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Balance Law of Population Dynamics

Balance law

The rate of change of population density equals reproduction rate
plus migration rate minus dispersal rate

Reproduction rate - birth rate minus death rate

Migration rate - immigration rate minus emigration rate

Dispersal rate - diffusion (random walk), convective transport,
chemotaxis

Models accounting for dispersal lead to partial differential or
integro-differential equations
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Scope of Talk

Competition of two species

Closed system, i.e., no migration

Few comments on dispersal

Weak law of determinacy, i.e., no memory effects

Geometric approach
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Malthus Law

du

dt
= r u(t)

Solution
u(t) = u(0)ert

Malthus law - here r ∈ R reproduction rate (birth rate minus
death rate)

Examples - bacteria in a petri dish

Model Prediction: prediction of long-term behavior is unrealistic
if 0 < r
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Logistic Growth

Limited Resources

Replace r by r(1− u
C )

0 < C carrying capacity

0 < r intrinsic reproduction factor, i.e., reproduction factor in
case of unlimited resources.

Logistic equation

du

dt
= ru(t)

(
1− u(t)

C

)
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Logistic Growth

Geometric interpretation

F (u) := ru
(

1− u
C

)
is the slope field

A solution curve t 7→ (t, u(t))) has the slope (1,F (u(t̂)) at
(t̂, u(t̂))
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Phase Portrait

Phase diagram
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Solution Curves

Solution curves
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Two-Species Competition

Two species densities u and v

Reproduction rates

Species 1 r
(
1− u

K − αv
)

Species 2 ρ
(
1− v

L − βu
)

Now we have a system of o.d.e.

du
dt = r

(
1− u

K − αv
)
u

dv
dt = ρ

(
1− v

L − βu
)
v
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Geometric Interpretation

du
dt = u(t)(a1 − b1u(t)− c1v(t))

dv
dt = v(t)(a2 − b2u(t)− c2v(t))

Solution Curve

t 7→
(

u(t)
v(t)

)
is a curve in the u, v -plane which is tangent to the slope field(

u
v

)
7→
(

u(a1 − b1u − c1v)
v(a2 − b2u − c2v)

)
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Example

Slope field and solution curves



Modeling Background Phase Plane Analysis The General Setting Advanced Models

Example

Biological Issue co-existence or extinction of one species

Mathematical analysis provides the answer — equilibria and their
stability tell the story
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Example
Equilibria and Nullclines

Slope Field (
u
v

)
7→
(

uf (u, v)
vg(u, v)

)

Equilibria are the zeroes of the slope field, i.e., points (y , z) such
that yf (y , z) = 0 and zg(y , z) = 0

Nullclines are the sets of all points in phase space (here the first
quadrant) where the slope field has horizontal or vertical slope,
i.e., either xf (x , y) = 0 or yg(x , y) = 0
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Previous Example Revisited

Slope field, nullclines, and soluteion curves
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Equilibria

Solve

u(a1 − b1u − c1v) = 0

v(a2 − b2u − c2v) = 0

Solutions u0 = 0, v0 = 0; u1 = 0, v1 = a2
c2

; u2 = a1
b1
, v2 = 0; and

u3 = a1c2−a2c1
b1c2−b2c1 , v3 = −a1b2−a2b1

b1c2−b2c1
Note (u3, v3) belongs to the open first quadrant, if and only if
either

b1
b2

>
a1
a2
>

c1
c2

or
b1
b2

<
a1
a2
<

c1
c2
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Coexistence of Both Species
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Extinction of One Species
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Two-Species Competition, General Setting

Consider {
du
dt = uf (u, v)
dv
dt = vg(u, v)

Assumptions

(H0) f , g continuously differentiable functions on R2

(H1) f (0, 0) > 0, g(0, 0) > 0

(H2) ∂uf (u, v) < 0, ∂v f (u, v) < 0, ∂ug(u, v) < 0, ∂vg(u, v) < 0
for u, v ∈ [0,∞)

(H3) there exists a β > 0 with f (u, v) < 0 and g(u, v) < 0 for
(u, v) 6∈ [0, β]2
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Lyapunov Stability

Consider
U̇(t) = F (U(t))

Hypotheses - Ω ⊆ Rn open, F : Ω→ Rn continuously
differentiable
U(t;X ) denotes the unique solution satisfying U(0) = X .
Definition - Let Z ∈ Ω with F (Z ) = 0, i.e., Z is an equilibrium of
of the eq.

Z is called stable, iff for each ε > 0 there exists a δ > 0 such
that |U(t;X )− Z | < ε for every X ∈ Ω with |X − Z | < δ and
all t ≥ 0

Z is called asymptotically stable, iff Z is stable and there
exists a δ > 0 with |U(t;X )− Z | → 0 as t →∞, whenever
X ∈ Ω with |X − Z | < δ

Z is called unstable, iff Z is not stable.
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Principle of Linearized Stability

Theorem We have

Z is asymptotically stable provided that the real parts of all
eigenvalues of the Jacobian matrix JF (Z ) are negative

Z is unstable if JF (Z ) has an eigenvalue with positive real part

JF (Z ) :=


∂1f1(Z ) ∂2f1(Z ) . . . ∂nf1(Z )
∂1f2(Z ) ∂2f2(Z ) . . . ∂nf2(Z )

...
...

. . .

∂1fn(Z ) ∂2fn(Z ) . . . ∂nfn(Z )
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Stability Analysis

Consider
du
dt = uf (u, v)
dv
dt = vg(u, v)

Let (ū, v̄) be an equilibrium with ū, v̄ > 0, set
F (U) :=

(
uf (u, v), vg(u, v)

)
for U = (u, v), then

JF ((ū, v̄)) =

(
ū∂1f (ū, v̄) ū∂2f (ū, v̄)
v̄∂1g(ū, v̄) v̄∂2g(ū, v̄)

)
Eigenvalues

trace(JF ((ū, v̄))

2
± 1

2

√
trace(JF )((ū, v̄))2 − 4 det((JF )((ū, v̄))
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Stability Analysis, Conclusions

Theorem. Let (H1)–(H3) be fulfilled and (ū, v̄) be an isolated
interior equilibrium, then ∂1f (ū, v̄)∂2g(ū, v̄) > ∂2f (ū, v̄)∂1g(ū, v̄)
implies asymptotic stability of (ū, v̄), whereas
∂1f (ū, v̄)∂2g(ū, v̄) < ∂2f (ū, v̄)∂1g(ū, v̄) yields that (ū, v̄) is
unstable.
Weak competition allows co-existence

du
dt = u(t)(a1 − b1u(t)− c1v(t))

dv
dt = v(t)(a2 − b2u(t)− c2v(t))

b1
b2
> a1

a2
> c1

c2
co-existence of both species

b1
b2
< a1

a2
< c1

c2
extinction of one species
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Modeling Dispersal

Habitat Ω, a bounded open subset of R3 with smooth boundary

∂u
∂t − k1∆u = uf (t, x , u, v)

∂v
∂t − k2∆v = vg(t, x , u, v)

∆u :=
3∑

j=1

∂2u

∂x2j

Boundary Conditions.

Dirichlet u, v ≡ 0 on ∂Ω, lethal boundary

Neumann ∂u
∂n ,

∂v
∂n ≡ 0 on ∂Ω, isolated habitat

Robin ∂u
∂n + ru ≡ 0, ∂v

∂n + ρv ≡ 0 on ∂Ω, immigration,
emigration



Modeling Background Phase Plane Analysis The General Setting Advanced Models

A Justification of the ODE Model

Neumann boundary condition, constant coefficients

∂u
∂t − k1∆u = u(a1 − b1u − c1v)

∂v
∂t − k2∆v = v(a2 − b2u − c2v)

Then (u3, v3) is a nontrivial equilibrium, if

u3 = a1c2−a2c1
b1c2−b2c1 , v3 = −a1b2−a2b1

b1c2−b2c1 .

We have

b1
b2
> a1

a2
> c1

c2
co-existence of both species

b1
b2
< a1

a2
< c1

c2
extinction of one species
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Exercise - Picard iteration

Consider the linear i.v.p.

u′ = 2t(1 + u) u(0) = 0

Picard iteration for this equation is

uk+1(t) =

∫ t

0
2s(1 + uk(s))ds

Take u0 = 0 and compute several iterates. Show that you get the
Taylor series expansion of

et
2 − 1

which is the exact solution of this i.v.p.
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