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Modeling parr-mark pattern formation during the early development of Amago trout
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This paper studies the formation of the large dark patterns, known as parr marks, that form on the Amago trout
as it grows from the early larval stages to adulthood. The Amago trout, known as Oncorhynchus masou ishikawa,
exhibits stripes during the early stages of development that in turn evolve (through reorientation and peak
insertion) to form zigzag spot patterns as the fish grows to adulthood. By considering a standard representation
of the Turing model for biological self-organization via interacting and diffusing morphogens, we illustrate that a
diffusively driven instability can generate transient patterns consistent with those experimentally observed during
the process of parr-mark formation in the early development of the Amago trout. Surface evolution is modeled
through an experimentally driven growth function. Our studies conclude that the surface evolution profile, the
surface geometry, and the curvature are key factors that play a pivotal role in reaction-diffusion systems in a
study motivated by observations of Amago trout parr-mark pattern formation.
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I. INTRODUCTION

Modeling the formation of a spatial pattern from homo-
geneity is of fundamental importance in many fields, none
more so than developmental biology. Since their seminal
introduction by Turing [1], reaction-diffusion systems (RDSs)
have constituted a standard framework for the mathematical
modeling of spatial pattern formation. The theory behind RDSs
as a model for biological pattern formation relies on two
or more morphogens reacting in the presence of diffusion.
The onset of a diffusion-driven instability causes the spatially
homogeneous steady state of the morphogen concentration to
become unstable leading to the possibility of spatial structure.
Turing’s hypothesis was that one or more of the morphogens
played the role of a signaling chemical, such that cell fate is
determined by levels of morphogen concentration.

Experimental studies have shown that patterns in real-world
systems could indeed arise as a result of diffusion-driven in-
stability, such as the chloride-iodide-malonic-acid reaction [2]
and calcium-voltage dynamics within cardiac cells [3]. While
aesthetically attractive due to its biological economy in solving
the difficulties of orchestrating long-range cellular interactions
to induce large-scale biological patterning, Turing’s putative
mechanism nonetheless is often considered with caution [4]. In
particular, the required morphogen interactions are unverified
at the molecular level, even if there are potential candidates
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such as Nodal and Lefty gene products during mesendodermal
induction [5], and questions of model sensitivity continually
recur [6–9]. In contrast, numerous observations of fish skin
markings can be simply explained through reaction-diffusion
frameworks emphasizing that fish pigmentation at least be-
haves analogously to an RDS. One example includes the work
of Kondo and Asai [10], where it has been demonstrated that
an RDS on a one-dimensional growing domain is consistent
with stripe formation on the skin of the juvenile Pomacanthus.
In a recent experimental study, Yamaguchi et al. [11] examined
the effect of disrupting the stripe formation on zebrafish, and
the pattern regime that ensued is very similar to the patterns
obtained by computer simulation of an RDS with appropriate
initial conditions. This in turn motivates further explorations
of fish pigmentation to assess whether discrepancies between
experimental and modeling results emerge, especially with
modeling generalizations given the Turing instability’s noto-
rious sensitivity, as illustrated by the consideration of initial
conditions on fixed domains. Previous observations of sensi-
tivity to factors such as domain shape [12,13] suggest that the
evolving, curved geometry characterizing fish skin as patterns
dynamically change may increase the robustness of solutions
to RDSs. Hence comparisons of models and observations
in this context will offer a potential test of the theoretical
framework.

The influence of curvature on pattern-formation processes
governed by RDSs has been investigated in other contexts
(for example by Barrio et al. [14]). However, the majority
of studies of fish skin patterning by RDSs to date have
simply considered model simulations on squares or other
simple geometries. In this paper, we simulate an observed
pattern-formation phenomenon in fish on biologically realistic
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evolving surfaces, with the goal of investigating the influence
of curvature on patterning. We shall use a finite-element
method [15] to investigate the process of parr-mark pattern
formation on the Amago trout [16].

The remainder of this paper is set out as follows: In Sec. II,
we describe the process of parr-mark pattern formation on the
Amago trout. We give the details of our experimental study,
in which at each stage we observe the parr-mark formation
process and record the time and size of the fish. In Sec. III,
we outline the method with which we seek to model the
pattern-formation process. Using our experimental data, we
model the growth of the fish and construct representative
models of the surface of the fish on which patterning occurs,
taking into account the shape and curvature of the surface.
We then define the RDS model that we will be computing
on an evolving surface. We conclude the section by briefly
discussing the selection of parameter values for the system. In
Sec. IV, we present the results of our computer simulations.
The results are in close agreement with the experimentally
observed pattern transitions. The effect of curvature on the
pattern-formation process is also discussed, and we observe
striking differences in the patterns that form on surfaces with
different curvature. Finally, in Sec. V we state the conclusions
of this study, primarily that an RDS on an evolving surface is a
viable model for describing the emergence of parr-mark pattern
formation on the Amago trout and that curvature influences
patterns that arise via self-organization. We conclude this paper
by discussing the implications of our results on the modeling
of biological pattern formation by RDSs on continuously
evolving surfaces, and we suggest future research directions.

II. BIOLOGICAL OBSERVATIONS

The red spotted masu trout (Oncorhynchus masou
ishikawae) of the Salmonidae has two different forms of
life style, i.e., river resident and anadromous forms. The
river resident form is known as the Amago trout and the
anadromous form as the Satsukimasu trout. The life span of
the red spotted masu trout is between 3 and 4 years. The
final size of the Amago is fairly small (approximately 30
cm in length) and they are widely distributed in Japanese
rivers from western Honshu island on the Pacific Ocean and
Shikoku island, to northern Kyushu island on the Setonaikai
Sea. The Amago is notable for remaining in fresh water during
its life cycle. On the other hand, the size of Satsukimasu is
approximately 50 cm long, and after living in the ocean for
two years, they return to home rivers to lay eggs. Amagos
have distinctive elliptically shaped parr marks (large dark
patterns) on each side of the body, which are well known
as trademarks of young fishes of the Salmonidae such as the
Rainbow trout (Oncorhynchus mykiss) and the Whitespotted
char (Salvelinus leucomaenis) (see Fig. 1) and may serve
as camouflage for the vulnerable young fish. Amago trout
parr mark development is completed relatively early in the
fish’s life cycle (6 to 7 months after hatching). Contrary to
the parr marks of many other members of the Salmonidae,
including the Satsukimasu trout, which disappear shortly after
the juvenile phase, the parr marks once formed on the juvenile
Amago remain fixed during development. Our modeling seeks
to study the mechanism for the formation of parr marks

(a) Amago trout

(b) Whitespotted Char

(c) Rainbow trout

FIG. 1. (Color online) Parr marks on young fish skins of three
different species of the Salmonidae.

on the skin surface of the Amago trout during the very
early stages of its development from just after hatching to
the completion of the formation of parr marks (at 6 or 7
months).

In order to understand the biological evolution of parr-mark
formation during growth development, Sekimura recorded the
parr-mark formation process of around 50 Amago individuals.
The specimens were tracked from shortly after the time of
hatching to around seven months after birth and were pho-
tographed at monthly intervals. The individuals were placed
in a glass vessel with gradations on the sides of the vessel.
This enabled the collection of experimental data of the
growth rates of the fish, associated patterning, and geometrical
descriptions during each stage of its growth development.
These empirical data provide an excellent foundation for
mathematical modeling of the pattern-formation phenomenon
during growth development.

This study is, to our knowledge, the first attempt to
document the parr-mark formation process that occurs on the
developing Amago’s surface. Parr-mark formation initiates via
the formation of stripes oriented perpendicular to the head tail
axis [16]. These stripes then split forming elongated spots on
either side of the fish’s back (dorsal portion), which develop
and change in orientation as the fish grows. Our experimental
study provides detailed observations of the major stages in
parr-mark development during the early growth development,
as shown in Fig. 2.
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Stage 1: (Length: 2–4 cm, soon after hatching). No visible
parr marks [Fig. 2(a)]. During this period, the Amago’s diet
consists only of yolk from its egg.

Stage 2: (Length: 4–6 cm, ∼1 month after hatching).
The first stage of parr-mark formation occurs. Approximately
five parr marks appear on each side of the fish toward the

(a) shortly after hatching (b) ∼30 days left (c) ∼30 days right

(d) ∼60 days left (e) ∼60 days right

(f) ∼90 days left (g) ∼90 days right

(h) ∼160 days left (i) ∼160 days right

(j) ∼200 days left (k) ∼200 days right

FIG. 2. (Color online) Amago skin pigmentation patterning during growth development [the approximate time after hatching is given in the
captions, and the yellow (light gray) bar in the bottom of each snapshot indicates 1 cm]. The figures show the left- and right-sided patterning
profiles during the early stages of the Amago growth development after hatching to the juvenile period, by which time patterning is complete
(approximately 6 to 7 months). The fish exhibits an initial patternless state that evolves into faint vertical stripes. It can be observed that stripes
evolve into spots with zigzag alignment that increase in number as the fish grows. It must be noted that the fish size at 200 days has not reached
the final maturity adult size. It is at this stage that the parr marks remain constant in number. The only changes observed are in the sizes of the
spots, which continue to increase.
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top (dorsal) portion. These are oriented perpendicular to the
head-tail axis [Figs. 2(b) and 2(c)]. By this time, the fish has
completely consumed its egg yolk and has started to eat food
from the environment.

Stage 3: (Length: 6–8 cm, 2 to 3 months). By this stage
of development, the fish has grown to around three to four
times its original size. Between five and seven parr marks are
visible on each side of the fish toward the top portion. The parr
marks are still primarily oriented perpendicular to the head-tail
axis, however on wider portions of the fish a zigzag pattern
(see the next stage for a description) is somewhat evident
[Figs. 2(d)–2(g)].

Stage 4: (Length: 8–12 cm, 3 to 7 months). A new line of
parr marks appears on the top of the fish [Figs. 2(h)–2(k)].
The visible pattern consists of three or four rows (parallel to
the head-tail axis) of elliptical parr marks, which are still all
located on the top portion of the fish, with 7 to 11 parr marks
in each row. The parr marks are now completely arranged in a
zigzag configuration with the overall distribution of parr marks
over the domain comprising a checkerboard pattern, i.e., the
angle between a hypothetical line connecting a parr mark with
its nearest neighbor and the head-tail axis is approximately 45◦.
Although the fish continues to grow, with the mature Amago
measuring around 30 cm in length, the parr-mark formation
process is completed by this time and the configuration visible
on the juvenile fish persists into maturity.

During the later stages of the Amago growth development,
the number of parr marks remains constant with noticeable
changes in size and location over the fish surface. Our
studies do not address the later stages of the Amago growth
development since there are no major changes in parr-mark
transitions.

It is clear from the observations that parr-mark pattern
formation (or at least the expression of parr marks) is restricted
to the upper (dorsal) portion of the fish, with no parr marks
forming at any stage of development on the underside of
the fish. A key facet of the parr-mark formation process
is the insertion of new parr marks, inducing a transition
from a single row of alternating pigmentation to multiple
rows of elliptical markings that are in antiphase, forming a
checkerboard pattern. The change in shape and organization
of parr marks is extremely important, as any mechanism that
governs the parr-mark formation process must allow for the
change in organization of patterns as the fish changes in size.
Figure 3 shows a top-down perspective of an individual Amago
at around seven months after hatching. To highlight the parr
marks, we have included a sketch with the parr marks and the
outline of the fish shaded in dark black. We clearly observe

FIG. 3. (Color online) Top-down view of the patterned state of
the juvenile Amago and a sketch of the patterned state on which we
highlight the parr marks. A checkerboard pattern is clearly visible.

the checkerboard pattern of parr marks that arises in the later
stages of the juvenile parr-mark development.

III. MODELING

The experimental results shown above clearly demonstrate
that the process of Amago skin pigmentation takes place during
the early stages of development, with transient patterns being
expressed as the fish grows to juvenile. The pattern transition
occurs via the insertion of new parr marks. A certain separation
seems to be maintained between the existing and inserted
patterns. The orientation of the patterns around the domain
is dynamic, changing as the surface evolves. These character-
istics of the pattern-formation process suggest an RDS on an
evolving surface as a candidate model for the pattern-formation
phenomenon. First, since patterns that arise from RDSs via
the Turing instability have an intrinsic wavelength, some
degree of separation between patterns is natural (at least for
kinetics in which new patterns arise via insertion). This has
been used previously in modeling stripe formation on the
Pomacanthus [10]. Secondly, and perhaps more importantly,
more recent theoretical studies have shown that growth can
determine the orientation (direction) of transient patterns [17].
This phenomenon of growth-determined packing arrangement
of the markings has also been supported experimentally by
Mı́guez and Muñuzuri [18], who showed that in a simplified
experimental model for the formation of stripes on fish skin,
the direction of domain growth could be used to determine the
orientation of the resulting patterns.

We wish to investigate pattern formation on realistic
geometries. Many studies, such as Varea et al. [19], Chaplain
et al. [20], Plaza et al. [21], Gjorgjieva and Jacobsen [22],
Barreira et al. [23], and Landsberg and Voigt [24], highlight the
role of curvature on pattern formation. To properly understand
the role geometry plays in the pattern-formation process,
the curvature of the fish should also be taken into account,
motivating the modeling of RDSs on evolving curved surfaces.

A. Fitting a growth function to the experimental data

The experimental data allow us to estimate the surface
proportions of the Amago trout through each observed stage of
the parr-mark formation process. Using the photographs, we
measure the length and width of the fish at various stages of
development. The surface proportions of the Amago appear to
grow isotropically, with no obvious change in the ratio between
the width and length of the fish during development. In light
of this, we assume the growth of the body surface of the fish
is uniform and isotropic, i.e., the growth of the fish is assumed
to be spatially linear and the fish grows at the same rate in all
directions.

Another important aspect of the growth is that early in the
fish’s life cycle (when the fish is still feeding on its yolk),
growth appears to be much faster than in later stages of
development, when growth occurs at a much slower rate. The
fish continues to grow after the juvenile stage, reaching a final
size in adulthood of around 30 cm. However, the parr-mark
formation process is complete once the fish has reached the
juvenile stage corresponding to 10–13 cm in length, therefore
further growth after this period is not modeled.
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A saturating growth function seems the most natural model
for the observed evolution of the fish’s body surface. For
illustrative purposes, we consider the logistic growth function.
Under this growth profile, the fish’s growth is approximately
exponential initially, linear at intermediate stages, and finally
saturates as the organism approaches a limiting surface size.
The logistic growth function is defined by

ρ(t) = ert

1 + 1
m

(ert − 1)
for t ∈ [0,T ] . (1)

Since we have assumed growth of the fish’s surface is uniform
and isotropic, the function ρ(t) represents the time-dependent
dilation that describes the uniform level of enlargement from
the initial size of the fish to the current size of the fish.
From our experimental observations, we take the saturation
size m = 5.2 to represent the nondimensional limiting surface
size of the Amago fish. Fitting the logistic growth function
to the experimental data as illustrated in Fig. 4 results in the
nondimensional linear logistic growth rate r = 7.5 × 10−5.
We take a computational time interval of [0,105], with one
day in real time corresponding to an interval of length 500
in computational time. In Fig. 4 the growth function, ρ(t), is
fitted to the length of an individual Amago, with normalisation
according to the initial length, over the interval [0,200 days].
The function (1) appears to be a relatively good approximation
to the actual growth of the selected fish. We further note that
the representative fish chosen in this case was fairly typical
of the observed growth in many fish that were studied, and
that the assumption of a logistic growth function is widely
used in studies within this context [25]. Furthermore, as our
assumption of isotropic growth is untested, our fitted growth

FIG. 4. (Color online) The red (dark gray) circles represent mea-
surements of the length of an individual fish normalized by its initial
length (∼2 cm) at 0, 20, 60, 90, 160, and 200 days after hatching.
The blue (light gray) line represents logistic growth as defined in (1),
on the computational time interval [0,105] corresponding to a real
time interval of [0,200] days. It must be noted that the parameters of
the logistic function corresponding to experimental growth data for
the rest of the fish follows more or less the same logistic growth
profile (data not shown).

function is merely indicative of a possible form of evolution
of the fish surface, thus further fine-tuning and more refined
fitting of the parameters of the growth function ρ(t) to the
observed growth of the fish surface appear to be unnecessary.
As mentioned previously, the fish continues to grow after the
juvenile stage. However, as the process of parr-mark formation
is complete around 6 months after hatching, this subsequent
growth is not modeled.

B. Modeling the patterned surface

The absence of any pattern on the underside of the fish
at all stages of development is apparent in Fig. 2. There
appears to be a marked difference in coloration between the
upper portion of the Amago on which patterns form and
the patternless underside [most apparent in Figs. 2(h)–2(k)].
Recent experimental studies of the zebrafish have shown that
some of the chromatophores (pigment cells) involved in the
skin patterning of the fish originate from the neural crest on the
dorsal (top) side of the fish and migrate to other parts of the fish
in the embryonic state (see Kelsh [26] and references therein).
This may explain the lack of patterning on the underside of the
fish if the pathways along which the chromatophores migrate
do not extend to the ventral side (bottom) of the fish. Marked
differences in coloring between the top and bottom of the fish
and the absence of patterning on the underside of the fish are
evident in many members of the Salmonidae, such as the white
spotted char and the masou salmon ([27], Figs. 2(a) and 2(b)).
To the best of our knowledge, there is as yet no explanation for
these phenomena in the Salmonidae, and this clearly warrants
further experimental research.

Our assumption is that the morphogens and chromatophores
are only present in the patterned regions of the fish and migrate
only along pathways within this patterned region i.e., we
assume the domain on which the chromatophores are present
is limited and that these chromatophores are then triggered
to produce a pattern by the RDSs that is posed on the same
domain. From a modeling perspective, this is equivalent to
assuming that there is no-flux of morphogens between the
patterned and unpatterned regions. We therefore only consider
the fish surface on which patterning occurs and impose a
homogeneous Neumann boundary condition on the boundary
surrounding this region.

To model the patterned region, we first trace the portion
of the two-dimensional surface of the trout on which patterns
form (Fig. 5). Using the gradations (1 cm) in each of the
photographs, we measure the width and length of the outline
of the fish. We assume the region is symmetric about the
head-tail axis and we approximate the geometry at different
stages of development by tracing the outline at different times
after hatching. Our experimental observations indicate that
the boundaries of the patterned portion of the fish enlarge
proportionally as the fish grows. Since we assume the region
as a whole grows proportionally with the fish, it is sufficient
to model this surface at the initial stage of development with
length and width scales that describe the skin surface of the
Amago soon after hatching and then model the evolution of
this surface during development with the isotropic growth
function (1). To investigate whether curvature is relevant,
we first model the surface by a planar polygonal domain,
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FIG. 5. (Color online) The portion of the fish that exhibits pat-
terning, shaded in yellow (light gray). To construct an approximation
to the surface of the Amago, we assume this region is symmetric
about the head-tail axis of the fish and model the region by a series
of surfaces with differing curvatures (Figs. 6 and 8).

approximating the shape of the patterned region. From in-
spection of the outline of the patterned region, a polygonal
computational domain with 14 vertices provides a good
approximation to the curved boundary of the patterned region.
Figure 6 shows the initial planar computational domain,
an approximation to the portion of the skin surface of the
Amago on which patterns form (soon after hatching). We
then investigate the influence of curvature by considering a
series of computational domains with differing curvature while
maintaining the width and length scales that are significant
in the patterning process. In treating the domain on which
patterning occurs as a two-dimensional manifold, we are
introducing an approximation, as it is not necessarily true
that the patterns occur in an infinitesimally thin layer. We
assume that the patterning length scale is much larger than
the depth of the fish skin. This is reasonable as, from fish
cross-sections, skin depth is always far less than the patterning
length scale (typically of the order of the size of the fish).
Hence in the direction perpendicular to the modeled surface
manifold, spatial homogeneity is expected and thus simula-
tions on a two-dimensional manifold represent a legitimate
approximation.

From inspection of the fish shape, a natural surface to
investigate is a portion of a growing elliptic cylinder. The
cylindrical surfaces we consider are defined by the following
mapping that maps points from a time-independent planar
reference configuration, which we take to be the coordinates
of the initial planar computational domain shown in Fig. 6, to
the growing surface of an elliptic cylinder (see Fig. 7):

A(ξ ,t) := ρ(t)




a cos(πξ1/0.45)
b sin(πξ1/0.45)

ξ2



 , (2)

FIG. 6. (Color online) A planar approximation to the portion
of the Amago trout on which patterns form. The length scales, in
centimeters, represent the initial planar domain that corresponds to
the surface of the Amago soon after hatching.

Ω̂

a

b

St

A(·, t)

ξ ∈ R2
x = A(ξ, t) ∈ R3

FIG. 7. (Color online) An example of the mapping A from a
fixed planar computational domain to the surface of a growing elliptic
cylinder.

where ξ1 and ξ2 are, respectively, the y (width) and x (length)
coordinates of the planar approximation (see Fig. 6), a and b
are the semimajor and semiminor axes of the elliptic cylinder,
andρ(t) is the spatially uniform level of dilation from the initial
surface size, given by the logistic growth function defined in
Sec. III A.

Since the patterning only occurs on the upper portion of
the fish, we model the surface by a portion of the curved
surface of the elliptical cylinder (the top half of the cylinder,
terminating at its widest location). We preserve the length and
width scales of the fish by constructing cylinders with the same
length and width (arc length across the curved surface) as the
planar triangulation. To investigate the effect of differences in
curvature on pattern formation, we pick a set of values of a and
b, such that the surface areas of the cylindrical surfaces ob-
tained are approximately equal to the surface area of the planar
domain.

Figure 8 shows the five different cylindrical surfaces we
consider. The surfaces are shaded by the modulus of the
cylindrical mean curvature, and ordered (left to right) by
decreasing (modulus of) mean curvature along the central axis.
The surface in the middle is the circular cylinder (of constant
mean curvature).

C. Model equations

We now introduce our model, an RDS on an evolving
surface. Let St be a simply connected bounded continuously

FIG. 8. (Color online) The cylindrical surfaces shaded by the
modulus of the mean curvature.
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deforming hypersurface embedded in R3 at time t ∈ [0,T ],
T > 0. Let ∂S t be the surface boundary of St . Also let
u = (u1 (x,t) ,u2 (x,t) )T be a vector of two chemical concen-
trations at position x ∈ St . Growth of the domain generates
a flow velocity a(x,t), which we assume to be equal to the
surface velocity. Assuming that surface velocity is isotropic,
it can be easily shown that (see Madzvamuse [12] and Plaza
et al. [21] for the details)

a(x(t),t) = ∂tρ(t)x(0). (3)

The generalized nondimensionalized governing equations for
an RDS on an isotropically growing surface were derived by
Plaza et al. [21] and take the form (see Appendix A1 or Barreira
et al. [23] for further details)

∂t u1 + ∇St
· (au1) = %St

u1 + γf1(u),

∂t u2 + ∇St
· (au2) = d%St

u2 + γf2(u) in St ,(0,T ],

u(x,0) = u0(x), x ∈ S0,

ν · ∇St
u(x,t) = 0, x ∈ ∂St ,t > 0, (4)

where d is the ratio of the diffusion coefficients, γ is
a scaling parameter, and u0(x) is a well-defined positive
bounded vector function. The vector ν is the unit normal
to the surface boundary ∂St . The nonlinear vector valued
function f = (f1,f2)T represents the reaction kinetics. The
only modification from the planar case is the replacement
of spatial derivatives with surface tangential derivatives. We
denote by %St

the Laplace-Beltrami operator, the analog of the
Laplace operator on manifolds, defined as the divergence of
the surface tangential gradient [see Gilbarg and Trudinger [28]
(Chap. 16, p. 389)]. If St is planar, then the Laplace-Beltrami
operator is identical to the Laplacian. The global existence of
classical solutions to RDSs on planar domains with isotropic
growth was proved by Venkataraman et al. [29].

Remark (i): Isotropic growth. The assumption of isotropic
growth plays a central role in the model derivation. Any form of
anisotropy in the growth function will affect both the dilution
term (that arises when the time derivative is brought inside
the integral) and, crucially in this case, the curvature of the
domain.

Remark (ii): Alternative boundary conditions. We note that
without further empirical information, an equally appropriate
modeling assumption would have been to assume that the RDS
is posed on the entire surface of the fish and some external
factor suppresses patterning on the underside of the fish. This
alternative modeling assumption would have major implica-
tions, as we would then have to assume a domain with periodic
boundaries at the sides and zero-flux boundaries at the head
and tail ends or no boundary in the case of closed surfaces [23].
Boundary conditions strongly affect the pattern-formation
process [30], and we shall show in the following sections that
this effect is even more evident when curvature is included
in the modeling. Further experimental evidence is needed
to fully determine the appropriate boundary conditions to
impose.

For our preliminary computational studies (not reported),
we considered the activator-depleted substrate model [31–33]
and the Thomas [34] reaction kinetics. One of the most
important aspects of the patterning phenomenon is the in-

sertion of new parr marks away from existing parr marks.
This phenomenon is best captured by kinetics in which new
activator peaks arise due to insertion rather than splitting
of existing peaks. Bifurcations on growing domains with
the activator-depleted substrate kinetics are generally of the
splitting type, while the Thomas kinetics generally exhibit
peak insertion [35]. This was evident in our preliminary
simulations, and thus we focused on the Thomas kinetics
defined in nondimensional form as follows:

f1(u) = α − u1 − βu1u2(
1 + u1 + ku2

2

) ,

(5)

f2(u) = cκ − cu2 − βu1u2(
1 + u1 + ku2

1

) ,

where α, β, c, κ , and k are all positive constants. It must
be noted that there are many other reaction kinetics in which
peak splitting is observed, the celebrated Gierer-Meinhardt
kinetics [31] being one of the most well known. Similar pattern
transitions to those observed with the Thomas kinetics can
arise as a result of different kinetic models in which peak
insertion is the dominant process.

D. Selection of parameter values

Since the morphogens that determine the patterning of the
Amago trout are still unknown, the reaction kinetics we have
assumed are purely hypothetical. In effect, we are assuming
that patterning is insensitive to the physical details of the
kinetics themselves, as similar patterns are generated by Turing
systems with different reaction kinetics. Thus we determined
the reaction kinetic parameter values by simulating an RDS on
a fixed rectangle with the same length and width scale as the
fish, selecting the parameter values that best approximate the
first stage of patterning of the Amago. The parameter values
we selected are α = 92, κ = 64, k = 0.1, c = 1.5, β = 18.5,
d = 9.75, and γ = 116. With these parameter values, system
(4) admits a spatially homogeneous steady state (9.93,9.29)
(determined by a Newton-Raphson method) valid in the
absence of domain evolution. We take the initial conditions
for problem (4) as small random perturbations around this
homogeneous steady state.

On dimensionalization, using the fact that an interval of
length 1 in computational time is equivalent to 173 s in
real time, we obtain diffusion coefficients of approximately
5 × 10−6 and 5 × 10−5 cm2 s−1 for the activator (u1) and
inhibitor (u2), respectively. However, within the range of
diffusion coefficients of proteins in aqueous media, these
diffusion coefficients are somewhat high compared to the
typical value of diffusion coefficients of morphogens in the
literature (≈10−8 cm2 s−1). Rescaling such that the diffusion
coefficients are of the experimentally observed orders results in
a stiffer system that is more computationally intensive to solve.
In light of this, we note that the nondimensional parameter γ is
not estimated from experimental data and governs the overall
timescale of the reaction rates. Since growth of the domain oc-
curs slowly relative to pattern formation, the transient patterns
may be viewed as spatially inhomogeneous steady states of
system (4) (neglecting the terms dependent on the slow growth
rate). A suitable rescaling of the diffusion coefficients and the
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parameter γ should generate qualitatively similar patterning.
This viewpoint is supported by our numerical investigations
(not reported).

IV. COMPUTER SIMULATIONS

We solve the model equations (4) and (5) using the finite-
element method derived and analyzed by Venkataraman et al.
[15]. We only present the computed activator concentrations

(u1); the inhibitor concentrations (u2) have been omitted as
they are in phase with those of the activator. Full details of the
numerical methods are given in Appendix A2.

Remark: Thresholding. Since patterning is presumed to
occur due to the morphogen concentration exceeding a certain
value, the most appropriate way to visualize the results is
by shading according to some threshold value. In all the
simulations, we select a constant threshold value of 9.5 for

(a) 0 days (b) 20 days

(c) 40 days

(d) 60 days

(e) 100 days

(f) 200 days

FIG. 9. (Color online) Snapshots, shaded by a threshold algorithm, of the discrete activator concentration (u1), corresponding to the
simulation of (4) with reaction kinetics (5) on a planar domain. For parameter and thresholding values see text. The simulations are in
agreement with the experimental observations reported in Fig. 2. The first pattern observed is a vertically aligned series of stripe-like parr
marks with insertion of new parr marks as the domain grows. The parr marks reorient into a checkerboard configuration as the domain grows
further. The number of parr marks visible at each stage of development is also in accordance with the experimental observations reported in
Sec. II. These patterns are relatively independent of the threshold value selected.
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the activator concentration (u1). If the concentration is below
this value, the area of the domain is shaded red (dark gray),
otherwise it is yellow (light gray). The Thomas kinetics
we have used exhibit sharp gradients compared to say the
Schnakenberg kinetics with similar diffusion coefficients; also,
the results of our simulations suggest that the patterns that
form with these parameter values are spots or stripes with a
common amplitude (results not shown). Thus the gross pattern
exhibited is relatively independent of the threshold value
chosen. Although the results of the simulations appear to be
relatively pixelated, this is only an artefact of the thresholding
algorithm. The mesh was refined sufficiently to ensure that
further refinements led to only minor changes in the solution
values and qualitatively the patterns expressed did not change.

A. Planar domain

Figure 9 shows the results of our simulation of (4) with
reaction kinetics (5) on the planar domain. We have shown
snapshots of the computed activator concentrations (u1),
together with the corresponding time in days of each snapshot.
The pattern transitions observed in the computer simulations
are in close agreement with the transient patterns observed in
Fig. 2.

The snapshots of the simulation results at 20 and 40 days
after hatching [Figs. 9(b) and 9(c)] are very similar to the first
parr marks that appear on the surface of the Amago toward the
end of the first month [Figs. 2(b) and 2(c)]. At this stage of
development, four to five parr marks are visible along each side
aligned vertically, in agreement with the experimental obser-
vations. As the computational domain grows corresponding to
60 days after hatching, new parr marks appear via insertion; see
Fig. 9(d). The alignment is still primarily vertical, although in
the wider portions of the domain a zigzag orientation starts
to appear, mirroring the experimental results in Figs. 2(d)
and 2(e). Further insertion of parr marks and the transition
to the checkerboard configuration observed experimentally
in Figs. 2(f)–2(i) are clearly observable in Fig. 9(e) as the
computational domain grows. In Fig. 9(f), we show the final
patterned state as the domain reaches the size at which patterns
no longer change. We observe three to four rows (parallel to
the head-tail axis) of parr marks, each consisting of around 10
individual parr marks. The regular checkerboard distribution
of the parr marks is clearly evident, and comparing this figure
with the top-down view of Fig. 3, we see a close agreement
between the final distribution of parr marks in the simulation
and the observations.

The times of transition between different patterns also
appear to be in accordance with the observed data, with the
transition from stripe-like parr marks aligned perpendicular
to the head-tail axis to the checkerboard distribution of parr
marks occurring between the second and fourth month after
hatching both in the biological observations and the numerical
simulations.

B. Cylindrical surfaces

Figure 10 shows the transient patterns of the activator
profile, together with the corresponding time in days of each
snapshot on the cylindrical surfaces. Each snapshot is arranged
from bottom to top in order of increasing (modulus of) mean
curvature along the central axis.

The pattern transition on the portion of the circular cylinder
(middle surface) is an important benchmark for the algorithm.
By construction, the portion of the circular cylinder we have
considered is isometric to the planar domain. The Laplace-
Beltrami operator is invariant under isometries as it is defined
by the surface metric tensor or first fundamental form (see
the Appendix for further details), which is invariant under
isometries [36]. Therefore, the eigenfunctions of the Laplace-
Beltrami operator on the surface of the circular cylinder
under consideration are homeomorphic to the eigenfunctions
of the Laplace operator on the planar domain. Moreover,
given identical initial conditions, the patterns observed on the
circular cylinder should be the same as the patterns observed
in the planar case. Comparing Fig. 9 and the circular cylinder
(middle surface) in Fig. 10, we see extremely similar patterning
despite the use of different initial conditions and the fact that
we use different numerical schemes (A9) and (A10) that are
only equivalent up to quadrature.

Generally speaking, the activator profiles on the middle
three surfaces of Fig. 10 are similar to the planar case with
parr marks initially appearing in a vertical alignment and then
reorienting into the checkerboard configuration as the surface
grows. The time at which patterns first form appears to be
the same both in the planar case and on all the surfaces we
have considered. This is in accordance with the work of Plaza
et al. [21], in which it was shown that the necessary conditions
for diffusion-driven instability are the same on surfaces as on
planar domains. We do, however, observe differences in the
type of pattern expressed on the different surfaces due to the
differing surface geometries. On the surface with least mean
curvature along the central axis (bottom), there is a clear pref-
erence for vertical stripes (perpendicular to the head-tail axis),
with the only observed pattern transition being the regular
insertion of stripes as the surface grows. This is surprising
as in the planar case isotropic growth would eventually lead
to the reorientation of stripes or the breakdown of the stripe
pattern altogether. On the surface with highest curvature along
the central axis (top), there is a clear preference for spots.

Overall, the number of spots (or stripes) at a given time
on the surfaces in Fig. 10 appears to increase with increasing
mean curvature along the central axis, i.e., as we move from the
lower-most surface in each figure panel to upper-most surface.
It therefore appears that on surfaces with higher curvature on
the interior and smaller curvature at the boundary, patterns
with higher mode numbers (number of spots or stripes) are
selected.

V. CONCLUSION AND DISCUSSION

Understanding the formation of a spatial pattern in the
early embryo is one of the central challenges in developmental
biology. By virtue of their accessibility, pigmentation patterns
offer a powerful paradigm model in which to propose and test
various patterning hypotheses. Recent experimental evidence
suggests that skin patterning in some species of fish is dynamic
[11], i.e., fish skin patterning can be transient long after the
larval stage. Fish are therefore ideally suited to the study of
pattern formation as experimentalists are now able to collect
data on the dynamic pattern-formation behavior from the early
stages of development to adulthood. In this study, we explored
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(a) 0 days (b) 20 days (c) 40 days

(d) 60 days (e) 100 days

(f) 200 days

FIG. 10. (Color online) Snapshots, shaded by a threshold algorithm, of the discrete activator concentration (u1), corresponding to the
simulation of (4) with reaction kinetics (5) on cylindrical surfaces. For parameter and thresholding values, see the text. The timing of the
formation of the first patterns is identical to the planar case (Fig. 9). The patterning on the middle three surfaces appears to be very similar to
the planar case and approximates well the observed experimental results. A striking result is the preference of stripe-like patterns with vertical
alignment on the surfaces with higher curvature on the boundaries (bottom) with spots in zigzag alignment appearing to be preferred on surfaces
with higher curvature along the central axis (top). (Note that the surfaces reading from left to right in Fig. 8 correspond to the surfaces reading
from top to bottom in each of the subfigures.)

a reaction-diffusion model for the experimentally observed
parr-mark pattern-formation process in the early development
of the Amago trout. The geometrical assumptions we made
were driven for the most part by the experimental data, and
an important facet of our study is the inclusion of curved
surface geometry and the modeling of surface evolution of the
fish. Our results show that there is an agreement between the

observed evolution of parr marks on the surface of the Amago
trout and the simulated patterning generated by an RDS on a
planar domain. This is equivalent to assuming the surface of
the Amago is accurately modeled by an isotropically growing
circular cylinder as evident in simulations conducted on
the middle surface in Fig. 10. Furthermore, weakly elliptical
cylinders that constitute small departures from the uniform
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curvature of the circular cylinder generate similar patterning
(Fig. 10, second from top and second from bottom surfaces).
This striking result suggests small changes in curvature may
not significantly influence the pattern-formation process, and
this was not apparent a priori. Thus studying the effects
of curvature was an important aspect of the research. The
pattern-formation mechanism investigated consists of an RDS
posed on a continuously evolving open curvilinear surface.
The simulations indicate the importance of curvature in
determining the patterns generated by RDSs, and our overall
conclusion is that the Turing mechanism is not inconsistent
with the observed parr-mark pigmentation dynamics.

The use of computer simulations of RDSs in con-
junction with experimental data to approximate observed
skin patterning in fish is widespread [10,27,37]. The key
difference between our study and existing work is that,
to the best of our knowledge, this is one of the first
studies that incorporates experimentally driven modeling
of growth and curvilinear geometry. We have shown that
patterns generated by an RDS can replicate experimentally
observed pattern transitions, where both the growth and
domain geometry are observed experimentally and modeled
mathematically.

Our results indicate that curvature influences patterns that
arise via self-organization. For the Thomas reaction kinetics,
the gross behavior of solutions to the RDS posed on evolving
surfaces is similar to the planar case with the insertion of new
activator peaks as the surface evolves. However, in terms of the
type of pattern generated, there does appear to be a significant
sensitivity to the curvilinear geometry of the domain. In
contrast to the sensitivity of RDSs to initial conditions, the
sensitivity to curvature does not appear to be ameliorated by
domain evolution. We observe markedly different transient
patterns on cylindrical surfaces with similar surface areas
and evolution but differing nonuniform curvatures. These
differences are entirely due to the geometry of surfaces
with nonuniform curvature, in particular the eigenfunctions
of the Laplace-Beltrami operator posed on these surfaces, at
least for pattern initiation while in the linear regime. Future
numerical and theoretical studies with the goal of identifying
or characterizing these eigenfunctions appear to be of funda-
mental importance. On a circular cylinder, we observe similar
transient patterns to the planar case, with an initial striped
pattern evolving into a spotted pattern, whereas on an evolving
cylindrical surface with higher curvature on the boundary, we
observe the persistence of stripes oriented perpendicular to the
boundaries (where curvature is high) and no two-dimensional
patterning (spots); the pattern transitions take the form of
regular stripe insertion throughout the evolution. In light of
this, further numerical investigation of the generality of these
types of behaviors in RDSs posed on surfaces (other than
cylinders) is warranted. Another striking result we observe
is that on surfaces with higher curvature in the interior and
smaller curvature at the boundary, higher pattern modes are
initially selected. This raises questions about the effect of
curvature on wave numbers of patterns that arise due to
diffusion-driven instability, and the linear stability analysis of
RDSs posed on surfaces is an important area for future work.

Our results also suggest that differences in curvature may
explain some of the differences in patterning on different

regions of the body surface of organisms. A tentative initial
prediction we can make from the numerical results is that
(at least with the reaction kinetics and cylindrical surfaces
we have considered) should be preferred on regions of an
organism that are more “fin-like”. Consider, for example, a
fish that has a striped back (dorsal portion) and spotted sides.
Ogawa [38] accounts for this type of patterning by proposing
a new model of diffusion on surfaces, where surface diffusion
is obtained as an ε (surface thickness) expansion, which,
unlike the standard surface-diffusion case, leads to a diffusive
surface flow with an explicit curvature dependence. Our results
suggest that this difference in patterning may be explained
if the back was more “fin-like” than the sides and also that
the back and sides were effectively separate surfaces with
a boundary condition at their intersection. This may explain
the striped dorsal regions and spotted sides evident in many
fish, such as the Char fish. We observe the persistence of
a striped pattern with a fixed stripe orientation on a growing
surface [the surface with least mean curvature along the central
axis (bottom) in Fig. 10]. Curvature may therefore provide an
explanation for the persistence of striped patterns with a fixed
orientation on growing organisms should RDSs account for
skin patterning. This is an alternative hypothesis to existing
studies that propose that stripe orientation in fish patterning
during growth is fixed by anisotropic diffusion due to physical
properties of the scales [39,40].

We have concentrated only on modeling the early develop-
ment of the parr-mark pattern-formation process. After parr-
mark development is completed, new patterns, specifically
small black and red circular spots, appear in rows parallel
to the head-tail axis [Figs. 2(j) and 2(k)]. These new patterns
generally arise around the existing parr marks. One possible
extension to the model to account for this new patterning is
along the lines of the model considered by Barrio et al. [37].
They assumed a model consisting of two RDSs coupled
such that the patterned state of the first system acted as a
source of morphogens for the second system. The results of
their simulations are similar to the new patterns observed on
the Amago with new spots forming around existing spots.
An important area for future work is the investigation of
“semiscale invariance” (or lack thereof) in patterning. By
semiscale invariance, we mean that large-scale features of
Turing patterns, such as the number of spots and stripes, and
also their size, are insensitive to relatively small variations
in domain size, at least away from bifurcations, as illustrated
in the study of Crampin et al. [41]. This will be the subject
of future empirical and theoretical studies, as this is a core
Turing-like feature exhibited in fish markings. Despite the
fact that parr marks are visible on many different species
of Salmonidae, the process of parr-mark formation is still
not widely studied. We hope that our work will motivate
future experimental studies into this interesting phenomenon,
involving the effects of perturbing patterns on the developing
fish and genetic investigations into the process.

There has been a plethora of recent experimental studies
designed to examine the postulate of an RDS as the underlying
mechanism behind patterning in fish. For example, McClure
and McCune [42] suggest that variation in patterning between
zebrafish species may arise as a result of varying growth rates.
Our work fits into this framework in that we have shown
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that experimental observations of the growth and patterning
of a specific species of fish are broadly approximated by an
RDS on an evolving surface. The theoretical study of RDSs
provides important insight as to the likely behavior of patterns
formed by them and thus acts as an important experimental
guide in hypothesis differentiation, given numerous competing
hypotheses for pigmentation patterning in fish skin. It seems
highly unlikely that either mathematical or experimental
advances in isolation will lead to conclusive proof of the
mechanism behind pattern formation. An integrative approach
appears to be the way forward.
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APPENDIX: SOLVING REACTION-DIFFUSION SYSTEMS
ON EVOLVING SURFACES

1. A Lagrangian FEM for parametrizable surfaces

The model equations for a generalised reaction-diffusion
system on an evolving surface St can be written as [21,23]

d

dt

∫

St

uidSt =
∫

St

di∇St
· (∇St

ui) + fi(u)dSt . (A1)

We assume the surface St is parametrizable and denote by

A : R2 × [0,T ] → R3 (A2)

the parametrization. Formally, we assume there exists a
reference domain ,̂ ⊂ R2 such that at each instant t ∈ [0,T ]

and for each x ∈ St there exists a ξ ∈ ,̂ such that

A(ξ ,t) = x. (A3)

Moreover, we assume the parametrization defined by A is
orthogonal, i.e.,

∂ξ1A · ∂ξ2A = 0 in ,̂ × [0,T ]. (A4)

To construct a finite-element method to approximate the
solution on parametrizable surfaces, we need the following
elementary facts from differential geometry (see, for ex-
ample, Do Carmo [36]). The area element of St is given
by

dSt =
∣∣∂ξ1A

∣∣ ∣∣∂ξ2A
∣∣ . (A5)

Letting ûi(ξ ,t) = ui(A(ξ ,t),t) then, since the parametrization
is orthogonal (A4), the Laplace-Beltrami operator can be
expressed on the reference frame as (see Xu [43] [(2.3)])

∇St
· (∇St

ui) = ∇ξ · (G−1∇ξ ûi), (A6)

where the matrix G is the matrix of coefficients of the first
fundamental form:

G =
[ ∣∣∂ξ1A

∣∣2 0
0

∣∣∂ξ2A
∣∣2

]

. (A7)

Changing variables in (A1), we obtain the following expres-
sion on the reference frame:

d
dt

∫

,̂

ûi |∂ξ1A||∂ξ2A| =
∫

,̂

[di∇ξ · (G−1∇ξui)

+fi(u)]|∂ξ1A||∂ξ2A|. (A8)

We use the Lagrangian finite-element method derived by
Venkataraman et al. [15] to approximate û.

2. Numerical methods

Considering the nondimensional RDS (4), we employ a
Galerkin finite-element method for the spatial approximation
and an implicit-explicit modified backward Euler scheme for
the time integration of the RDSs. For the simulations on planar
domains, we use a moving finite-element method [15], which
aims to find Un

1 ,Un
2 ∈ V n,n = 1, . . . ,N such that

1
τ

〈
Un

1 ,.n
〉
+ 1

〈
∇Un

1 ,∇.n
〉
= γ

〈

α − Un
1 − βUn−1

2 Un
1

1 +
(
1 + kUn−1

1

)
Un−1

1

,.n

〉

+ 1
τ

〈
Un−1

1 ,.n−1〉,

(A9)
1
τ

〈
Un

2 ,.n
〉
+ d

〈
∇Un

2 ,∇.n
〉
= γ

〈

cκ − cV n
1 − βUn−1

1 Un
2

1 +
(
1 + kUn−1

1

)
Un−1

1

,.n

〉

+ 1
τ

〈
Un−1

2 ,.n−1〉

for all .n ∈ V n,n = 1, . . . ,N , where τ is the uniform time step.
For the simulations on surfaces, the finite-element method we used aims to find Ûn

1 ,Û n
2 ∈ V̂ , such that

1
τ

〈[J Û1]n − [J Û1]n−1,.̂〉 + 1
〈
[J K ]n∇Ûn

1 ,K n∇.̂
〉
= γ

〈
α − Ûn

1 − βÛn−1
2 Ûn

1

1 +
(
1 + kÛn−1

1

)
Ûn−1

1

,J n.̂

〉
,

(A10)
1
τ

〈[J Û2]n − [J Û2]n−1,.̂〉 + d
〈
[J K ]n∇Ûn

2 ,K n∇.̂
〉
= γ

〈
cκ − cÛn

2 − βÛn−1
1 Ûn

2

1 +
(
1 + kÛn−1

1

)
Ûn−1

1

,J n.̂

〉

for all .̂ ∈ V̂ , where τ is the uniform time step.
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The matrix K and the determinant of the Jacobian J are
given by

K =
[

1
|∂ξ1 A| 0

0 1
|∂ξ2 A|

]

, (A11)

and J =
∣∣∂ξ1A

∣∣ ∣∣∂ξ2A
∣∣ . (A12)

In both cases, the finite-element spaces were made up of piece-
wise linear basis functions. The initial data were approximated
using the Lagrange interpolant. The linear systems were solved
using the conjugate gradient algorithm. In both cases, we took
an initial triangulation T 0 with 6897 nodes and a fixed time
step of 10−2.
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