{2}=0$; and $u_{3}=\frac{a_{1} c_{2}-a_{2} c_{1}}{b_{1} c_{2}-b_{2} c_{1}}, \quad v_{3}=-\frac{a_{1} b_{2}-a_{2} b_{1}}{b_{1} c_{2}-b_{2} c_{1}}$
Note (u_{3}, v_{3}) belongs to the open first quadrant, if and only if either

$$
\frac{b_{1}}{b_{2}}>\frac{a_{1}}{a_{2}}>\frac{c_{1}}{c_{2}}
$$

or

$$
\frac{b_{1}}{b_{2}}<\frac{a_{1}}{a_{2}}<\frac{c_{1}}{c_{2}}
$$

Coexistence of Both Species

Stable hiterior Equinuinn

Extinction of One Species

Unstable hiterior Equiluinn

Two-Species Competition, General Setting

Consider

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=u f(u, v) \\
\frac{d v}{d t}=v g(u, v)
\end{array}\right.
$$

Assumptions

(H0) f, g continuously differentiable functions on \mathbb{R}^{2}
$(\mathrm{H} 1) f(0,0)>0, g(0,0)>0$
(H2) $\partial_{u} f(u, v)<0, \partial_{v} f(u, v)<0, \partial_{u} g(u, v)<0, \partial_{v} g(u, v)<0$ for $u, v \in[0, \infty)$
(H3) there exists a $\beta>0$ with $f(u, v)<0$ and $g(u, v)<0$ for $(u, v) \notin[0, \beta]^{2}$

Lyapunov Stability

Consider

$$
\dot{U}(t)=F(U(t))
$$

Hypotheses $-\Omega \subseteq \mathbb{R}^{n}$ open, $F: \Omega \rightarrow \mathbb{R}^{n}$ continuously differentiable $U(t ; X)$ denotes the unique solution satisfying $U(0)=X$. Definition - Let $Z \in \Omega$ with $F(Z)=0$, i.e., Z is an equilibrium of of the eq.

- Z is called stable, iff for each $\epsilon>0$ there exists a $\delta>0$ such that $|U(t ; X)-Z|<\epsilon$ for every $X \in \Omega$ with $|X-Z|<\delta$ and all $t \geq 0$
- Z is called asymptotically stable, iff Z is stable and there exists a $\delta>0$ with $|U(t ; X)-Z| \rightarrow 0$ as $t \rightarrow \infty$, whenever $X \in \Omega$ with $|X-Z|<\delta$
- Z is called unstable, iff Z is not stable.

Principle of Linearized Stability

Theorem We have

- Z is asymptotically stable provided that the real parts of all eigenvalues of the Jacobian matrix $J_{F}(Z)$ are negative
- Z is unstable if $J_{F}(Z)$ has an eigenvalue with positive real part

$$
J_{F}(Z):=\left(\begin{array}{cccc}
\partial_{1} f_{1}(Z) & \partial_{2} f_{1}(Z) & \ldots & \partial_{n} f_{1}(Z) \\
\partial_{1} f_{2}(Z) & \partial_{2} f_{2}(Z) & \ldots & \partial_{n} f_{2}(Z) \\
\vdots & \vdots & \ddots & \\
\partial_{1} f_{n}(Z) & \partial_{2} f_{n}(Z) & \ldots & \partial_{n} f_{n}(Z)
\end{array}\right)
$$

Stability Analysis

Consider

$$
\begin{aligned}
& \frac{d u}{d t}=u f(u, v) \\
& \frac{d v}{d t}=v g(u, v)
\end{aligned}
$$

Let (\bar{u}, \bar{v}) be an equilibrium with $\bar{u}, \bar{v}>0$, set
$F(U):=(u f(u, v), v g(u, v))$ for $U=(u, v)$, then

$$
J_{F}((\bar{u}, \bar{v}))=\left(\begin{array}{ll}
\bar{u} \partial_{1} f(\bar{u}, \bar{v}) & \bar{u} \partial_{2} f(\bar{u}, \bar{v}) \\
\bar{v} \partial_{1} g(\bar{u}, \bar{v}) & \bar{v} \partial_{2} g(\bar{u}, \bar{v})
\end{array}\right)
$$

Eigenvalues

$$
\frac{\operatorname{trace}\left(J_{F}((\bar{u}, \bar{v}))\right.}{2} \pm \frac{1}{2} \sqrt{\operatorname{trace}\left(J_{F}\right)((\bar{u}, \bar{v}))^{2}-4 \operatorname{det}\left(\left(J_{F}\right)((\bar{u}, \bar{v}))\right.}
$$

Stability Analysis, Conclusions

Theorem. Let (H1)-(H3) be fulfilled and (\bar{u}, \bar{v}) be an isolated interior equilibrium, then $\partial_{1} f(\bar{u}, \bar{v}) \partial_{2} g(\bar{u}, \bar{v})>\partial_{2} f(\bar{u}, \bar{v}) \partial_{1} g(\bar{u}, \bar{v})$ implies asymptotic stability of (\bar{u}, \bar{v}), whereas $\partial_{1} f(\bar{u}, \bar{v}) \partial_{2} g(\bar{u}, \bar{v})<\partial_{2} f(\bar{u}, \bar{v}) \partial_{1} g(\bar{u}, \bar{v})$ yields that (\bar{u}, \bar{v}) is unstable.

Weak competition allows co-existence

$$
\begin{aligned}
& \frac{d u}{d t}=u(t)\left(a_{1}-b_{1} u(t)-c_{1} v(t)\right) \\
& \frac{d v}{d t}=v(t)\left(a_{2}-b_{2} u(t)-c_{2} v(t)\right)
\end{aligned}
$$

$\frac{b_{1}}{b_{2}}>\frac{a_{1}}{a_{2}}>\frac{c_{1}}{c_{2}}$ co-existence of both species
$\frac{b_{1}}{b_{2}}<\frac{a_{1}}{a_{2}}<\frac{c_{1}}{c_{2}}$ extinction of one species

Modeling Dispersal

Habitat Ω, a bounded open subset of \mathbb{R}^{3} with smooth boundary

$$
\begin{aligned}
\frac{\partial u}{\partial t}-k_{1} \Delta u & =u f(t, x, u, v) \\
\frac{\partial v}{\partial t}-k_{2} \Delta v & =v g(t, x, u, v) \\
\Delta u: & =\sum_{j=1}^{3} \frac{\partial^{2} u}{\partial x_{j}^{2}}
\end{aligned}
$$

Boundary Conditions.

- Dirichlet $u, v \equiv 0$ on $\partial \Omega$, lethal boundary
- Neumann $\frac{\partial u}{\partial n}, \frac{\partial v}{\partial n} \equiv 0$ on $\partial \Omega$, isolated habitat
- Robin $\frac{\partial u}{\partial n}+r u \equiv 0, \frac{\partial v}{\partial n}+\rho v \equiv 0$ on $\partial \Omega$, immigration, emigration

A Justification of the ODE Model

Neumann boundary condition, constant coefficients

$$
\begin{aligned}
& \frac{\partial u}{\partial t}-k_{1} \Delta u=u\left(a_{1}-b_{1} u-c_{1} v\right) \\
& \frac{\partial v}{\partial t}-k_{2} \Delta v=v\left(a_{2}-b_{2} u-c_{2} v\right)
\end{aligned}
$$

Then $\left(u_{3}, v_{3}\right)$ is a nontrivial equilibrium, if
$u_{3}=\frac{a_{1} c_{2}-a_{2} c_{1}}{b_{1} c_{2}-b_{2} c_{1}}, \quad v_{3}=-\frac{a_{1} b_{2}-a_{2} b_{1}}{b_{1} c_{2}-b_{2} c_{1}}$.
We have
$\frac{b_{1}}{b_{2}}>\frac{a_{1}}{a_{2}}>\frac{c_{1}}{c_{2}}$ co-existence of both species
$\frac{b_{1}}{b_{2}}<\frac{a_{1}}{a_{2}}<\frac{c_{1}}{c_{2}}$ extinction of one species

Exercise - Picard iteration

Consider the linear i.v.p.

$$
u^{\prime}=2 t(1+u) \quad u(0)=0
$$

Picard iteration for this equation is

$$
u_{k+1}(t)=\int_{0}^{t} 2 s\left(1+u_{k}(s)\right) d s
$$

Take $u_{0}=0$ and compute several iterates. Show that you get the Taylor series expansion of

$$
e^{t^{2}}-1
$$

which is the exact solution of this i.v.p.

