

US009764025B2

(12) United States Patent

O (45) Date of Pate

(10) Patent No.: US 9,764,025 B2 (45) Date of Patent: Sep. 19, 2017

(54) ADAPTATION OF ATTENUATED INFECTIOUS BRONCHITIS VIRUS (IBV) TO EMBRYONIC KIDNEY CELLS AND VACCINE THEREBY PRODUCED

(71) Applicant: Auburn University, Auburn, AL (US)

(72) Inventor: Haroldo E. Toro, Auburn, AL (US)

(73) Assignee: Auburn University, Auburn, AL (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/887,965

(22) Filed: Oct. 20, 2015

(65) Prior Publication Data

US 2016/0106828 A1 Apr. 21, 2016

Related U.S. Application Data

(60) Provisional application No. 62/066,135, filed on Oct. 20, 2014.

(51) Int. Cl.

A61K 39/215 (2006.01)

C12N 7/00 (2006.01)

A61K 39/12 (2006.01)

C07K 14/165 (2006.01)

A61K 39/00 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2011/0097353	Al	4/2011	Sellers et al.	
2014/0141043	$\mathbf{A}1$	5/2014	Toro Guzman et al.	
2016/0106828	A1*	4/2016	Toro	A61K 39/12
				424/186.1

OTHER PUBLICATIONS

McKinley et al. (Vaccine. 2008; 26: 1274-1284).*

Ammayappan et al. (Archives of Virology. 2009; 154: 495-499).*

Liu et al. (The Veterinary Journal. 2009; 179: 130-136).*

Leyson et al. (Virology. 2016; 498: 218-225).*

The first page of Gelb, Jr. and Cloud (Avian Diseases. 1983; 27 (3): 679).*

Ammayappan, A., C. Upadhyay, J. Gelb Jr., and V. N. Vakharia. Identification of sequence changes responsible for the attenuation of avian infectious bronchitis virus strain Arkansas DPI. Arch. Virol. 154:495-499. 2009.

Armesto, M., D. Cavanagh, and R Britton. The replicase gene of avian coronavirus infectious bronchitis virus is a leterminant of pathogenicity. PLoS ONE 4:e7384. 2009.

Ballesteros, M. L., C. M. Sa'nchez, and L. Enjuanes. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378-388. 1997.

Baric, R. S., B. Yount, L. Hensley, S. A. Peel, and W Chen. Episodic evolution mediates interspecies transfer of a murine coronavirus. J. Virol. 71:1946-1955. 1997.

Callison, S. A., D. A. Hilt, T. O. Boynton, B. F. Sample, R. Robison, D. E. Swayne, and M. W. Jackwood. Development and evaluation of a real-time taqman rt-PCR assay for the detection of infectious bronchitis virus from infected Thickens. J. Virol. Methods 138:60-65, 2006.

Casais, R., B. Dove, D. Cavanagh, and P. Britton. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J. Virol. 77:9084-9089. 2003.

Cavanagh, D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol. 32:567-582. 2003.

Cavanagh, D., and P. J. Davis. Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J. Gen. Virol. 67:1443-1448.

Cavanagh, D., P. J. Davis, J. H. Darbyshire, and R. W. Peters. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J. Gen. Virol. 67:1435-1442. 1986.

Cavanagh, D., K. Mawditt, A. Adzhar, R. E. Gough, J. P. Picault, C. J. Naylor, D. Haydon, K. Shaw, and P. Britton. Does IBV change slowly despite the capacity of the spike protein to vary greatly? Adv. Exp. Med. Biol. 440:729-734. 1998.

Domingo, E., E. Baranowski, C. M. Ruiz-Jarabo, A. M. Martin-Hemandez, J. C. Saiz, and C. Escarmis. Quasispecies structure and persistence of RNA viruses. Emerg. Infect. Dis. 4:521-527. 1998. Enjuanes, L., D. Brian, D. Cavanagh, K. Holmes, M. M. C. Lai, H. Laude, P. Masters, P. Roller, S. G. Siddell, W. J. M. Spaan, F. Taguchi, and P. Talbot. Coronaviridae. In: Virus taxonomy. Classification and nomenclature of viruses. M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carstens, M. K. Estes, S. Lemon, J. Maniloff, M. Mayo, D. J. McGeoch, C. R. Pringle, and R. B. Wickner, eds. Academic Press, New York. pp. 835-849. 2000.

(Continued)

Primary Examiner — Shanon A Foley (74) Attorney, Agent, or Firm — Andrus Intellectual Property Law, LLP

(57) ABSTRACT

Disclosed are methods for preparing a vaccine against infection by infectious bronchitis virus (IBV). The methods typically include passing a heterogeneous attenuated population of IBV in chicken embryonic kidney cells, and optionally may include further passaging the heterogeneous attenuated population of IBV in embryonated chicken eggs (ECE) in order to obtain passaged attenuated population of IBV. Also disclosed are passaged attenuated populations of IBV in which the populations display a desired degree of homogeneity. Also disclosed are vaccines comprising the passaged attenuated populations of IBV and methods of vaccination comprising administering the disclosed vaccines.

15 Claims, 7 Drawing Sheets

(56) References Cited

OTHER PUBLICATIONS

- Enjuanes, L., W. J. Spaan, E. J. Snijder, and D. Cavanagh. Nidovirales. In: Virus taxonomy. Classification and nomenclature of viruses. M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carsten, M. K. Estes, S. M. Lemon, D. J. McGeoch, J. Maniloff, M. A. Mayo, C.R. Pringle, and R. B. Wickner, eds. Academic Press, New York. pp. 827-834. 2000.
- Fang, S. G., S. Shen, F. P. Tay, and D. X. Liu. Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells. Biochem. Biophys. Res. Comm. 336:417-423. 2005.
- Fazakerley, J. K, S. E. Parker, F. Bloom, and M. J. Buchmeier. The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology 187:178-188. 1992.
- Gallardo, R. A., V. L. van Santen, and H. Toro. Host intraspatial selection of infectious bronchitis virus populations. Avian Dis. 54:807-813. 2010.
- Gallardo, R. A., F. J. Hoerr, W. D. Berry, V. L. van Santen, and H. Toro. Infectious bronchitis virus in testicles and venereal transmission. Avian Dis 55:255-258. 2011.
- Gallardo, R. A., V. L. van Santen, and H. Toro. Effects of chicken anemia virus and infectious bursal disease virus-induced immuno-deficiency on infectious bronchitis virus replication and genotypic drift. Avian Pathol. 41:451-458. 2012.
- Gelb, J., Jr., and M. W. Jackwood. Infectious bronchitis. In: A laboratory manual for the isolation, identification and aharacterization of avian pathogens. L. Dufour-Zavala, D. E. Swayne, J.R. Glisson, J. E. Pearson, W. M. Reed, M. W. Jackwood, and R. R. Woolcock, eds. American Association of Avian Pathologists, Athens, GA. pp. 146-149. 2008.
- Ghetas, A. M., G. E. Thaxton, C. Breedlove, V. L. v. Santen, and H. Toro. Effects of Adaptation of Infectious Bronchitis Virus Arkansas Attenuated Vaccine to Embryonic Kidney Cells. Avian Dis. 59:106-113, 2015.
- Hingley, S. T., J. L. Gombold, E. Lavi, and S. R. Weiss. MHV-A59 fusion mutants are attenuated and display altered hepatotropism. Virology 200:1-10. 1994.
- Jackwood, M. W., D. A. Hilt, C. W Lee, H. M. Kwon, S.A. Callison, K. M. Moore, H. Moscoso, H. Sellers, and S. Thayer. Data from 11 years of molecular typing infectious bronchitis virus field isolates. Avian Dis. 49:614-618. 2005.
- Jackwood, M. W., D. A. Hilt, A. W. McCall, C. N. Polizzi, E. T. McKinley, and S. M. Williams. Infectious bronchitis virus field vaccination coverage and persistence of Arkansas-type viruses in commercial broilers. Avian Dis. 53:175-183. 2009.
- Koch, G., L. Hartog, A. Kant, and D. J. van Roozelaar. Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J. Gen. Virol. 71:1929-1935. 1990.
- Kusters, J. G., E. J. Jager, J. A. Lenstra, G. Koch, W. P. Posthumus, R. H. Meloen, and B. A. van der Zeijst. Analysis of an immunodominant region of infectious bronchitis virus. J. Immunol. 143:2692-2698, 1989.
- Kusters, J. G., H. G. Niesters, N. M. Bleumink-Pluym, F. G. Davelaar, M. C. Horzinek, and B. A. van der Zeijst. Molecular epidemiology of infectious bronchitis virus in the Netherlands. J. Gen. Virol. 68:343-352. 1987.
- Kwon, H. M., M. W. Jackwood, and J. Gelb Jr. Differentiation of infectious bronchitis virus serotypes using polymerase chain reaction and restriction fragment length polymorphism analysis. Avian Dis. 37:194-202. 1993.
- Lai, M. M. C., and K. V. Holmes. Coronaviridae: the viruses and their replication. In: Fundamental virology. D. M. Knipe and P. M. Howley, eds. Lippincott Williams and Wilkins, Philadelphia. pp. 641-663, 2001.
- Leparc-Goffart, I., S. T. Hingley, M. M. Chua, X. Jiang, E Lavi, and S. R. Weiss. Altered pathogenesis of a mutant of the murine coronavirus MHV-A59 is associated with a Q159L amino acid substitution in the spike protein. Virology 269:1-10. 1997.

- Li, W., C. Zhang, J. Sui, J. H. Kuhn, M. J. Moore, S. Luo, S. K. Wong, I. C. Huang, K. Xu, N. Vasilieva, A. Murakami, Y. He, W. A. Marasco, Y. Guan, H. Choe, and M. Farzan. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24:1634-1643. 2005.
- McKinley, E. T., D. A. Hilt, and M. W. Jackwood. Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination. Vaccine 26:1274-1284. 2008.
- Ndegwa, E. N., K. S. Joiner, H. Toro, F. W. van Ginkel, and V. L van Santen. The proportion of specific viral subpopulations in attenuated ArkDPI infectious bronchitis vaccines influences vaccination outcome. Avian Dis. 56:642-653. 2012.
- Ndegwa, E. N., H. Toro, and V. van Santen. Comparison of vaccine subpopulation selection, viral loads, vaccine virus persistence in trachea and cloaca, and mucosal antibody responses after vaccination with two different Arkansas Delmarva Poultry Industry-derived infectious bronchitis virus vaccines Avian Dis 58:102-110. 2014.
- Nix, W. A., D. S. Troeber, B. F. Kingham, C. L Keeler, Jr., and J. Gelb, Jr. Emergence of subtype strains of the Arkansas serotype of infectious bronchitis virus in Delmarva broiler chickens. Avian Dis. 44:568-581. 2000.
- Ontiveros, E., T. S. Kim, T. M. Gallagher, and S. Perlman. Enhanced virulence mediated by the murine coronavirus, mouse hepatitis virus strain JHM, is associated with a glycine at residue 310 of the spike glycoprotein. J. Virol. 77:10260-10269. 2003.
- Phillips, J. E., M. W. Jackwood, E. T. McKinley, S. W. Thor, D. A. Hilt, N. D. Acevedol, S. M. Williams, J. C. Kissinger, A. H. Paterson, J. S. Robertson, and C. Lemke. Changes in nonstructural protein 3 are associated with attenuation in avian coronavirus infectious bronchitis virus. Virus Genes 44:63-74. 2012.
- Sperry, S. M., L. Kazi, R. L. Graham, R. S. Baric, S. R. Weiss, and M. R. Denison. Single-amino-acid substitutions in open reading frame (ORF) 1b-nsp14 and Orf 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice. J. Virol. 79:3391-3400. 2005.
- Toro, H., J. W. Jackwood, and V. L. van Santen. Genetic diversity and selection regulates evolution of infectious bronchitis virus. Avian Dis. 56:449-455. 2012.
- Toro, H., P. Lavaud, P. Vallejos, and A. Ferreira. Transfer of IgG from serum to lachrimal fluid in chickens. Avian Dis. 37:60-66. 1993.
- Toro, H., D. Pennington, R. A. Gallardo, V. L. van Santen, F. W. van Ginkel, J. F. Zhang, and K. S. Joiner. Infectious bronchitis virus subpopulations in vaccinated chickens after challenge. Avian Dis. 56:501-508. 2012.
- Toro, H., V. L. van Santen, L. Li, S. B. Lockaby, E. van Santen, and F. J. Hoerr. Epidemiological and experimental evidence for immunodeficiency affecting avian infectious bronchitis. Avian Pathol. 35:1-10. 2006.
- Toro, H., J. F. Zhang, R. A. Gallardo, V. L. v. Santen, F. W. v. Ginkel, K. S. Joiner, and C. Breedlove. S1 of Distinct IBV Population Expressed from Recombinant Adenovirus Confers Protection Against Challenge. Avian Dis 58:211-215. 2014.
- van Ginkel, F. W., V. L. van Santen, S. L. Gulley, and H. Toro. Infectious bronchitis virus in the chicken Harderian gland and lachrymal fluid: viral load, infectivity, immune cell responses, and effects of viral immunodeficiency. Avian Dis. 52:608-617. 2008.
- van Santen, V. L., and H. Toro. Rapid selection in chickens of subpopulations within ArkDPI-derived infectious bronchitis virus vaccines. Avian Pathol. 37:293-306. 2008.
- Villegas, P. Titration of biological suspensions. In: A laboratory manual for the isolation, identification and characterization of avian pathogens. L. Dufour-Zavala, D. E. Swayne, J.R.Glisson, J. E. Pearson, W. M. Reed, M. W. Jackwood, and P. R. Woolcock, eds. American Association of Avian Pathologists, Athens, GA. pp. 217-221. 2008.
- Wang, G., G. Chen, D. Zheng, G. Cheng, and H. Tang. PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon signaling pathway. PloS ONE 6:17192. 2011.

(56) References Cited

OTHER PUBLICATIONS

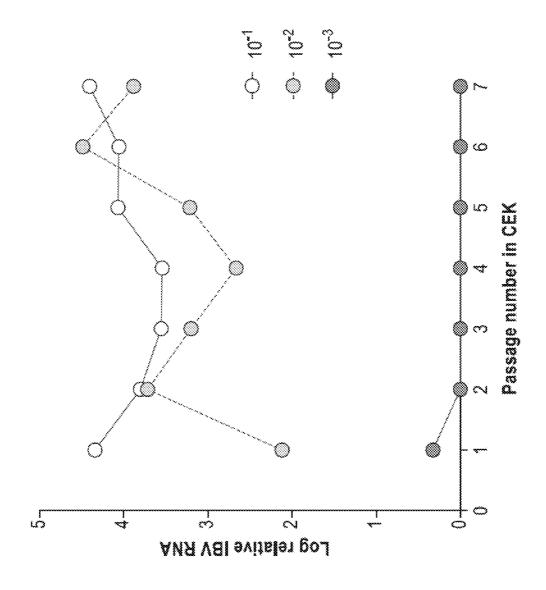
Zheng, D., G. Chen, B. Guo, G. Cheng, and H. Tang. PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res. 18:1105-1113. 2008.

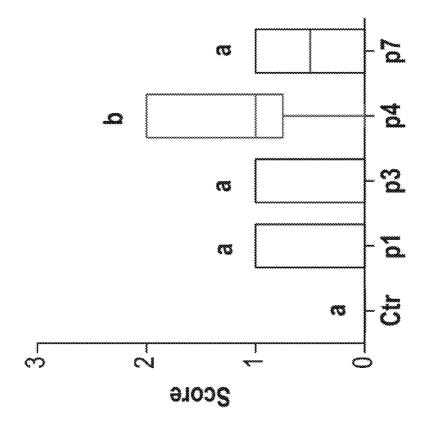
Zust, R., L. Cervantes-Barragan, T. Kuri, G. Blakqori, F. Weber, B. Ludewig, and V. Thiel. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog 3: e109. 2007.

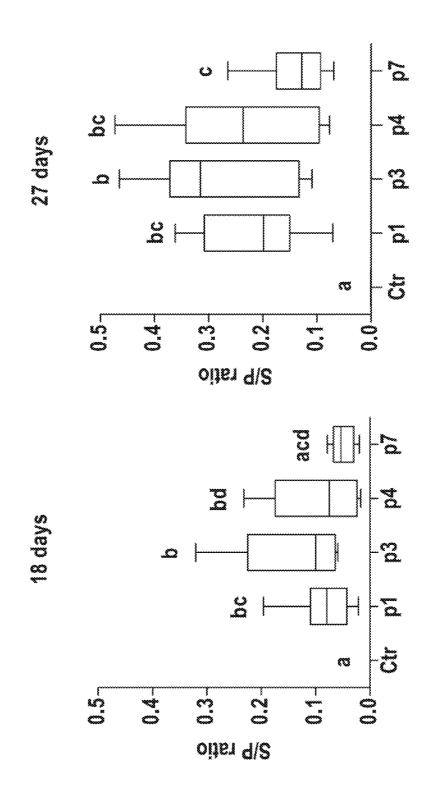
Armesto et al., "The Replicase Gene of Avian Coronavirus Bronchitis Virus is a Determinant of Pathogenicity," PLoS Once, Oct. 9, 2009, 4(10):e7384.

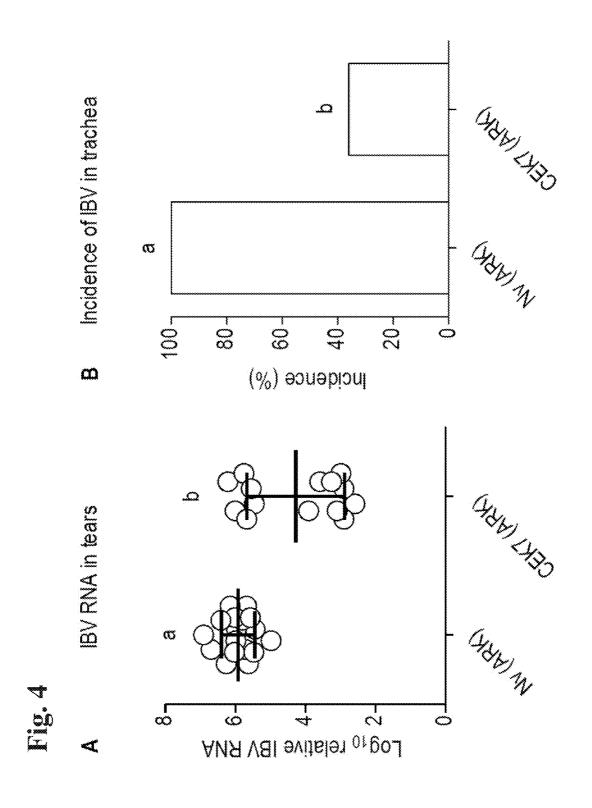
Casais et al., "Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism," Journal of Virology, The American Society for Microbiology, Aug. 1, 2003, 77(16):9084-9089.

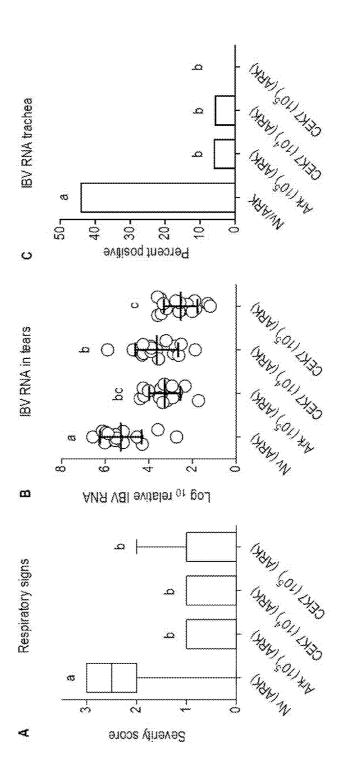
Schat et al., Cell-culture methods. In: A laboratory manual for the isolation and identification of avian pathogens. D. E. Swayne, J. Glisson, M. W. Jackwood, J. E. Pearson, and W. M. Reed, eds. American Association of Avian Pathologists, Inc., Kenneth Square, PA. pp. 223-234. 1998.

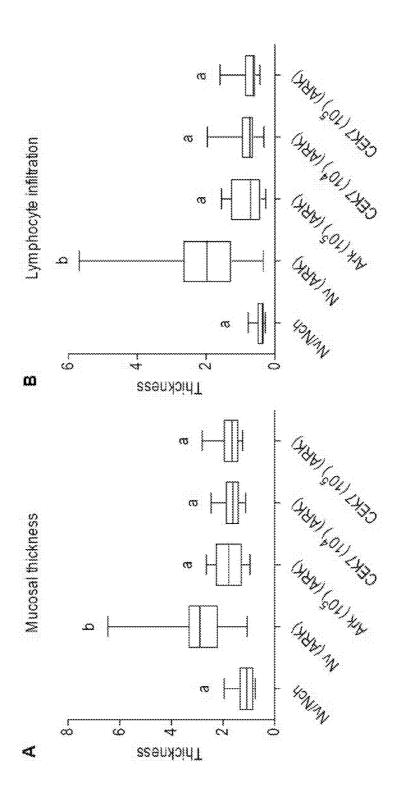

Van Santen et al., "Rapid selection in chickens of subpopulations within ArkDPI-derived infectious bronchitis virus vaccines," Avian Pathology, Jun. 1, 2008, 37(3):293-306.

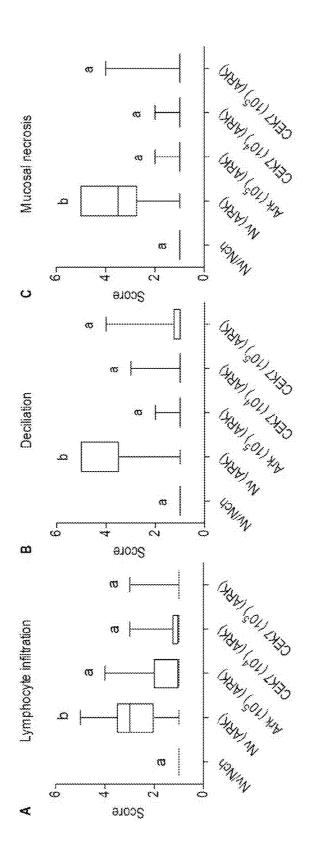

Van Santen et al., ArkDPI-derived IBV vaccines and their subpopulations selected in chickens: differences outside the S gene VII. International Symposium Avian Corona- and Pneumoviruses and Complicating Pathogens. pp. 94-97. Rauischholzhausen, Germany. 2012.


International Search Report and Written Opinion for PCT/US2015/056416 dated Jan. 29, 2016.


International Preliminary Report on Patentability for PCT/US2015/056416 dated May 4, 2017.


* cited by examiner





ADAPTATION OF ATTENUATED INFECTIOUS BRONCHITIS VIRUS (IBV) TO EMBRYONIC KIDNEY CELLS AND VACCINE THEREBY PRODUCED

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of priority under 35 U.S.C. §119(e) to U.S. Provisional Applications ¹⁰ No. 62/066,135, filed on Oct. 20, 2014, the content of which is incorporated herein by reference in its entirety.

BACKGROUND

The field of the present invention relates to infectious bronchitis virus (IBV) and methods for passaging IBV. The disclosed methods may be utilized to prepare vaccine compositions comprising the passaged IBV.

In the poultry industry avian infectious bronchitis (IB) 20 coronavirus (IBV) continues to be the most common contributor to respiratory disease in chicken populations despite worldwide extensive vaccination with a multiplicity of typespecific vaccines. IBV replicates primarily in the upper respiratory tract causing respiratory disease in large chicken 25 populations. IBV's surface (S) glycoprotein is post-translationally cleaved into a S1 subunit (~550 amino acids) and a S2 subunit (~600 amino acids) (Lai and Holmes, 2001). Like other coronaviruses, the S1 subunit of the S glycoprotein is responsible for viral attachment to cells and is important for 30 host protective immune responses as it induces virus neutralizing-antibodies (Cavanagh, 1981, 1983, 1984; Cavanagh and Davis, 1986; Koch et al., 1990; Koch and Kant, 1990; Mockett et al., 1984). Because of the relevance of S1 for the first step of replication (i.e., attachment to cells) 35 and immunological escape, the extensive variation exhibited by the S1 glycoprotein among IBV coronaviruses (Kusters et al., 1987; Kusters et al., 1989b) is likely the most relevant phenotypic characteristic for this virus's "adaptation" and evolutionary success (Toro et al., 2012b). Genetic diversity 40 among coronaviruses is achieved by high mutation frequency and recombination events (Enjuanes et al., 2000a; Enjuanes et al., 2000b; Lai and Cavanagh, 1997; Stadler et al., 2003). Selection acting on diverse populations results in rapid evolution of the virus and the emergence of antigeni- 45 cally different strains (Toro et al., 2012b). More than 30 different IBV types have been identified during the last 5 decades in the U.S. alone. According to a 2012 review, over 50 different genotypes of IBV are currently affecting chicken populations worldwide (Jackwood, 2012). Multiple recent 50 surveillance studies performed in the U.S. have demonstrated that serotypes/genotypes Arkansas (Ark), Massachusetts (Mass). Connecticut (Conn), DE072, Georgia variants GAV and GA98 are currently the most prevalent (Jackwood et al., 2005; Nix et al., 2000; Toro et al., 2006).

Because IBV exists as multiple different serotypes that do not provide for cross-protection after host exposure, a multiplicity of serotype-specific IBV vaccines have been developed worldwide. For example, vaccination programs in the U.S. currently comprise mono- or polyvalent vaccines 60 including Mass. Conn., GA98, DE072, and Ark serotypes. In Europe, IBV vaccines commonly include strains belonging to serotypes UK4/91, D274, and D-1466. However. IBV's high ability to evolve allows it to consistently circulate in commercial poultry and cause outbreaks of disease in spite 65 of extensive vaccination. In addition, accumulating evidence indicates that attenuated IBV vaccines may also be contrib-

2

uting to the emergence and circulation of vaccine-like viruses in host populations (Toro et al., 2012b; Toro et al., 2012c). Indeed, viral sub-populations differing from the predominant live vaccine population have been shown to emerge during a single passage of attenuated IBV vaccine in chickens (McKinley et al., 2008; van Santen and Toro, 2008).

In an effort to understand the mechanisms underlying the emergence of vaccine-like viruses, S1 gene sequences of virus populations of all four commercially available IBV Ark-serotype attenuated vaccines were analyzed before and after replication in chickens (Gallardo et al., 2010; van Santen and Toro, 2008). The results from these analyses demonstrated different degrees of genetic heterogeneity 15 among Ark-derived vaccines prior to inoculation into chickens, ranging from no apparent heterogeneity to heterogeneity in 20 positions in the S gene. In all except one position, nucleotide differences resulted in different amino acids encoded and therefore in phenotypic differences among subpopulations present in the vaccines. Significantly, it has been observed that specific minor subpopulations present in each of the vaccines were rapidly "selected" during a single passage in chickens. Indeed, by 3-days post-ocular vaccination, viral populations with S gene sequences distinct from the vaccine major consensus sequence at 5 to 11 codons were found to predominate in chickens (Gallardo et al., 2010; McKinley et al., 2008; van Santen and Toro, 2008). Thus, the use of attenuated coronavirus vaccines may be contributing to the problem of antigenic variation, and the development of a novel vaccine technology to increase the resistance of chicken populations to IBV and reduce economic losses is essential for the poultry industry.

SUMMARY

Disclosed are methods for preparing a vaccine against infection by infectious bronchitis virus (IBV). The methods typically include passing a heterogeneous attenuated population of IBV in chicken embryonic kidney cells, and optionally may include further passaging the heterogeneous attenuated population of IBV in embryonated chicken eggs (ECE) in order to obtain passaged attenuated population of IBV. Also disclosed are passaged attenuated populations of IBV in which the populations display a desired degree of homogeneity. Also disclosed are vaccines comprising the passaged attenuated populations of IBV, isolated viruses from the passaged attenuated populations of IBV, polypeptides of the passaged attenuated populations of IBV, vaccines thereof, and methods of vaccination comprising administering the disclosed vaccines.

The disclosed methods typically include passing a heterogeneous attenuated population of IBV in chicken embryonic kidney (CEK) cells, and optionally include passaging the heterogeneous attenuated population of IBV in ECE 55 subsequent to passaging the heterogeneous attenuated population of IBV in CEK cells. The present inventor has determined that by passaging a heterogeneous attenuated population of IBV in CEK cells and adapting the heterogeneous attenuated population of IBV to growth in CEK cells, the heterogeneous attenuated population of IBV begins to adapt to growth in the CEK cells, and/or begin to exhibit increasing percentage of homogeneity at one or more nucleotide positions in genes of IBV including the gene for the S1 polypeptide after each passage in CEK cells, and/or begin to exhibit increasing percentage of homogeneity at one or more amino acid positions in polypeptides of IBV including the S1 polypeptide after each passage in CEK

cells. As such, in the disclosed methods, the heterogeneous attenuated population of IBV may be passaged in CEK cells for a sufficient number of passages to obtain a population of IBV exhibiting a desired percentage of homogeneity at one or more amino acid positions in polypeptides of IBV including the S1 polypeptide and other polypeptides of IBV. The passaged attenuated population of IBV thus obtained by the disclosed methods, or any isolated virus or polypeptide of the passaged attenuated population of IBV, may be formulated as a vaccine. The vaccine then may be administered to subjects in need thereof in order to vaccinate the subjects against infection by IBV.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. IBV RNA detected by qRT-PCR of an embryoattenuated ArkDPI-derived vaccine at different passage levels in chicken embryo kidney (CEK) cells. Cells were initially inoculated independently with tenfold serial dilutions indicated (10⁻¹ to 10⁻⁵) of the vaccine stock. No viral 20 RNA was detected in cultures inoculated with the lower (10⁻⁴; 10⁻⁵) initial virus concentrations used.

FIG. 2. Respiratory signs in chickens 5 days after inoculation at 5 days of age with a commercial attenuated ArkDPI-derived vaccine subjected to 1, 3, 4, or 7 passages 25 (p) in CEK cells. Signs were scored individually and blindly. (Ctr)=non inoculated control. Boxes: 25th percentile, median, 75th percentile; Whiskers: Min & Max. Significant differences (P<0.05) indicated by different letters.

FIG. 3. IBV-specific antibody detected by ELISA 30 [sample/positive ratio (S/P)] in sera of chickens 18 and 27 days post-inoculation with CEK cell culture passaged ArkDPI-derived vaccine. CEK passages (p) 1, 3, 4, or 7. Ctr=uninoculated control. Boxes: 25th percentile, median, 75th percentile; Whiskers: Min & Max. Significant differances (P<0.05) indicated by different letters.

FIG. 4. (A) IBV RNA in lachrymal fluids (individual values, average and SD) detected 5 days after challenge in chickens vaccinated with 1.6×10³ EID₅₀/bird of CEK7-Ep1 and challenged with 10⁵ EID₅₀/bird of a virulent IBV Ark 40 strain (ARK) 23 days after vaccination. (B) Incidence of IBV RNA in tracheal swabs 5 day post-challenge detected by conventional RT-PCR (N gene). Nv (ARK)=unvaccinated/Ark-challenged. Different letters indicate significant differences in A by ANOVA and in B by Fisher's exact test 45 (P<0.05).

FIG. **5**. (A) Respiratory signs (boxes: 25th percentile, median, 75th percentile; whiskers: minimum & maximum); (B) IBV RNA in tears (individual values, average, and SD) and incidence of detection of IBV RNA by Taqman qRT- 50 PCR in tracheal swabs 5 days post challenge with virulent IBV Ark (ARK) in chickens (n=18/group) at 20 days-old that had been vaccinated at 5 days of age either with a 10⁵ EID₅₀/bird of commercial attenuated ArkDPI-derived vaccine (Ark) or the CEK-adapted ArkDPI (CEK7) at two 55 dosage levels (10⁴ or 10⁵ EID₅₀/bird). Nv (ARK)=unvaccinated/Ark-challenged. Different letters indicate significant differences (P<0.05).

FIG. 6. (A) Tracheal mucosal thickness and (B) lymphocyte infiltration (boxes: 25th percentile, median, 75th percentile; whiskers: minimum & maximum); were evaluated blindly by histomorphometry 5 days post-challenge in chickens (n=18/group) vaccinated at 5 days of age either with a commercially available attenuated ArkDPI-derived vaccine (Ark) or the CEK-adapted ArkDPI virus at two 65 different doses and subsequently challenged with a wild IBV Ark strain at 20 days of age. Nv (ARK) unvaccinated/Ark

4

challenged. Nv/Nch=unvaccinated/not challenged (n=10); Different letters indicate significant differences between groups by ANOVA (P<0.05).

FIG. 7. Histopathology scoring of tracheal (A) lymphocyte infiltration, (B) deciliation, and (C) mucosal necrosis in chickens treated as described in FIG. 6. Different letters indicate significant differences (P<0.05).

DETAILED DESCRIPTION

Disclosed herein are methods for passaging and propagating infectious bronchitis virus (IBV) and compositions, including vaccine compositions, comprising the passaged IBV. The disclosed methods and compositions may be described using several definitions as discussed below.

Unless otherwise specified or indicated by context, the terms "a", "an", and "the" mean "one or more." In addition, singular nouns such as "a population" should be interpreted to mean "one or more populations," unless otherwise specified or indicated by context.

As used herein. "about". "approximately," "substantially." and "significantly" will be understood by persons of ordinary skill in the art and will vary to some extent on the context in which they are used. If there are uses of the term which are not clear to persons of ordinary skill in the art given the context in which it is used. "about" and "approximately" will mean plus or minus ≤10% of the particular term and "substantially" and "significantly" will mean plus or minus >10% of the particular term.

As used herein, the terms "include" and "including" have the same meaning as the terms "comprise" and "comprising." The terms "comprise" and "comprising" should be interpreted as being "open" transitional terms that permit the inclusion of additional components further to those components recited in the claims. The terms "consist" and "consisting of" should be interpreted as being "closed" transitional terms that do not permit the inclusion additional components other than the components recited in the claims. The term "consisting essentially of" should be interpreted to be partially closed and allowing the inclusion only of additional components that do not fundamentally alter the nature of the claimed subject matter.

As used herein, the terms "subject," "host," or "individual" typically refer to an avian at risk for acquiring an infection by infectious bronchitis virus (IBV). The terms "subject," "host," or "individual" may be used interchangeably. Suitable avians for the disclosed vaccines, compositions, and methods may include poultry such as members of the order Galliformes, and in particular the species *Gallus gallus or* the subspecies *Gallus gallus domesticus*.

As used herein "IBV" refers to "avian infectious bronchitis virus" which is a coronavirus that infects chicken and causes the associated disease "IB." The term "IBV" is meant to encompass numerous serotypes of IBV which have been isolated and characterized including but not limited to: B/D207/84; B/D274/84; B/UK167/84; B/UK142/86; E/D3896/84; E/UK123/82; Brazil/BR1/USP-73/09; 793B/4-91/91; FR/CR88121/88; China/Q1/98; China/LDL971/97 aaz09202; CAV/CAV9437/95; CAV/CAV1686/95; CAV/ CAV56b/91; PA/Wolgemuth/98; PA/171/99 CA/557/03 S1; JAA/04 S1 vaccine; HN99 S1; N1/62/S1; GA08 S1 GU301925; Ark/ArkDPI/81 S1; Ark/Ark99/73; CAL99/ CAL99/99 S1; CAL99/NE15172/95 S1; Holte/Holte/54; JMK/JMK/64; Gray/Gray/60; Iowa/Iowa609/56; Ca/1737/ 04 S1; DMA/5642/06 S1; GA07/GA07/07 S1; QX/QXIBV/ 99; Mass/H52/S1; Mass/H120/S1; Mass/Mass41/41 S1;

Conn/Conn46/51 S1 vaccine; FL/FL18288/71; DE/DE072/92 S1 vaccine; GA98/0470/98 S1; and Dutch/D1466/81.

The serotype of IBV is generally determined by a host's humoral immune response against the S1 polypeptide. Hence, the serotype of IBV is generally determined by the 5 amino acid sequence of the S1 polypeptide. The amino acid sequence of the S1 polypeptide of Ark/ArkDPI/81 S1 is provided as SEQ ID NO:8.

The presently disclosed methods and composition may utilize naturally occurring avirulent strains of IBV. Alterna- 10 tively, the presently disclosed vaccines, compositions, and methods may utilize live attenuated strains of IBV. Live attenuated strains of IBV are available commercially as vaccines and may include Ark/ArkDPI/81 S1. The complete genomic sequence of Ark/ArkDPI/81 has been reported. 15 (See Ammayappan et al., Virology Journal 2008, 5:157, which is incorporated herein by reference in its entirety). The GenBank accession number for the Ark DPI genomic sequence is EU418976 and is provided herein as SEQ ID NO: 1. The nucleotide sequence of the gene for the spike 20 protein ("S") is provided herein as SEQ ID NO:2 and the amino acid sequence of the S protein is provided herein as SEQ ID NO:3. The amino acid sequence of the S1 protein is provided herein as SEQ ID NO:4 and the amino acid sequence of the S2 protein is provided herein as SEQ ID 25 NO:5.

The complete genomes of the following strains are publicly available, for example from GenBank, under the succeeding accession number: TCoVMG 10, NC 010800; Beaudette, NC_001451; M41, AY851295; CK/CH/LSD/ 30 05I, EU637854; A2, EU526388; LX4. AY338732; SAIBK. DQ288927. The sequences for various structural genes are publicly available, for example from GenBank, under the succeeding accession numbers: (a) for the complete structural genes: HK, AY761141; Vic, DQ490221; KB8523, 35 M21515; TW2296/95, DQ646404; (b) for S1; Jilin. AY839144; Gray, L18989; Conn, EU526403; Holte, L18988; UK/2/91, Z83976; Qul6, AF349620; JMK, L14070; H120, M21970; GAV-92, AF094817; DE072, AF274435; IS/1366, EU350550; (c) for S2; JMK, 40 AF239982; Jilin. AY839146; Holte, AF334685; DE072, AY024337; Conn. AF094818; Gray, AF394180; H120, AF239982; (d) for S: Ark 99, L10384; CU-T2, U04739; (e) for gene 3: Jilin, AY846833; Conn, AY942752; CU-T2, U46036; Ark 99, AY942751; Gray, AF318282 (f) for M: 45 Jilin. AY846833; JMK, AF363608; Conn, AY942741; H120, AY028295; Gray, AF363607; (g) for gene 5; Jilin, AY839142; Gray, AF469011; Conn, AF469013; DE072, AF203000; and (h) for N: Jilin, AY839145.

As used herein. "viral load" is the amount of virus present 50 in a sample from a subject infected with the virus. Viral load is also referred to as viral titer or viremia. Viral load can be measured in variety of standard ways including copy Equivalents of the viral RNA (vRNA) genome per milliliter individual sample (vRNA copy Eq/ml). This quantity may 55 be determined by standard methods that include RT-PCR.

The terms "polynucleotide," "nucleic acid" and "nucleic acid sequence" refer to a polymer of DNA or RNA nucleotide of genomic or synthetic origin (which may be single-stranded or double-stranded and may represent the sense or 60 the antisense strand). The polynucleotides contemplated herein may encode and may be utilized to express one or more IBV polypeptides.

As used herein, polypeptide, proteins, and peptides comprise polymers of amino acids, otherwise referred to as 65 "amino acid sequences." As used herein, the term "amino acid sequence" refers to a polymer of amino acid residues

6

joined by amide linkages. The term "amino acid residue," includes but is not limited to amino acid residues contained in the group consisting of alanine (Ala or A), cysteine (Cys or C), aspartic acid (Asp or D), glutamic acid (Glu or E), phenylalanine (Phe or F), glycine (Gly or G), histidine (His or H), isoleucine (Ile or I), lysine (Lys or K), leucine (Leu or L), methionine (Met or M), asparagine (Asn or N), proline (Pro or P), glutamine (Gln or Q), arginine (Arg or R), serine (Ser or S), threonine (Thr or T), valine (Val or V), tryptophan (Trp or W), and tyrosine (Tyr or Y) residues. A polypeptide or protein is typically of length ≥100 amino acids (Garrett & Grisham. Biochemistry, 2nd edition, 1999. Brooks/Cole, 110). A peptide is defined as a short polymer of amino acids, of a length typically of 20 or less amino acids, and more typically of a length of 12 or less amino acids (Garrett & Grisham, Biochemistry, 2nd edition, 1999, Brooks/Cole, 110). However, the terms "polypeptide," "protein," and "peptide" may be used interchangeably herein.

The amino acid sequences disclosed and contemplated herein may include "substitutions" related to a reference amino acid sequence. As used herein, a "substitution" means replacement of one or more amino acids at one or more positions in a reference amino acid sequence with a different amino acid at the one or more positions.

The words "insertion" and "addition" refer to changes in an amino acid sequence resulting in the addition of one or more amino acid residues. For example, an insertion or addition may refer to 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, or 200 amino acid residues.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues. For example, a deletion may remove at least 1, 2, 3, 4, 5, 10, 20, 50, 100, or 200 amino acids residues. A deletion may include an internal deletion or a terminal deletion (e.g., an N-terminal truncation or a C-terminal truncation of a reference polypeptide).

A "fragment" is a portion of an amino acid sequence which is identical in sequence to but shorter in length than a reference sequence. A "fragment" as contemplated herein refers to a contiguous portion of an amino acid reference sequence. For example, a fragment of a polypeptide refers to less than a full-length amino acid sequence of the polypeptide (e.g., where the polypeptide is truncated at the N-terminus, the C-terminus, or both termini). A fragment may comprise up to the entire length of the reference sequence, minus at least one amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous amino acid residues of a reference polypeptide. In some embodiments, a fragment may comprise at least 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 150, 250, or 500 contiguous amino acid residues of a reference polypeptide, respectively. Fragments may be preferentially selected from certain regions of a molecule. The term "at least a fragment" encompasses the full length polypeptide. An "immunogenic fragment" of a polypeptide is a fragment of a polypeptide typically at least 5 or 10 amino acids in length that includes one or more epitopes of the full-length polypeptide.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide. Percent

identity for amino acid sequences may be determined as understood in the art. A suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S. 5 F. et al. (1990) J. Mol. Biol. 215:403 410), which is available from several sources, including the NCBI, Bethesda. Md., at its website. The BLAST software suite includes various sequence analysis programs including "blastp," that is used to align a known amino acid sequence with other amino 10 acids sequences from a variety of databases.

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment 15 taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences 20 shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

A "variant." "mutant," or "derivative" of a particular polypeptide sequence is defined as a polypeptide sequence 25 any type of biological agent in an administrable form having at least 50% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool available at the National Center for Biotechnology Information's website. (See Tatiana A. Tatusova, 30 Thomas L. Madden (1999), "Blast 2 sequences—a new tool for comparing protein and nucleotide sequences", FEMS Microbiol Lett. 174:247-250). Such a pair of polypeptides may show, for example, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, 35 at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides. A "variant" or a "derivative" may have substantially the same functional activity as a reference polypeptide. For example, a variant or 40 derivative of the IBV S1 polypeptide may have one or more functional activities associated with the wild-type IBV S1 polypeptide including, but not limited to, interacting with the S2 polypeptide, interacting with the viral membrane of IBV, and/or facilitating fusion of IBV with a host cell 45 membrane.

As disclosed herein, "passaging" refers to the process of growing viruses in a suitable host (e.g., CEK cells and/or ECE). Passaging encompasses serial passaging whereby a population of IBV (e.g., a heterogeneous population of IBV) 50 is inoculated at a selected concentration into a first environment (e.g., fresh CEK cells), and after being allowed to grow for a period of time, a sample of the population of IBV is removed, optionally diluted (e.g., ten-fold) and inoculated at fresh CEK cells and/or ECE).

Formulation of the Vaccine Compositions

The compositions disclosed herein may be formulated as vaccine compositions for inducing an immune response against IBV. Vaccines, compositions, and methods for 60 immunizing against infection by IBV are disclosed in U.S. Published Application No. 2014/0141043, the content of which is incorporated herein by reference in its entirety. As used herein, an "immune response" may include an antibody response (i.e., a humoral response), where an immunized individual is induced to produce antibodies against an administered antigen (e.g., IgY, IgA, IgM, IgG, or other

8

antibody isotypes) and may also include a cell-mediated response, for example, a cytotoxic T-cell response against cells expressing foreign peptides derived from an administered antigen in the context of a major histocompatibility complex (MHC) class I molecule.

As used herein, "potentiating" or "enhancing" an immune response means increasing the magnitude and/or the breadth of the immune response. For example, the number of cells that recognize a particular epitope may be increased ("magnitude") and/or the numbers of epitopes that are recognized may be increased ("breadth").

The compositions disclosed herein may be formulated as vaccine compositions for administration to a subject in need thereof. Such compositions can be formulated and/or administered in dosages and by techniques well known to those skilled in the medical arts taking into consideration such factors as the age, sex, weight, and condition of the particular subject and the route of administration. The compositions may include carriers, diluents, or excipients as known in the art. Further, the compositions may include preservatives (e.g., anti-microbial or anti-bacterial agents such as benzalkonium chloride) or adjuvants.

A "vaccine" is defined herein in its broad sense to refer to capable of stimulating a protective immune response in an animal inoculated with the vaccine. For purposes of this invention, the vaccine may comprise a passaged attenuated population of IBV.

The compositions may be administered prophylactically. In prophylactic administration, the vaccines may be administered in an amount sufficient to induce immune responses for protecting against IBV infection (i.e., a "vaccination effective dose" or a "prophylactically effective dose").

The composition disclosed herein may be formulated for delivered via a variety of routes. Routes may include, but are not limited to, parenteral administration (e.g., intradermal, intramuscular or subcutaneous delivery), aerosol administration (e.g., using spray cabinets), oral administration, and intraocular administration.

Adjuvants

The disclosed compositions may include an adjuvant. The term "adjuvant" refers to a compound or mixture that enhances the immune response to an antigen. An adjuvant can serve as a tissue depot that slowly releases the antigen and also as a lymphoid system activator that non-specifically enhances the immune response. Examples of adjuvants which may be employed include MPL-TDM adjuvant (monophosphoryl Lipid A/synthetic trehalose dicorynomycolate. e.g., available from GSK Biologics). Another suitable adjuvant is the immunostimulatory adjuvant AS021/ AS02 (GSK). These immunostimulatory adjuvants are formulated to give a strong T cell response and include QS-21, a saponin from *Quillay saponaria*, the TLA ligand, a selected concentration into a second environment (e.g. 55 a monophosphoryl lipid A, together in a lipid or liposomal carrier. Other adjuvants include, but are not limited to, nonionic block co-polymer adjuvants (e.g., CRL1005), aluminum phosphates (e.g., AlPO₄), R-848 (a Th1-like adjuvant), imiquimod, PAM3CYS, poly (I:C), loxoribine, potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum, CpG oligodeoxynucleotides (ODN), cholera toxin derived antigens (e.g., CTA1-DD), lipopolysaccharide adjuvants, complete Freund's adjuvant, incomplete Freund's adjuvant, saponin, mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil or hydrocarbon emulsions in water (e.g.,

MF59 available from Novartis Vaccines or Montanide ISA 720), keyhole limpet hemocyanins, and dinitrophenol.

Prime-Boost Vaccination Regimen

As used herein, a "prime-boost vaccination regimen" refers to a regimen in which a subject is administered a first composition one or more times (e.g., two or three times with about 2, 3, or 4 weeks between administrations) and then after a determined period of time (e.g., about 1 week, about 2 weeks, about 4 weeks, about 5 months, about 6 months, or longer), the subject is administered a second composition. The second composition may also be administered more than once, with at least 2, 3, or 4 weeks between administrations. The first and second compositions may be the same or different. For example, the first composition may include a recombinant viral vector and the second composition may include a live, attenuated virus.

Characterization of the Immune Response and Protection in Vaccinated Subjects

The immune response and protection in vaccinated subjects may be evaluated as described herein (e.g., as described 20 in the Examples below) and/or as know in the art. For example, the vaccine compositions disclosed herein may be delivered to subjects at risk for infection with IBV. Subsequently, the efficacy of the vaccine may be assessed based on the immune response induced by administering the vaccine. In order to assess the efficacy of the vaccine, the immune response can be assessed by measuring the induction of antibodies to an antigen or particular epitopes of an antigen or by measuring a T-cell response to an antigen or particular epitopes of an antigen. Antibody responses may be measured by assays known in the art such as ELISA. T-cell responses may be measured, for example, by using tetramer staining of fresh or cultured PBMC, ELISPOT assays or by using functional cytotoxicity assays, which are well-known to those of skill in the art.

Protection against challenge may be evaluated after challenge by clinical signs, viral load, and tracheal histopathology. Respiratory rales (nasal and/or tracheal) may be evaluated blindly by close listening to each challenged subject (e.g., a bird) and scoring as 0 (absent), 1 (mild), 2 (moderate), or 3 (severe). Viral load in tears may be determined by qRT-PCR. Tracheal histopathology may be evaluated and histomorphometry may be performed essentially. Necrosis and deciliation in the tracheal mucosa may be evaluated blindly and scored 1 through 5 based on severity (i.e., normal, mild, moderate, marked, severe). Histomorphometry may be performed on a single digitally photographed microscopic field (200× magnification) containing a representative longitudinal section of the cranial one-third of the tracheal mucosa and the supporting cartilage ring.

ILLUSTRATIVE EMBODIMENTS

The following embodiments are illustrative and are not intended to limit the claimed subject matter.

Embodiment 1

A method for preparing a vaccine against infection by infectious bronchitis virus (IBV), the method comprising 60 passing a heterogeneous attenuated population of IBV in chicken embryonic kidney (CEK) cells.

Embodiment 2

The method of embodiment 1, wherein the heterogeneous attenuated population of IBV is passaged for a sufficient

10

number of passages wherein at least about 95%, 96%, 97%, 98%, 99%, or 100% of the passaged attenuated population of IBV exhibits homogeneity at one or more nucleotide positions in the gene for the S1 polypeptide after the sufficient number of passages, and/or wherein at least about 95%, 96%, 97%, 98%, 99%, or 100% of the passaged attenuated population of IBV exhibits homogeneity at one or more amino acid positions in the S1 polypeptide after the sufficient number of passages.

Embodiment 3

The method of any of the foregoing embodiments, wherein the one or more amino acids comprise an amino acid selected from the group consisting of Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide. Arg at amino acid position 386 of the S1 polypeptide. Gin at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide, and any combination thereof.

Embodiment 4

The method of any of the foregoing embodiments, wherein the one or more amino acids comprise Ser at amino acid position 213 of the S1 polypeptide.

Embodiment 5

The method of any of the foregoing embodiments, wherein at least about 95%, 96%, 97%, 98%, 99%, or 100% of the passaged attenuated population of IBV further exhibits homogeneity at one or more amino acid positions in a polypeptide selected from the group consisting of NSP2 (e.g., Val at genome position 1097; Phe at genome position 1107; Asn at genome position 2488), NSP3 (e.g., Asp at genome position 4256), NSP14 (e.g., Lys at genome position 17,550, and S2.

Embodiment 6

The method of any of the foregoing embodiments, wherein the heterogeneous attenuated population of IBV comprises a strain of IBV selected from the group consisting of B/D207/84; B/D274/84; B/UK167/84; B/UK142/86; E/D3896/84; E/UK123/82; Brazil/BR1/USP-73/09; 793B/4-91/91; FR/CR88121/88; China/Q1/98; China/LDL971/97 aaz09202; CAV/CAV9437/95; CAV/CAV1686/95; CAV/ CAV56b/91; PA/Wolgemuth/98; PA/171/99; CA/557/03 S1; JAA/04 S1 vaccine; HN99 S1; N1/62/S1; GA08 S1 GU301925; Ark/ArkDPI/81 S1; Ark/Ark99/73; PPI4/PP13/ 55 ??; CAL99/CAL99/99 S1; CAL99/NE15172/95 S1; Holte/ Holte/54; JMK/JMK/64; Gray/Gray/60; Iowa/Iowa609/56; Ca/1737/04 S1; DMA/5642/06 S; GA07/GA07/07 S; OX/OXIBV/99; Mass/H52/S1; Mass/H120/S1; Mass/ Mass41/41 S1; Conn/Conn46/51 S1 vaccine; FL/FL18288/ 71; DE/DE072/92 S1 vaccine; GA98/0470/98 S1; and Dutch/D1466/81.

Embodiment 7

The method of any of the foregoing embodiments, wherein the heterogeneous attenuated population of IBV is Ark/ArkDPI/81 S1.

50

11

Embodiment 8

The method of any of the foregoing embodiments, wherein the heterogeneous attenuated population of IBV is passaged in chicken embryonic kidney cells for at least 3 b passages.

Embodiment 9

The method of any of the foregoing embodiments, wherein the heterogeneous attenuated population of IBV is passaged in chicken embryonic kidney cells for at least 5 passages.

Embodiment 10

The method of any of the foregoing embodiments, wherein the heterogeneous attenuated population of IBV is passaged in chicken embryonic kidney cells for at least 7 passages.

Embodiment 11

The method of any of the foregoing embodiments, wherein after the heterogeneous attenuated population of IBV is passaged in chicken embryonic kidney cells, the passaged attenuated population of IBV is further passaged in embryonated chicken eggs (ECE).

Embodiment 12

The method of any of the foregoing embodiments, further comprising formulating the passaged attenuated population of IBV as a vaccine by adding a carrier or excipient to the passaged attenuated population of IBV.

Embodiment 13

A vaccine comprising a passaged attenuated population of IBV and a suitable carrier or excipient, wherein at least ⁴⁰ about 95%, 96%, 97%, 98%, 99%, or 100% of the passaged attenuated population of IBV exhibits homogeneity at one or more amino acid positions in the S1 polypeptide selected from the group consisting of Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide. His at amino acid position 399 of the S1 polypeptide, and any combination thereof.

Embodiment 14

The vaccine of embodiment 13, wherein at least about 95%, 96%, 97%, 98%, 99%, or 100% of the passaged attenuated population of IBV comprises Ser at amino acid 55 position 213 of the S1 polypeptide.

Embodiment 15

The vaccine of embodiment 13 or 14, wherein at least 60 about 95%, 96%, 97%, 98%, 99%, or 100% of the passaged attenuated population of IBV comprises Ser at amino acid position 213 of the S1 polypeptide; Arg at amino acid position 323 of the S1 polypeptide; Arg at amino acid position 386 of the S polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide, and optionally, wherein at least

12

about 95%, 96%, 97%, 98%, 99%, or 100% of the passaged attenuated population of IBV comprises an S1 polypeptide comprising the amino acid sequence of SEQ ID NO:6, or a variant or mutant thereof.

Embodiment 16

The vaccine of embodiment 15, wherein at least about 95%, 96%, 97%, 98%, 99%, or 100% of the passaged attenuated population further exhibits homogeneity at one or more amino acid positions in a polypeptide selected from NSP2, NSP3, NSP14, and S2.

Embodiment 17

A method for vaccinating a subject against infection by IBV, the method comprising administering to the subject the vaccine of embodiment 13.

Embodiment 18

The method of embodiment 17, wherein the vaccine comprises an effective amount of the passaged attenuated population of IBV for inducing an immune response against S1 polypeptide.

Embodiment 19

The method of embodiment 18, wherein the immune response is an antibody response.

Embodiment 20

The method of any of embodiments 17-19, wherein the vaccine is administered comprising in a prime/boost regimen.

Embodiment 21

A vaccine comprising a polypeptide comprising the amino acid sequence of SEQ ID NO:6, or a variant or mutant thereof, together with a suitable carrier or excipient.

Embodiment 22

A method for vaccinating a subject in need thereof against infection by IBV, the method comprising administering the vaccine of embodiment 21 to the subject.

Embodiment 23

An isolated virus obtained from passing a heterogeneous attenuated population of IBV in chicken embryonic kidney (CEK) cells, optionally back-passaging the passaged attenuated population in embryonated chicken eggs (ECE), and isolating a virus from the passaged attenuated population.

Embodiment 24

A vaccine comprising the isolated virus of embodiment 23, together with a suitable carrier or excipient.

Embodiment 25

A method for vaccinating a subject in need thereof against infection by IBV, the method comprising administering the vaccine of embodiment 24 to the subject.

EXAMPLES

The following examples are illustrative and are not intended to limit the claimed subject matter.

Example 1—Effects of Adaptation of Infectious Bronchitis Virus Arkansas Attenuated Vaccine to Embryonic Kidney Cells

Reference is made to Ghetas et al., "Effects of Adaptation of Infectious Bronchitis Virus Arkansas Attenuated Vaccine to Embryonic Kidney Cells," Avian Diseases 59:106-113, 2015, published ahead of print on Dec. 11, 2014, the content of which is incorporated herein by reference in its entirety.

Abbreviations

ANOVA=analysis of variance; Ark=Arkansas; CEK=chicken embryo kidney; CEKp7=CEK passage 7; CPE=cytopathogenic effect; DPI=Delmarva Poultry Industry; ECE=embryonated chicken egg; ELISA=enzymelinked immunosorbent assay; IBV=infectious bronchitis virus; RT-PCR=reverse transcriptase polymerase chain reaction; qRT-PCR=quantitative RT-PCR; S=spike protein; S/P ratio=sample to positive ratio; EID50=50% embryo infectious dose; amino acid=aa; nucleotide=nt; N=nucleocapsid 25 protein; NSP=Nonstructural protein; UTR=untranslated region.

Summary

The population structure of an embryo-attenuated infectious bronchitis virus (IBV) Arkansas (Ark) Delmarva Poul- 30 try Industry (DPI)-derived vaccine was characterized during serial passages in chicken embryo kidney (CEK) cells and after back-passage in embryonated chicken eggs (ECE) and in chickens. Both conventional and deep sequencing results consistently showed population changes occurred during 35 adaptation to CEK cells. Specifically, thirteen amino acid (aa) positions seemed to be targets of selection when comparing the vaccine genome prior to and after 7 passages in CEK (CEKp7). Amino acid changes occurred at four positions in the S gene, and at two positions in the S gene large 40 shifts in frequencies of aa encoded were observed. CEK adaptation shifted the virus population towards homogeneity in S. The changes achieved in the S1 gene in CEKp7 were maintained after a backpassage in ECE. Outside the S gene, amino acid changes at three positions and large shifts in 45 frequencies at four positions were observed. Synonymous nucleotide changes and changes in non-coding regions of the genome were observed at eight genome positions. Inoculation of early CEK passages into chickens induced higher antibody levels and CEKp4 induced increased respiratory 50 signs compared to CEKp7. From an applied perspective, the fact that CEK adaptation of embryo-attenuated Ark vaccines reduces population heterogeneity and that changes do not revert after one replication cycle in ECE or in chickens provides an opportunity to improve commercial ArkDPI- 55 derived vaccines.

Abundant epidemiological information indicates that most infectious bronchitis virus (IBV) outbreaks of respiratory disease during the last decade in the U.S. have been caused by Arkansas (Ark)-type strains in spite of extensive 60 vaccination with Ark Delmarva Poultry Industry (ArkDPI)-derived vaccines (17,27,35). We and others have reported that commercially available Ark serotype IBV vaccines exhibit heterogeneity in the structure of their viral population despite being derived from the same ArkDPI isolate. 65 The high number of Ark-like viruses obtained from Ark-vaccinated chickens suggests not only that these attenuated

14

vaccines provide inadequate protection, but also that they may themselves be contributing to the problem.

The 5' two-thirds of the single-stranded positive-sense RNA IBV genome of ≥27 kb encode 15 non-structural proteins (NSP) including the RNA-dependent RNA polymerase. The remainder of the genome encodes four structural proteins including the spike (S), envelope, membrane, and nucleocapsid (N) proteins (6,11,12). S is post-translationally cleaved into the S1 and S2 subunits. S1 of ~550 amino acids (aa) constitutes the bulbous end, and S2 of ~620 aa forms the stalk anchoring S to the envelope (22). The role of S1 in viral attachment to cells and determining the species- and tissue/cell tropism of several corona viruses, including IBV, has been reported extensively [e.g. (3-5,13, 14,16,24)]. The S1 subunit is important for host protective immune responses as it induces virus neutralizing-antibodies (7,8,18). Thus, the extensive variation among IBV populations exhibited by the S1 protein is relevant for immunological escape (9,19,20). IBV evolves by natural selection, i.e. generation of genetic diversity by high mutation frequency and recombination events followed by selection acting on diverse phenotypes (32). Earlier work showed that during adaptation of the chicken embryo-adapted IBV Beaudette strain to Vero cells a total of 49 aa changes took place. The majority of these aa substitutions (53%) were concentrated in the S protein (13). During attenuation of IBV ArkDPI by passages in embryonated chicken eggs (ECE) 17 aa changes occurred, with most located in the replicase 1a and S regions, again with changes in the S gene overrepresented (1). Based on S1 gene sequences, we previously identified five distinct virus subpopulations in ArkDPIderived vaccines that became rapidly positively selected in the chicken upper respiratory tract, whereas the predominant IBV phenotype contained in the embryo-attenuated vaccines was negatively selected (15, 38). Differences in frequencies of phenotypes within IBV populations are associated with differences in the behavior of these viruses in the host (26). From an applied perspective, genetic and phenotypic shifts occurring in Ark-type IBV vaccine populations during replication in chickens are most likely responsible for the emergence of Ark-like viruses in the U.S. poultry industry.

In this study, we investigated genetic and phenotypic changes associated with adaptation of an attenuated IBV Ark DPI-derived vaccine to chicken embryo kidney (CEK) cells. We also evaluated the effects of back-passage of CEK-adapted Ark virus both in chickens and ECE.

Materials and Methods

Chickens and ECE

White-leghorn specific pathogen free (SPF) ECE (Sunrise Farms, Catskill, N.Y.) and SPF chickens hatched from them were used in all experiments. Animal experimental procedures and care were performed in biosafety level 2 facilities at Auburn University College of Veterinary Medicine in compliance with all applicable federal and institutional animal use guidelines. Auburn University College of Veterinary Medicine is an Association for Assessment and Accreditation of Laboratory Animal Care-accredited institution.

CEK Cell Cultures.

Primary CEK cell cultures were prepared as described (30). In brief, kidneys were obtained from 17-20 day-old SPF chicken embryos. After trypsinization, cells were washed with phosphate buffer saline, centrifuged, and resuspended in minimal essential medium containing 10% fetal

bovine serum. Cells were placed in 24-well tissue culture plates and incubated at 37° C. and 5% CO₂.

IBV Passage in CEK.

A commercially available single-entity attenuated IBV ArkDPI-derived vaccine was used. The chosen Ark-type 5 vaccine, previously coded as vaccine B, shows a wider variety of subpopulations selected in chickens than other Ark-type vaccines (15,38). The lyophilized vaccine was reconstituted in sterile tryptose broth and titrated in 9-dayold embryonated chicken eggs as accepted (39). Tenfold 10 dilutions from 10⁻¹ through 10⁻⁵ were prepared from the vaccine suspension containing 10^{5.5} egg infectious doses $50\%/100~\mu l$ and each dilution independently inoculated in CEK cultures by adding 25 μl of virus suspension to 500 μl cell culture suspension in each well (4 wells per dilution). 15 Viruses in cell cultures were serially passaged every 48 hours. For each passage cells were harvested, pooled for each initial concentration of inoculum, subjected to 3 cycles of freezing and thawing, cell debris removed by low-speed centrifugation, and 100 ul of the supernatant used in the 20 subsequent passage. This supernatant obtained from the freeze-thaw lysates is further referred to as culture supernatant. The remaining culture supernatant was stored at -80° C. until use for inoculation in chickens.

Effect of CEK-Adapted IBV in Chickens.

Fifty-three 5-day-old chickens, divided into 4 groups (n=12/group) and an uninoculated control group (n=5) were maintained in Horsfall-type isolators. Chickens in groups 1, 2, 3, and 4 were inoculated ocularly with 100 µl of culture supernatant of IBV Ark vaccine CEK passages 1, 3, 4, and 30 7 respectively. Five days postinoculation respiratory signs were blindly scored [O (negative), 1 (mild), 2 (moderate), 3 (severe)] for all chickens individually. On the same day tear fluids were collected as described (33) for IBV RNA detection by reverse transcriptase polymerase chain reaction 35 (RT-PCR). Finally, serum samples were collected 18 and 27 days after inoculation and IBV specific antibodies determined by ELISA (Idexx Laboratories. Inc., Westbrook, Me.) using a 1:100 serum dilution. Data obtained from all groups were compared by analysis of variance (ANOV A) and 40 multiple comparisons post-tests.

CEK-Adapted IBV Back-Passage in ECE.

0.1 ml of culture supernatant from each IBV CEK passage 1, 3, 4, and 7 were inoculated in 9 day-old ECE (n=2/group). Allantoic fluids were harvested 72 hours after inoculation, 45 centrifuged, and stored at -80° C. until RNA extraction for IBV genome sequencing.

IBV RNA Extraction and RT-PCR.

IBV RNA was extracted from IBV CEK cell culture passages, tear samples collected from individual chickens, 50 and from allantoic fluids (described above) using the Qiagen QIAmp viral RNA mini kit (Qiagen. Valencia, Calif.) following the manufacturer's protocol. RT-PCR was carried out using the Qiagen one-step RT-PCR kit. Primers NEWS10LIGO5' (10) and S10LIGO3' (21) were used to 55 amplify the S1 gene of 113V from CEK passages, from allantoic fluids, and tear samples. Primers S17F and S18R (15) and S2F (38) and S10LIGO3' were also used to amplify portions of the IBV S1 gene from tear samples. RT-PCR products were visualized by gel green stain (Phoenix 60 Research, Candler, N.C.) after agarose gel electrophoresis. Sequencing of ecDNA Generated by RT-PCR.

The amplified cDNA was purified using the QIAquick PCR purification kit (Qiagen. Valencia, Calif.) and submitted to the Massachusetts General Hospital DNA core facility 65 for sequencing using S1R, S2F (38), and S1OLIGO3' primers for cDNA amplified with primers NEWS1OLIGO5",

16

S10LIGO3' from supernatants of CEK cell culture passages, allantoic fluids, and tear fluids; or S1R for cDNA amplified with S17F and S18R primers from tear samples. Sequences were aligned using Mac Vector 10.6.0 software (MacVector Inc., Cary, N.C.). All sequence chromatograms were examined to identify positions containing more than one peak indicating the presence of a mixed IBV population. The quantitative analysis of nucleotide peak heights in the chromatograms at heterogeneous positions was obtained after normalizing the height of major and minor peaks to peak heights obtained in samples with a single population.

Quantification of IBV RNA in CEK Cell Culture Supernatant by qRT-PCR.

Viral RNA (5 µl) extracted from culture supernatant of each IBV CEK passage was used to determine relative IBV RNA concentration by fluorescence resonance energy transfer qRT-PCR. Primers and probes used amplified a portion of the Ark IBV N gene as previously described (36).

Sequence Analyses of Embryo-Attenuated ArkDPI after CEK Adaptation by Deep Sequencing.

RNA extracted from the IBV vaccine virus stock and from the virus after 7 passages in CEK (CEKp7) was subjected to next-generation sequencing. Because of heavy host cell nucleic acid contamination in the cell culture supernatant, the CEKp7 was replicated once in ECE prior to deepsequencing. IBV RNA was extracted from allantoic fluid using TRI Reagent LS RNA Isolation Reagent (Molecular Research Center. Cincinnati. Ohio) according to the manufacturer's protocol and omitting the isopropanol precipitation step. RNA was further purified using the Qiagen RNeasy mini kit, following the RNA cleanup protocol. Purified RNA was submitted for next-generation Illumina Sequencing at HudsonAlpha (Huntsville. Ala.), (50 bp paired-end reads; 15 million reads). The resultant paired-end sequencing data were trimmed using CLC Genomics Workbench Software, using a trim setting (0.01) to achieve high quality sequences with low error probability. The trimmed sequences were then used for a reference assembly using the ArkDPI passage 101 genome (1) (Genbank accession #EU418975) as the reference genome using the default setting of 0.80 for sequence match. Single nucleotide polymorphism detection of nucleotides at >0.001% frequency was then performed on the reference assembly and analyzed using CLC Genomnics Workbench.

Results

Virus Concentrations During Serial Passages in CEK Cells.

Ten-fold serial dilutions (from 10^{-1} to 10^{-5}) of an ArkDPI-derived IBV vaccine were initially inoculated into CEK cells to determine which virus concentration allowed the most successful replication and adaptation. A cytopathogenic effect (CPE) characterized by detachment of cells and formation of syncytia (not shown) was initially observed during the 2nd CEK passage and became more obvious during the 5th passage in wells that had been inoculated with the higher vaccine virus concentrations (10^{-1}) and 10^{-2} dilutions). No CPE was observed in wells inoculated with higher (10⁻³-10⁻⁵) virus dilutions. IBV RNA was successfully amplified by qRT-PCR from cell cultures during all passages in wells inoculated with the 1^{st} and 2^{nd} tenfold dilutions (FIG. 1). In contrast, IBV RNA was only detected in the 1st passage of the 3rd tenfold dilution and not detected in cultures inoculated with the 4^{th} and 5^{th} tenfold dilutions. As seen in FIG. 1, IBV RNA levels declined from the 1st or 2nd through the 4th passages and subsequently increased from the 5th passage to reach maximal levels at the 7th passage.

17

Genome Changes Detected During Adaptation to CEK Cells.

The S1 gene sequence was determined for CEK cell IBV vaccine serial passages that allowed consistent IBV RNA amplification. In cells inoculated with the highest initial virus concentration changes were detected during serial passages at S1 aa positions 163, 323, 386, 398, and 399 (Table 1).

TARIE

TABLE 1												
S1 amino acid (aa) differences of IBV ArkDPI-derived embryo- attenuated vaccine during serial passages in CEK cells.												
		nt										
	488	911	968	H92	1195							
	163	304	323 Va	386 accine	398	399						
	R^1	T	T(R)	R((H))	E/Q	H((Y))						
A												
CEK p1 ²	$\mathbf{R}(\mathbf{I})^3$	T	T/R	R (L , H)	$\mathbf{Q}(\mathbf{E})$	H((Y))						
CEK p2	I(R)	T	$R\left(\left(T\right) \right)$	\mathbf{R} ((L))	Q	H						
CEK p3	I/R	T	\mathbf{R} ((T))	L/R((H))	Q	H((Y))						
CEK p4	I/R	T	R	L/R	Q	H						
CEK p5	I/R	T	R	L/R	Q	H						
CEK p6 CEK p7	I((R)) I	T T	R R	R((L)) R	Q Q	H H						
B CER p7	1	1	K	K	Q	11						
	•											
CEK p1	R	T	R	R	Q	н						
CEK p2	R	T(I)	R	R	Q	Н						
CEK p3	R	T/I	R	R	Q	Н						
CEK p4	R	I((T))	R	R	Q	H						
CEK p5	R	I((T))	R	R	Q	Н						

18

TABLE 1-continued

S1 amino acid (aa) differences of IBV ArkDPI-derived embryo-

	attenuated v	accine di	ıring serial	passages in	CEK cell	S						
		nt										
	488 911 968 1157 H92 1195											
	163	304	323 Va	386 accine	398	399						
	R ¹	T	T(R)	R((H))	E/Q	H((Y))						
CEK p6	R	I	R	R	0	Н						

 $A = 10^{-1}$ initial dilution of vaccine stock;

CEK p7

R

R

ò

Н

Changes were characterized by presence of mixed populations during early passages and establishment of a single population in passage 7, which was maintained after further passages (not shown). In the lower initial virus concentration (10²) as changes during adaptation were observed at S1 as positions 304, 323, 386, 398, and 399. Interestingly, changes at as positions 163 and 304 during adaptation to CEK differed in the two passage series.

Further nucleotide and deduced as changes within and

Further nucleotide and deduced as changes within and outside the S gene resulting during ArkDPI adaptation to CEK cells were identified by next generation genome sequencing of the attenuated vaccine virus stock and CEKp7 obtained starting with the highest initial virus concentration. Large shifts in nucleotide frequencies in both protein coding regions (including both non-synonymous and synonymous changes) and non-protein coding regions were observed (Tables 2 and 3).

TABLE 2

Amino acid frequency differences 1 detected in non-structural (NSP) and spike (S) proteins of a commercial embryo-attenuated IBV ArkDPI-derived vaccine after 7 passages in chicken kidney cell cultures (CEKp7).

Genome position	Protein	Major aa in vaccine	%	Minor aa in vaccine	%	Major aa in CEKp7	%	Minor aa in CEK p7	%
1,097	NSP2	A	92.4	v	7.6	V	94.9	A	5.0
1,107	NSP2	L	78.7	F	21.3	F	96.4	L	3.5
2,488	NSP2	N^3	82.8	Н	17.2	N	100	_	< 0.03
4,256	NSP3	G	78.9	D	20.6	D	95.7	G	4.2
17,550	NSP14	K	54.1	Q	45.9	K	100	_	0.01
17,641	NSP14	D	100	G	0.03	D	87.0	G	13.0
20,798	$S1 (163)^2$	R	97.7	I	2.3	I	97.2	R	2.8
20,947	S1 (213)	\mathbf{s}	93.0	A	7.0	\mathbf{s}	100	_	< 0.03
21,278	S1 (323)	T	73.4	R	26.2	R	99.9	T	0.03
21,467	S1(386)	R	90.1	Н	7.5	R	97.2	L	2.8
21,502	S1 (398)	E	55.5	Q	44.5	Q	100	_	< 0.03
21,505	S1 (399)	H	93.8	Y	6.2	H	100		< 0.03
22,976	S2 (889)	\mathbf{S}	100	\mathbf{F}/\mathbf{Y}	0.01	F	96.3	S	17
27,244	ORF 6b	A	100	V	0.04	A	84.5	V	15.5

¹Only genome positions where nt frequencies change by >10% or minor codon >6% are shown.

 $B = 10^{-2}$ initial dilution used.

¹Single letter aa code is used. Bold font used to facilitate identification of aa differing from yaccine.

²CEKp1-p7 = passage number in chicken embryonic kidney cells.

³Mixed populations inferred from double nucleotide peaks at some positions.

Quantitative analysis of chromatogram peak heights at these positions specified as follows: (()) indicates minor peak <20%; () minor 20% to 40%; / = minor 40% to 50%.

²Numbers in parentheses indicate as position in S.

³Bold font indicates aa predominant in CEKp7 to facilitate visual sizing proportion they were in vaccine

TABLE 3

Synonymous nucleotide frequency differences and nucleotide frequency differences in non-protein-coding regions of it commercial embryo-attenuated IBV ArkDPI-derived vaccine after 7 passages in chicken kidney cell cultures (CEKp7)

Genome position	Genome region	Major nt in vaccine	%	Minor nt in vaccine	%	Major nt in CEKp7	%	Minor nt in CEKp7	%
1,917	NSP2	С	89.1	T	10.9	Т	96.8	С	3.2
6,468	NSP3	T	99.9	\mathbf{A}	0.04	\mathbf{C}	96.5	T	3.5
16,229	NSP13	T	96.8	C	3.2	C	96.3	T	3.7
24,837	M	C	100	T	0.02	C	88.9	T	11.1
25,481	$M \leftrightarrow$	C	98.9	A	1.1	C	70.5.	A	29.5
	ORF5								
25,482	$M \leftrightarrow$	G	98.9	A	1.1	\mathbf{G}	70.4	A	29.6
	ORF5								
26,802	N	C	100	T	0.03	C	88.1	T	11.9
27,244	3' UTR	C	100	T	0.04	C	84.5	T	15.5

Bold font indicates nt that are predominant in CEKp7 to facilitate visualization of proportion they were in vaccine. M = membrane;

Arrow = between *27,244 is included in two tables, as belonging to ORF6b and as part of 3' UTR, because this part of the genome is traditionally considered part of the 3' UTR, and the significance of protein potentially encoded by

As seen in Table 2, a shift of populations based both on NSP and S genes was detected during CEK passage. In some cases changes indicate that the predominant population 25 declined and a minor population became predominant. For example, the vaccine's predominant population (92.4%) displayed alanine in NSP2 at nt position 1097 and a minor population (7.6%) displayed valine at this position. After selection in CEK the predominant population (94.9%) dis- 30 played valine in NSP2 and populations displaying alanine became marginal (5%). As seen in Table 2, other examples of similar trends were observed for S1 (nt 20798) and S2 (nt 22976) genes. In other cases a different trend was observed; amino acids encoded by the initially predominant population 35 ¹EKp1, p3, or p7 = passage number in chicken kidney cells. increased even more, indicating that the amino acid encoded at these positions was shared between the minor subpopulations selected during CEK passage and the initially predominant population. Examples of this trend were seen for NSP2 gene at nt position 2,488, and S1 at nt position 20,947. 40 More interesting was the fact that, based on S1 sequencing, populations tended to become more homogeneous as evidenced at S1 nt positions 20,947; 21,278; and 21,502. Indeed, at these positions heterogeneity in the mixed populations contained in the vaccine was eliminated after CEK 45 adaptation. However, this was not the case throughout the genome. For example at nucleotide position 17,641, in NSPI4 coding sequences, heterogeneity increased. An increase in heterogeneity was also observed in the 3'UTR, and in the N gene, without affecting the amino acid encoded 50 (Table 3).

CEK-Adapted ArkDPI Back-Passage in ECE.

A single ECE passage of CEK ArkDPI passages 1, 3, 4, and 7 did not reverse the selection process occurring in the S1 gene during CEK passages. Amino acids encoded at 55 selected S1 positions in back-passages of CEKp1 and CEKp7 are shown in Table 4.

TABLE 4

Si amino acio	differences in	CEK cen-passaged n	3 v Ark-derived
vaccine afte	r one back-pass	sage in embryonated	chicken eggs.
		CEKp1	CEKp?

Nt	Aa	Vace	CEKp1 ¹	CEKp1 Ep1 ²	CEKp7	CEKp7 Ep1
488	163	R	R (I) ³	I	I	I
968	323	T (R)	T/R	R	R	R

TABLE 4-continued

S1 amino acid differences in CEK cell-passaged IBV Ark-derived vaccine after one back-passage in embryonated chicken eggs.

Nt	Aa	Vace	CEKp1 ¹	CEKp1 Ep1 ²	СЕКр7	CEKp7 Ep1
1157	386	R ((H))	R(L, H)	R	R	R
1192	398	E/Q	Q (E)	Q	Q	Q

Quantitative analysis of chromatogram peak heights at such positions specified by parenthesis: (()) = minor peak <20% of total; () = minor 20% to 40%.

For instance, the vaccine predominant population displaying arginine at S1 aa position 163, was replaced by a population displaying isoleucine in CEKp7, and maintained in CEKp7 embryo passage 1.

CEK-Adapted ArkDPI Passage in Chickens.

Absent or mild respiratory signs were blindly detected in chickens inoculated with different passages of Ark in CEK cells (FIG. 2). Slightly increased incidence of mild signs detected in chickens inoculated with CEKp4 resulted in a statistically significant difference (P<0.05) compared to all other groups. Birds of all groups, except uninoculated controls, were positive for IBV RNA in the tear fluids by RT-PCR (not shown). As seen FIG. 3. CEK passages 1, 3, and 4 elicited specific antibodies by day 18 after inoculation while the rise of antibodies induced by CEKp7 did not achieve a significant difference compared to the uninoculated control. On day 27 post-inoculation all groups, including CEKp7, showed a significant increase (P<0.05) of IBV antibodies compared to uninoculated controls. However, antibodies induced in group CEKp3 were significantly higher than in group CEKp7 (FIG. 3). Amino acids encoded at positions that differ among S1 sequences of IBV recov-65 ered from tear fluids of individual chickens 5 days after inoculation with ArkDPI CEK passages 1, 3, and 7 are shown in Table 5.

N = nucleocapsid;

²CEKp1Ep1 = CEKp1 after 1 embryo passage

³Mixed populations inferred from double nucleotide peaks at some positions

TABLE 5

Amino acids (aa) encoded at positions that differ among IBV SJ sequences
recovered from tear fluids of individual chicken 5 days after inoculation
with IBV ArkDPI vaccine subjected to passages in CEK cells

						·	nt					
Chicken		263	488	637	914	968	1052 aa	1058	1157	1192	1195	
#	78	88	163	213	305	323	351	353	386	398	399	
		CEKp1 ¹										
	A^2	S	$R(I)^3$	S	A	R/T	S	S	R(L/H)	Q(E)	H((Y))	
1	A	S	R/I	S(A)	A	R/T	S S	F/S	H/R	Q(E)	H(Y) H	
2 3	A	S	R	A(S)	A A	T T	S	S S	R H	E E	н Ү(Н)	
4	A	S	R	S	A	Ř	s	S	H	Ē	H	
5					A	T	S	S	H	Q	Y	
6	A	\mathbf{S}	R	S(A)	A	T	S	S	H/R	E/Q	H/Y	
7 8	V	S	R	S S	Α	T	S	S	R	Е	Η	
8	A	N	R	5	Α	Т	S	S	Н	Q	Y	
10					A	T(R)	S	S	H/R	Q(E)	H(Y)	
11					A	R(T)	S(F)	s	H(R)	Q	H(Y)	
12					A	Ì	s	S	H(R)	Q((E))	Y(H)	
	CEKp3											
	A	S	I/R	s	A	R((T))	S	S	L/R((H))	Q	H((Y))	
1	A	S	I	S		D	D	q	D	0	**	
2 3	A A	S S	I I	S S	A A	R R	R S	S S	R R	Q Q	H H	
3 4	A	S	I	S	A	K	മ	മ	K	Q	п	
5	A	S	Ī	S	A	R	S	S	R	O	Н	
6	A	S	Ī	S	A	R	s	S	R	Q Q Q	H	
7	A	S	I/R	S	A	R	S	S	L/R	Q	H	
8	A	S	I/R	S								
9	A	S	R	Α	L	T	S	S	H	Q	Y	
10 11	A	s	R	S	Α	R	S	S	R	Q	Н	
							СЕКр7	i				
	A	s	I	s	A	R	s	S	R	Q	Н	
1	A	S	I	S	A	R	S	S	R	Q	Н	
2	A	S	I	S	A	R	S	S	R	Q	H	
3	A	S	Ī	S						`		
4	Α	S	I	S	A	R	S	S	R	Q	H	
5	A	S	I	\mathbf{S}	A	R	S	S	R	Q	H	
6	A	S	I	S								
7 8	A	S S	I I	S S	Α	R	s	S	R	Q	Н	
	А	i)	1	۵	А	K	۵	۵	K	V	11	

 $^{^{1}\}text{CEKp1-p7}$ = passage number in chicken embryonic kidney cells.

As seen in Table 5, most chickens inoculated with CEKp1 showed abundant mixed populations (reflected by detection of more than one aa codon at distinct positions). In contrast, the frequency of mixed populations found in chickens inoculated with CEKp3 was considerably lower. Finally, only S1 homogeneous virus populations were rescued from chickens inoculated with CEKp7. It was also interesting to notice that changes in populations further adapted to CEK (i.e. CEKp7) were not reverted by a passage in chickens. Indeed, while a few differences were observed between the inoculated CEKp1 and CEKp3 and the viruses recovered from chickens, no differences in S1 were seen between the consensus of CEKp7 and the consensus of the virus rescued from chickens inoculated with CEKp7.

Discussion

The fact that only the higher concentrations of the ArkDPI vaccine stock (1st and 2nd tenfold dilutions) induced CPE and could be successfully further passaged in CEK indicates that a minimum concentration of virus, even in the absence of an immune response, is required to establish successful expansion of a distinct virus population. Even more interesting is the kinetic pattern of the observed viral concentrations, i.e., declining virus concentration during initial serial passages and increasing concentrations concomitant with further passages. This kinetic pattern was observed using either initial dilution of the virus and thus strongly suggests adaptation to the new environment. During initial passages the predominant population in the vaccine was negatively

²Single letter amino acid code is used.

³Mixed populations inferred from double nucleotide peaks at some positions.

Quantitative analysis of chromatogram peak heights at these positions specified as follows: (()) indicates minor peak <20% of total; () minor 20% to 40%; / = minor 40% to 50%.

selected likely due to lack of fitness, whilst after several replication cycles a minor subpopulation more fit in the new environment of the CEK, was able to replicate more successfully.

Both conventional and deep sequencing results consistently showed population changes resulting from adaptation of the embryo-attenuated vaccine virus to CEK cells (Tables 1 and 2). The fact that the virus replication dynamics (discussed above) were accompanied by changes in the population strongly indicates selection applied on diverse 10 phenotypes resulted in adaptation to the kidney cell environment.

Interestingly, changes at S1 aa positions 163 and 304 differed during adaptation to CEK contingent with initial virus concentration used. Whilst it is possible that the initial 15 virus concentration plays a relevant role on selection of IBV subpopulations, it is also plausible that the differences in subpopulations selected were the result of chance. Perhaps more interesting is the observation that subpopulations encoding the same aa at S1 position 398 quickly predomi- 20 nated in both passage series.

Additional nt and aa changes inside and outside the S gene resulting from adaptation to CEK cell cultures were identified by next generation sequencing of the vaccine genome prior to and after CEK cell passages. These results, which 25 were consistent with the results of conventional sequencing, showed that, based on changes at several positions in S, the original population structure had changed during CEK adaptation (Table 2). Some changes were of particular interest. For example, the minor population in the vaccine identical 30 to ArkDPI original passage 11 (ArkDPIp11) containing arginine at position 20,947 (1) becomes undetectable in CEKp7. The vaccine minor population identical to ArkD-PIp11 in S at genome positions 21,278 and 21, 502 was strongly selected in CEKp7. Interestingly, the phenylalanine 35 cod on encoding S amino acid 889 within the S2 subunit, which was detected at 96.3% frequency in CEKp7, was not the major codon in ArkDPIp11 nor ArkDPIp101 (1), suggesting that this change could be highly beneficial during adaptation of ArkDPI to CEK cell. The importance of this 40 particular change during adaptation to CEK cells will require further studies using reverse genetics.

Outside the S gene, apparent selection was observed at seven positions, where nucleotide changes between the vaccine virus and CEK-adapted virus resulted in amino acid 45 differences (Table 2). These include six positions where the frequency of minor nucleotides in the vaccine virus increased over 10% in CEK-adapted virus, reaching frequencies of at least 95% in four of those positions. At the seventh position, a minor nucleotide in the vaccine virus was 50 eliminated in CEK-adapted virus. In NSP3 at nt position 4,256 the selected population encoded aspartic acid, the same as ArkDPIp11. Interestingly, we have observed the same pattern of selection at this position in a previous study (37) after inoculation of chickens with commercial ArkDPI- 55 derived vaccine. Papain-like protease domain 2 encoded in the NSP3 of coronaviruses is an interferon antagonist (40, 41). Therefore, selection of this phenotype may be indicative of involvement in inhibition of the type 1 interferon pathway and subsequent evasion of the host innate immune response. 60

As discussed above. S is responsible for viral attachment and cell tropism. S has also been associated with pathogenicity (14,23,28) but pathogenicity of coronaviruses is also associated with genes outside S (31,42). There is accumulating evidence that IBV virulence is influenced by NSPs encoded within the NSP 2-16 genome region (1,2,29). In the current study early CEK passages induced higher antibody

24

levels and CEKp4 increased respiratory signs compared to CEKp7. CEK adaptation shifted the virus population towards homogeneity in S (Tables 2, 3). Several changes were also detected in NSPs (Table 3). Unfortunately the current study does not allow attributing distinct changes to the behavior observed in the chickens. Others have speculated that S heterogeneous viral populations may have an advantage over more homogeneous populations as they might more readily adapt to changes in the host environment (27). Thus, the lack of heterogeneity achieved in S after CEK passages may have precluded optimal replication of CEKp7 in chickens and consequently explains the lower antibody levels (FIG. 3) elicited in this group. However, the presence of increased phenotype diversity in the virus population might also result from absence of strong selective pressure which would prevent extinction of less fit phenotypes. This scenario would fit embryo-attenuated viruses because embryos harbor undifferentiated cells and lack strong immune responses at the stage used for IBV passage.

Both conventional and deep sequencing results consistently showed more homogeneous virus populations resulting from adaptation of the embryo-attenuated vaccine virus to CEK cells. As indicated above, previous work in our laboratories as well as by others has shown selection of distinct ArkDPI populations after replication in chickens (25,38). However, other IBV attenuated vaccines, such as Mass-type vaccines, seem to be more stable as S1 sequences different from the original virus stock do not emerge during a single passage in chickens (38). We previously found that the ability of commercial Ark-type vaccines to protect chickens against Ark virulent challenge differs (34). In addition to different protection efficacy, the three vaccines compared differed in degree of variation in challenge virus following challenge. The vaccine used in the present study resulted in variation of challenge virus. The vaccines differ in their concentration of subpopulations subsequently selected in chickens as follows: while in all of these vaccines the previously identified subpopulations selected in chickens can be detected by RT-PCR, the vaccine used in the present study, coded as A in (34), shows a more homogeneous S1 population structure in the sequence chromatogram (38). Therefore, and from an applied perspective, the results presented herein indicate that CEK adaptation of current embryo-attenuated commercial Ark vaccines would reduce their heterogeneity. The current results also show that these changes are maintained after one passage in ECE, which is required for mass vaccine production, and do not revert after one replication cycle in the chicken. However, further studies to assess the protective capabilities of these more homogeneous virus populations against virulent Ark challenge are needed.

REFERENCES

- Ammayappan, A., C. Upadhyay, J. Gelb Jr., and V. N. Vakharia. Identification of sequence changes responsible for the attenuation of avian infectious bronchitis virus strain Arkansas DPI. Arch. Virol. 154:495-499. 2009.
- Armesto, M., D. Cavanagh, and P. Britton. The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity. PLoS ONE 4:e7384. 2009.
- Ballesteros, M. L., C. M. Sá nchez, and L. Enjuanes. Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378-388. 1997.

- Baric, R. S., B. Yount, L. Hensley, S. A. Peel, and W. Chen. Episodic evolution mediates interspecies transfer of a murine coronavirus. J. Virol. 71:1946-1955. 1997.
- Casais, R., B. Dove. D. Cavanagh, and P. Britton. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J. Virol. 77:9084-9089.
 2003
- Cavanagh, D. Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian 10 infectious bronchitis coronavirus. Avian Pathol. 32:567-582. 2003.
- Cavanagh, D., and P. J. Davis. Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and hemagglutination but not attachment to cells. J. Gen. 15 Virol. 67:1443-1448. 1986.
- Cavanagh, D., P. J. Davis, J. H. Darbyshire, and R. W. Peters. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J. Gen. Virol. 67:1435-1442. 1986.
- Cavanagh, D., K. Mawditt, A. Adzhar, R. E. Gough, J. P. Picault, C. J. Naylor, D. Haydon, K. Shaw, and P. Britton. Does IBV change slowly despite the capacity of the spike 25 protein to vary greatly? Adv. Exp. Med. Biol. 440:729-734. 1998.
- Domingo, E., E. Baranowski, C. M. Ruiz-Jarabo, A. M. Martin-Hernandez. J. C. Saiz, and C. Escarmis. Quasispecies structure and persistence of RNA viruses. Emerg. 30 Infect. Dis. 4:521-527. 1998.
- Enjuanes. L., D. Brian, D. Cavanagh. K. Holmes, M. M. C. Lai, H. Laude, P. Masters, P. Rottier, S. G. Siddell, W. J. M. Spaan. F. Taguchi, and P. Talbot. Coronaviridae. In: Virus taxonomy. Classification and nomenclature of 35 viruses. M. H. V. van Regenmortel. C. M. Fauquet. D. H. L. Bishop. E. B. Carstens. M. K. Estes, S. Lemon, J. Maniloff, M. Mayo, D. J. McGeoch, C. R. Pringle, and R. B. Wickner, eds. Academic Press. New York, pp. 835-849.
- Enjuanes, L., W. J. Spaan, E. J. Snijder, and D. Cavanagh. Nidovirales. In: Virus taxonomy. Classification and nomenclature of viruses. M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carsten, M. K. Estes, S. M. Lemon, D. J. McGeoch, J. Maniloff, M. 45 A. Mayo, C. R. Pringle, and R. B. Wickner, eds. Academic Press, New York, pp. 827-834. 2000.
- 13. Fang, S. G., S. Shen, F. P. Tay, and D. X. Liu. Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells. Biochem. Biophys. Res. Comm. 336:417-423. 2005.
- Fazakerley, J. K., S. E. Parker. F. Bloom, and M. J. Buchmeier. The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. 55 Virology 187:178-188. 1992.
- Gallardo, R. A., V. L. van Santen, and H. Toro. Host intraspatial selection of infectious bronchitis virus populations. Avian Dis. 54:807-813. 2010.
- 16. Hingley, S. T., J. L. Gombold, E. Lavi, and S. R. Weiss. 60 MHV-A59 fusion mutants are attenuated and display altered hepatotropism. Virology 200:1-10. 1994.
- Jackwood, M. W., D. A. Hilt, C. W. Lee, H. M. Kwon, S. A. Callison, K. M. Moore, H. Moscoso, H. Sellers, and S. Thayer. Data from 11 years of molecular typing infectious bronchitis virus field isolates. Avian Dis. 49:614-618. 2005.

26

- Koch, G., L. Hartog, A. Kant, and D. J. van Roozelaar. Antigenic domains on the peplomer protein of avian infectious bronchitis virus: correlation with biological functions. J. Gen. Virol. 71:1929-1935. 1990.
- Kusters, J. G., E. J. Jager, J. A. Lenstra, G. Koch, W. P. Posthumus, R. H. Meloen, and B. A. van der Zeijst. Analysis of an immunodominant region of infectious bronchitis virus. J. Immunol. 143:2692-2698. 1989.
- Kusters, J. G., H. G. Niesters, N. M. Bleumink-Pluym,
 F. G. Davelaar, M. C. Horzinek, and B. A. van der Zeijst.
 Molecular epidemiology of infectious bronchitis virus in
 The Netherlands. J. Gen. Virol. 68:343-352. 1987.
- Kwon, H. M., M. W. Jackwood, and J. Gelb Jr. Differentiation of infectious bronchitis virus serotypes using polymerase chain reaction and restriction fragment length polymorphism analysis. Avian Dis. 37:194-202. 1993.
- Lai, M. M. C., and K. V. Holmes. Coronaviridae: the viruses and their replication. In: Fundamental virology. D. M. Knipe and P. M. Howley, eds. Lippincott Williams and Wilkins. Philadelphia, pp. 641-663. 2001.
- 23. Leparc-Goffart, I., S. T. Hingley, M. M. Chua, X. Jiang, E. Lavi, and S. R. Weiss. Altered pathogenesis of a mutant of the murine coronavirus MHV-A59 is associated with a Q159L amino acid substitution in the spike protein. Virology 269:1-10. 1997.
- 24. Li, W., C. Zhang, J. Sui, J. H. Kuhn, M. J. Moore, S. Luo, S. K. Wong, I. C. Huang, K. Xu, N. Vasilieva, A. Murakami, Y. He, W. A. Marasco, Y. Guan, H. Choe, and M. Farzan. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 24:1634-1643. 2005.
- McKinley, E. T., D. A. Hilt, and M. W. Jackwood. Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination. Vaccine 26:1274-1284. 2008.
- 26. Ndegwa, E. N., K. S. Joiner, H. Toro, F. W. van Ginkel, and V. L. van Santen. The proportion of specific viral subpopulations in attenuated ArkDPI infectious bronchitis vaccines influences vaccination outcome. Avian Dis. 56:642-653. 2012.
- 27. Nix, W. A., D. S. Troeber, B. F. Kingham, C. L. Keeler Jr., and J. Gelb Jr. Emergence of subtype strains of the Arkansas serotype of infectious bronchitis virus in Delmarva broiler chickens. Avian Dis. 44:568-581. 2000.
- 28. Ontiveros, E., T. S. Kim. T. M. Gallagher, and S. Perlman. Enhanced virulence mediated by the murine coronavirus, mouse hepatitis virus strain JHM, is associated with a glycine at residue 310 of the spike glycoprotein. J. Virol. 77:10260-10269. 2003.
- 29. Phillips, J. E., M. W. Jackwood. E. T. McKinley, S. W. Thor. D. A. Hilt. N. D. Acevedol, S. M. Williams, J. C. Kissinger, A. H. Paterson. J. S. Robertson, and C. Lemke. Changes in nonstructural protein 3 are associated with attenuation in avian coronavirus infectious bronchitis virus. Virus Genes 44:63-74. 2012.
- 30. Schat, K. A., and H. G. Purchase. Cell-culture methods. In: A laboratory manual for the isolation and identification of avian pathogens. D. E. Swayne. J. Glisson, M. W. Jackwood, J. E. Pearson, and W. M. Reed, eds. American Association of Avian Pathologists, Inc., Kenneth Square, Pa. pp. 223-234. 1998.
- 31. Sperry, S. M., L. Kazi, R. L. Graham, R. S. Baric, S. R. Weiss, and M. R. Denison. Single-amino-acid substitutions in open reading frame (ORF) 1b-nsp14 and ORF 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice. J. Virol. 79:3391-3400. 2005.

- Toro, H., J. W. Jackwood, and V. L. van Santen. Genetic diversity and selection regulates evolution of infectious bronchitis virus. Avian Dis. 56:449-455. 2012.
- 33. Toro, H., P. Lavaud, P. Vallejos, and A. Ferreira. Transfer of IgG from serum to lachrimal fluid in chickens. Avian 5 Dis. 37:60-66. 1993.
- 34. Toro, H., D. Pennington, R. A. Gallardo, V. L. van Santen, F. W. van Ginkel, J. F. Zhang, and K. S. Joiner. Infectious bronchitis virus subpopulations in vaccinated chickens after challenge. Avian Dis. 56:501-508. 2012.
- 35. Toro, H., V. L. van Santen, L. Li, S. B. Lockaby, E. van Santen, and F. J. Hoerr. Epidemiological and experimental evidence for immunodeficiency affecting avian infectious bronchitis. Avian Pathol. 35:1-10. 2006.
- 36. van Ginkel, F. W., V. L. van Santen, S. L. Gulley, and H. ¹⁵ Toro. Infectious bronchitis virus in the chicken Harderian gland and lachrymal fluid: viral load, infectivity, immune cell responses, and effects of viral immunodeficiency. Avian Dis. 52:608-617. 2008.
- 37. van Santen, V. L., G. E. Thaxton, E. N. Ndegwa, R. A. ²⁰ Gallardo, and H. Toro. ArkDPI-derived IBV vaccines and their subpopulations selected in chickens: differences outside the S gene VII. International Symposium Avian Corona- and Pneumoviruses and Complicating Pathogens. pp. 94-97. Rauischholzhausen, Germany. 2012. ²⁵
- van Santen, V. L., and H. Toro. Rapid selection in chickens of subpopulations within ArkDPI-derived infectious bronchitis virus vaccines. Avian Pathol. 37:293-306. 2008.
- 39. Villegas, P. Titration of biological suspensions. In: A ³⁰ laboratory manual for the isolation, identification and characterization of avian pathogens. L. Dufour-Zavala, D. E. Swayne, J. Glisson. M. W. Jackwood, J. E. Pearson. W. M. Reed, and P. R. Woolcock, eds. American Association of Avian Pathologists, Athens, Ga. pp. 217-221. 2008.
- 40. Wang. G., G. Chen, D. Zheng, G. Cheng, and H. Tang. PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon signaling pathway. PloS ONE 6:17192. 2011.
- 41. Zheng. D., G. Chen. B. Guo, G. Cheng, and H. Tang. 40 PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res. 18:1105-1113. 2008.
- 42. Zust, R., L. Cervantes-Barragan, T. Kuri. G. Blakqori, F. Weber. B. Ludewig, and V. Thiel. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. PLoS Pathog 3:e109. 2007.

Example 2—Kidney Cell-Adapted Infectious Bronchitis ArkDPI Vaccine Confers Effective Protection Against Challenge

Abbreviations

Ark=Arkansas; CEK=chicken embryo kidney; CEKp7-55 Ep1=seven passages in CEK and one passage in chicken embryo; DPI=Delmarva Poultry Industry; EID50=50% embryo infectious dose; IBV=infectious bronchitis virus; NSP=non-structural protein; qRT-PCR=quantitative RT-PCR; RT-PCR=reverse transcriptase PCR; S=spike; 60 SPF=specific pathogen free

Summary

We previously demonstrated that adaptation of an embryo-attenuated infectious bronchitis Arkansas Delmarva Poultry Industry (ArkDPI)-derived vaccine to chicken 65 embryo kidney (CEK) cell shifted the virus population towards homogeneity in spike (S) and non-structural protein

28

(NSP) genes. Moreover, the typical Ark subpopulations emerging in chickens vaccinated with commercial Ark vaccines were not detected in chickens vaccinated with the CEK-adapted virus. In this study, chickens vaccinated with a low dose (1.6×10³ EID₅₀/bird) of CEK-adapted Ark vaccine at 5 days of age showed a significant reduction of IBV RNA in the lachrymal fluids and decreased incidence of IBV RNA detection in tracheal swabs 5 days after challenge compared to unvaccinated challenged chickens. In a second experiment 5-day-old chickens were vaccinated with 10⁴ or 10⁵ EID₅₀/chicken of CEK-adapted Ark and protection was compared to chickens vaccinated with 10⁵ EID₅₀/chicken of the commercially available ArkDPI-derived vaccine. All vaccinated chicken groups showed a significant reduction of respiratory signs and viral load 5 days after Ark virulent challenge compared to unvaccinated-challenged controls. No subpopulations different from the challenge virus were detected in chickens vaccinated with CEK-Ark after challenge. In contrast. IBV S1 sequences differing from the predominant in the challenge virus were detected in chickens vaccinated with the commercial Ark attenuated vaccine. From an applied perspective, the CEK-adapted IBV ArkDPI-derived vaccine is an improved and effective vac-25 cine candidate to protect chickens against virulent Ark-type strains.

Background Information

In the United States IBV Arkansas (Ark)-type wild and vaccine-like strains have accounted for more than 50% of IBV respiratory disease in chickens during the last decade and beyond (7,9,12,15). The high prevalence of Ark viruses occurs despite extensive vaccination with different commercial embryo-attenuated Ark vaccines which all originate from the same Ark Delmarva Poultry Industry (DPI) IBV isolate. ArkDPI-derived vaccine viruses show increased persistence in commercial broilers compared to IBV vaccines belonging to other serotypes (8) which increases the opportunities for viral recombination and/or mutation. Furthermore, gene sequence analyses have revealed ArkDPIderived vaccines containing multiple viral minor subpopulations which become predominant in the chickens after vaccination (9,18). These viral subpopulations, which show distinct behaviors in chickens (3,4,10,11), likely provide a source for the emergence of vaccine-like viruses commonly isolated from broiler respiratory disease. Finally, the varying proportions of viral subpopulations contained in the commercial Ark-derived vaccines influence the vaccine replication ability in the host and subsequently induced immune responses. Weaker immune responses after Ark vaccination 50 have been shown to result in rise of virus subpopulations from a wild Ark challenge virus (14), a phenomenon that might also contribute to emergence of novel Ark variants.

IBV evolves by natural selection, i.e. generation of genetic diversity from mutation and recombination events followed by selection of the most fit IBV phenotypes (13). We previously investigated genetic and phenotypic changes associated with adaptation of an embryo-attenuated IBV ArkDPI-derived vaccine virus to chicken embryo kidney (CEK) cells. The virus population shifted towards homogeneity in spike (S) and nonstructural (NSP) genes after seven passages in CEK. Based on S gene sequencing the changes of the predominant Ark population after CEK adaptation were not reverted after one back-passage in embryonated chicken eggs nor after a passage in chickens (6). Because of the advantages of this more stable and homogeneous CEK-adapted ArkDPI virus, this study was aimed at evaluating its ability to confer protection against homologous challenge.

Materials and Methods Chickens.

White leghorn chickens hatched from specific pathogen free (SPF) fertile eggs (Sunrise Farms, Catskill, N.Y.) were used in two experiments. Hatched chickens were maintained in Horsfall-type isolators in biosafety level 2 facilities. Experimental procedures and animal care were performed in compliance with all applicable federal and institutional animal use guidelines. Auburn University College of Veterinary Medicine is an Association for Assessment and Accreditation of Laboratory Animal Care-accredited institution.

Viruses. The previously described CEK passage 7ArkDPI vaccine virus subjected to one additional passage in embryonated chicken eggs (CEKp7-Ep1) (6) was used a 3 different 15 dose levels as indicated in the experimental design below. In the second experiment a commercially available ArkDPItype embryo-attenuated vaccine, from which the CEKadapted virus originated, was used as an additional control. An IBV Ark-type virulent strain (GenBank accession 20 #JN861120) previously described (2) was used for challenge purposes. Viruses were titered in embryonated chicken eggs as generally accepted (5,19) but in addition to embryo macroscopic changes, we used the embryo weight and detection of IBV RNA in embryo kidneys to determine virus 25 replication and subsequently calculate the virus titer. In brief, embryos were evaluated macroscopically for IBV typical changes which are usually obvious at lower dilutions of the virus. Live embryos without obvious lesions were weighed and considered positive if the value fell below 2 standard deviations of the average of uninfected controls. Finally, kidney samples were obtained from embryos inoculated with higher virus dilutions and presence of IBV RNA determined by RT-PCR as previously described (17). Thus, the titration method is more sensitive than the generally 35 accepted method. Vaccinations and challenge were performed with a total volume of 100 µl of virus stock; i.e., each bird was inoculated with 25 µl in each nostril and each eye.

Experiment 1

Experimental Design

Two groups of chickens were established. Chickens in group 1 (n=14) were vaccinated with 1.6×10^3 EID₅₀/bird of CEKp7-EP1 at 5 days of age. Chickens in group 2 (n=17) 45 were the unvaccinated controls. Chickens of groups 1 and 2 were challenged 23 days after vaccination with $10^{5.0}$ EID₅₀/ bird 100 µl of virulent IBV Ark. An additional non-vaccinated/non-challenged chicken group (n=10) served as the negative control. Protection conferred by CEKp7-EP1 was 50 evaluated 5 day after challenge by relative viral load in the tears by qRT-PCR and incidence of detectable IBV RNA in the trachea detectable by RT-PCR. Extraction of RNA from lachrymal fluids and tracheal swabs was performed with the Qiagen QIAamp viral RNA mini kit (Qiagen, Valencia, 55 Calif.). Relative viral load in lachrymal fluids was determined by Tagman® quantitative reverse transcriptase PCR (qRT-PCR) (1) using Bio-Rad CFX96 Real-Time PCR detection system to quantitate viral RNA. The incidence of detectable IBV RNA in tracheal swabs was determined by 60 conventional RT-PCR detecting the N gene as previously described (15).

Experiment 2

Four chicken treatment groups were established (each n=18). Chickens in group 1 were vaccinated with 10⁵

30

EID₅₀/bird of a commercially available ArkDPI-type vaccine at 5 day of age. Chickens in groups 2 and 3 were vaccinated with 10⁴ EID₅₀/bird and 10⁵ EID₅₀/bird of CEKp7-EP1 at 5 days of age respectively. Chickens in group 4 served as non-vaccinated/challenged controls. All birds were challenged 15 day after vaccination with 10^{5.0} EID₅₀/ bird 100 µl of the virulent IBV Ark. An additional nonvaccinated/non-challenged chicken group (n=10) served as the negative control. Protection against challenge was evaluated 5 days after challenge by clinical signs, viral load, and tracheal histopathology. Respiratory rales (nasal and/or tracheal) were evaluated blindly by close listening to each bird and scored as 0 (absent), 1 (mild), 2 (moderate), or 3 (severe) as described (15). Viral load in tears was determined by qRT-PCR as described above for tears (15,16). In addition, IBV RNA obtained from chickens vaccinated with the commercial Ark vaccine or CEK7Ep1 after challenge was submitted for spike gene (S1) sequencing performed as previously described (14). In addition, the spike (S1) gene sequence of IBV RNA obtained from tears after challenge from chickens vaccinated with the commercial Ark vaccine or CEK7-Ep1 was determined as previously described (14). Finally, tracheal histopathology was evaluated and histomorphometry was performed essentially as previously described (15,16). In brief, necrosis and deciliation in the tracheal mucosa were evaluated blindly and scored 1 through 5 based on severity (i.e., normal, mild, moderate, marked, severe). Histomorphometry was performed on a single digitally photographed microscopic field (200x magnification) containing a representative longitudinal section of the cranial one-third of the tracheal mucosa and the supporting cartilage ring. Histomorphometric data for mucosal thickness and lymphocyte infiltration were collected using the ImageJ morphometry program (rsb.info-.nih.gov/ij/download.html). Five measurements were performed at regular intervals along the length of a single tracheal ring with the linear tool. Values for each chicken group were analyzed by one-way ANOVA followed by Tukey multiple comparisons test. Differences were consid-40 ered significant with P values of <0.05.

Results

The results of experiment 1 are shown in FIG. 4. As seen in FIG. 4, chickens vaccinated with CEKp7-Ep1 at 5 day of age showed a significant reduction of viral load in the lachrymal fluids (FIG. 4A) and a significant reduction of the incidence of IBV RNA in the tracheas (FIG. 4B) 5 days after challenge compared to unvaccinated challenged controls.

The results of experiment 2 are shown in FIGS. 5-7. As seen in FIG. 5, all vaccinated chickens, i.e., chickens vaccinated with the commercial ArkDPI-derived vaccine, as well as chickens vaccinated with CEKp7-Ep1 at 2 different dosage levels, were protected from respiratory signs 5 days after challenge (FIG. 5A), while unvaccinated controls showed severe respiratory disease. Similarly, both vaccines significantly reduced the IBV viral load in the lachrymal fluids (FIG. 5B) compared to unvaccinated challenged controls 5 days after challenge. Moreover, chickens vaccinated with 10⁵ EID₅₀ of CEKp7-EP1 showed a significantly lower viral load in tears compared to chickens vaccinated with the lower dose (10⁴ EID₅₀/chicken) of this virus. Both vaccines also eliminated detection of viral RNA in tracheal swabs by qRT189 PCR 5 days after challenge in all but at most one chicken per vaccinated group, compared to detection of challenge virus in tracheas of 44% of unvaccinated challenged chickens (FIG. 5C). Consistent with results of viral load and clinical signs, both tracheal histomorphometry (FIG. 6) and histopathology (FIG. 7) showed that all vac-

cines protected similarly without significant differences, based on tracheal mucosal thickness (FIG. 6A) lymphocyte infiltration (FIG. 6B) and tracheal lesion scores (FIG. 7 A,B,C) compared to unvaccinated challenged chickens.

31

IBV populations based on S1 sequences recovered 5 days 5 after challenge from the tears of chickens vaccinated with the Ark commercial vaccine are shown in Table 6.

or chickens (6). Results of the present vaccination/challenge study indicate effective protection against challenge following immunization with the CEK-adapted virus. No adverse clinical vaccine reactions were detected in vaccinated chickens and when used at the same dose or even a 10-fold lower dose than the commercial vaccine, protection was as effective. Moreover, the CEKp7Ep1 Ark vaccine successfully

TABLE 6

Predominant virus populations identified in chickens 5 days after challenge at 20 days-old with a wild type Ark IBV strain. Chickens had been vaccinated at 5 days of age with a commercial ArkDPI-type IBV vaccine.

Number of S1 AA position ⁴										
chickens B	56	76	95	95	95	115	144	160	171	Population C
14	Asn	Phe	Ser	Ser	Ser	Phe	Thr	Pro	His	P1
1	Asn	Phe	Ser	Ser	Ser	Phe	Thr	Leu/Pro	His	P2/P1
1	Ser	Leu	Asn	Asn	Asn	Tyr	Met	Pro	Tyr	$P5^D$
1	Ser/Asn	Leu/Phe	Asn/Ser	Asn/Ser	Asn/Ser	Tyr/Phe	Met/Thr	Pro	Tyr/His	P5/P1

^AOnly amino acid positions where viral populations recovered differ are shown. Bold letters indicate amino acids different from challenge only amino acid positions where viral populations recovered differ are shown. Bold letters indicate amino acids different from challenge virus major population (P1).

Tears from one of the 18 chickens in the group vaccinated with commercial ArkDPI-type vaccine and challenged with wild Ark IBV strain did not yield an S1 sequence.

Virus populations as designated in Toro et al., 2012 (14).

As seen in Table 6, while IBV recovered from most chickens had S1 sequences identical to the challenge virus, subpopulations differing from the predominant population of the challenge virus predominated in 3 chickens vaccinated with the commercial Ark vaccine. The IBV S1 30 sequences found correspond to two distinct populations detected in chickens vaccinated with Ark attenuated vaccines in a previous study, which were designated P2 and P5 (14). In contrast, no subpopulations different from the challenge virus were detected in chickens vaccinated with 35 CEKp7-Ep1.

Discussion

Genetic heterogeneity has been demonstrated among commercial IBV Ark serotype vaccines from different manufacturers (9,18) and different production stocks (9) 40 despite being derived from the same ArkDPI original IBV isolate. Selection of distinct ArkDPI phenotypes has also been reported after replication of IBV ArkDPI-derived vaccines in chickens (4,9,18). Additionally, new Ark-like isolates continue to emerge (7). We previously compared the 45 effectiveness of three ArkDPI-derived attenuated vaccines from different companies to protect against Ark virulent challenge (14). These vaccines differed in the proportion of subpopulations prior to selection in the host and behaved differently in terms of vaccine viral load and respiratory 50 reactions (10). Vaccinated chickens were protected against challenge but slight differences in the severity of signs and lesions were observed. In addition, chickens in the group with the strongest immune response were able to successfully impede replication of the challenge virus in most 55 chickens, and only the population predominant in the challenge strain was detected in a few IBV-positive birds. In contrast, in groups showing less than optimal specific immune responses, IBV was detected in most chickens, and subpopulations different from the predominant one in the 60 challenge strain were selected and became predominant. Therefore, improvement of this type of vaccine is necessary.

Adaptation of an embryo attenuated IBV ArkDPI-derived vaccine to CEK cell culture shifted the virus population towards homogeneity in S and NSP genes, and the changes achieved in the S1 gene in CEK-adapted virus were maintained after one back-passage in embryonated chicken eggs

reduced replication of the challenge virus, and only the virus population predominant in the challenge strain was detected. Therefore, the homogeneous kidney cell-adapted IBV ArkDPI-derived vaccine (CEKp7-Ep1) offers an improvement/refinement of current ArkDPI-derived vaccines by both eliminating emergence of vaccine subpopulations after vaccination and eliminating subpopulations after wild Ark challenge.

REFERENCES

- 1. Callison, S. A., D. A. Hilt, T. O. Boynton, B. F. Sample, R. Robison, D. E. Swayne, and M. W. Jackwood. Development and evaluation of a real-time tagman rt-PCR assay for the detection of infectious bronchitis virus from infected chickens. J. Virol. Methods 138:60-65. 2006.
- 2. Gallardo, R. A., F. J. Hoerr, W. D. Berry. V. L. van Santen, and H. Toro. Infectious bronchitis virus in testicles and venereal transmission. Avian Dis 55:255-258. 2011.
- 3. Gallardo. R. A., V. L. van Santen, and H. Toro. Effects of chicken anemia virus and infectious bursal disease virusinduced immunodeficiency on infectious bronchitis virus replication and genotypic drift. Avian Pathol. 41:451-458. 2012.
- 4. Gallardo, R. A., V. L. van Santen, and H. Toro. Host intraspatial selection of infectious bronchitis virus populations. Avian Dis. 54:807-813. 2010.
- 5. Gelb, J., Jr., and M. W. Jackwood. Infectious bronchitis. In: A laboratory manual for the isolation, identification and characterization of avian pathogens. L. Dufour-Zavala, D. E. Swayne. J. R. Glisson, J. E. Pearson, W. M. Reed. M. W. Jackwood, and P. R. Woolcock, eds. American Association of Avian Pathologists, Athens, Ga. pp 146-149. 2008.
- 6. Ghetas, A. M., G. E. Thaxton. C. Breedlove. V. L. v. Santen, and H. Toro. Effects of Adaptation of Infectious Bronchitis Virus Arkansas Attenuated Vaccine to Embryonic Kidney Cells. Avian Dis. 59:106-113. 2015
- 7. Jackwood, M. W., D. A. Hilt. C. W. Lee, H. M. Kwon, S. A. Callison. K. M. Moore, H. Moscoso. H. Sellers, and S. Thayer. Data from 11 years of molecular typing infectious bronchitis virus field isolates. Avian Dis. 49:614-618. 2005.

32

^DThe virus population designated P5 in Toro et al.. 2012 (14) was a mixture of at least two distinct populations. The virus population designated P5 here contains only one of those two populations.

- Jackwood, M. W., D. A. Hilt, A. W. McCall, C. N. Polizzi. E. T. McKinley, and S. M. Williams. Infectious bronchitis virus field vaccination coverage and persistence of Arkansas-type viruses in commercial broilers. Avian Dis. 53:175-183, 2009.
- McKinley, E. T., D. A. Hilt, and M. W. Jackwood. Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination. Vaccine 26:1274-1284. 2008.
- Ndegwa, E. N., K. S. Joiner. H. Toro, F. W. van Ginkel, and V. L. van Santen. The proportion of specific viral subpopulations in attenuated ArkDPI infectious bronchitis vaccines influences vaccination outcome. Avian Dis. 56:642-653. 2012.
- 11. Ndegwa, E. N., H. Toro, and V. van Santen. Comparison of vaccine subpopulation selection, viral loads, vaccine virus persistence in trachea and cloaca, and mucosal antibody responses after vaccination with two different Arkansas Delmarva Poultry Industry-derived infectious 20 bronchitis virus vaccines Avian Dis 58:102-110. 2014.
- 12. Nix, W. A., D. S. Troeber, B. F. Kingham, C. L. Keeler, Jr., and J. Gelb, Jr. Emergence of subtype strains of the Arkansas serotype of infectious bronchitis virus in Delmarva broiler chickens. Avian Dis. 44:568-581. 2000.
- Toro, H., J. W. Jackwood, and V. L. van Santen. Genetic diversity and selection regulates evolution of infectious bronchitis virus Avian Dis. 56:449-455. 2012.
- 14. Toro, H., D. Pennington, R. A. Gallardo, V. L. van Santen, F. W. van Ginkel, J. F. Zhang, and K. S. Joiner. 30 Infectious bronchitis virus subpopulations in vaccinated chickens after challenge Avian Dis. 56:501-508. 2012.
- Toro, H., V. L. van Santen, L. Li, S. B. Lockaby, E. van Santen, and F. J. Hoerr. Epidemiological and experimental evidence for immunodeficiency affecting avian infectious 35 bronchitis. Avian Pathol. 35:1-10. 2006.
- 16. Toro, H., J. F. Zhang, R. A. Gallardo, V. L. v. Santen, F. W. v. Ginkel, K. S. Joiner, and C. Breedlove. S1 of Distinct IBV Population Expressed from Recombinant Adenovirus Confers Protection Against Challenge. Avian 40 Dis 58:211-215. 2014.

34

- 17. van Ginkel, F. W., V. L. van Santen, S. L. Gulley, and H. Toro. Infectious bronchitis virus in the chicken Harderian gland and lachrymal fluid: viral load, infectivity, immune cell responses, and effects of viral immunodeficiency. Avian Dis. 52:608-617. 2008.
- van Santen, V. L., and H. Toro. Rapid selection in chickens of subpopulations within ArkDPI-derived infectious bronchitis virus vaccines. Avian Pathol. 37:293-306. 2008
- Villegas, P. Titration of biological suspensions. In: A laboratory manual for the isolation, identification and characterization of avian pathogens. L. Dufour-Zavala. D. E. Swayne, J. R. Glisson, J. E. Pearson, W. M. Reed, M. W. Jackwood, and P. R. Woolcock, eds. American Association of Avian Pathologists, Athens, Ga. pp 217-221. 2008

It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention. Thus, it should be understood that although the present invention has been illustrated by specific embodiments and optional features, modification and/ or variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this

Citations to a number of patent and non-patent references are made herein. The cited references are incorporated by reference herein in their entireties. In the event that there is an inconsistency between a definition of a term in the specification as compared to a definition of the term in a cited reference, the term should be interpreted based on the definition in the specification.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 6
<210> SEQ ID NO 1
<211> LENGTH: 27636
<212> TYPE: DNA
<213> ORGANISM: Infectious Bronchitis Virus
<400> SEQUENCE: 1
acttaagata gatattaata tatatctatt gcactagcct tgcgctagat ttccaactta
acaaaacgga cttaaatacc tacagctggt ccccataggt gttccattgc agtgcacttt
                                                                      180
aqtqccctqq atqqcacctq qccacctqtc aqqtttttqt tqttaaaata tcattqttqc
tggtatcact gcttgttttg ccgtgtctca ctttatacat ccgttgcttg ggctacctag
                                                                      240
                                                                      300
tatecagegt cetaegggeg cegtggtegg ttegagtgeg aaggacetet ggtteateta
                                                                      360
gcggtaggcg ggtgtgtgga agtagcgctt cagacgtact ggttctgttg cgtgaaacgc
qqqqtcacct cccccacat acctctaaqq qcttttqaqc ctaqcqttqq qctacqttct
                                                                      420
cgcacaaggt cggctatacg acgtttgtag ggggtagtgc caaacaaccc ctgaggtgac
                                                                      480
                                                                      540
aggttctqqt qqtqtttaqt qaqcaqacat acaataqaca qtqacaacat qqcttcaaqc
```

ctaaaacagg	gagtatctcc	caaaccaagg	gatgtcattc	ttgtttccaa	agacattccc	600
gaacaactct	gtgacgcttt	atttttctac	acgtcacata	accctaagga	ttacgctgat	660
gcttttgcat	ttaggcaaaa	gtttgaccgt	aatctgcaga	ctgggaagca	gttcaaattt	720
gaaactgttt	gtggtctctt	cctattgaag	ggagttgaca	aaataacacc	tggcgtccca	780
gcaaaagttt	taaaagccac	ttctaagttg	gcagatttag	aagacatctt	tggtgtctct	840
ccttttgcac	ggaagtaccg	tgaattgttg	aaaacagcat	gccagtggtc	tcttactgta	900
gaaacactgg	atgetegtge	acaaacgctt	gacgaaattt	ttgactctac	tgaaatactt	960
tggcttcagg	tggctgcaaa	aattcaagtt	tcagctatgg	caatgcgcag	gcttgttgga	1020
gaagtaactg	caaaagtcat	ggaagctctt	ggctcaaatt	tgagtgttct	ctttcaaatt	1080
gttaaacaac	aaatagccag	aatctttcaa	aaggcactgg	ctatttttga	aaatgtgagt	1140
gaattaccac	agcgtattgc	agcacttaag	atggcctttg	ccaagtgtgc	caagtcaatt	1200
actgttgtgg	ttgtggaaag	aactctagtt	gttagagagt	tcgcaggaac	ttgtcttgca	1260
agcatcaatg	gtgctgttgc	aaaattcttt	gaagaacttc	caaatggctt	catgggttct	1320
aaaatcttca	caacattggc	cttctttaaa	gaagcagctg	tgaaaattgt	ggaaaatata	1380
ccaaatgcac	caagaggtac	tagaggtttt	gaagtcgttg	gtaacgccaa	gggaacgcaa	1440
gttgttgtgc	gtggcatgcg	aaatgattta	actctgctcg	accaaaaagc	tgacattcct	1500
gttgagaaag	aaggttggtc	tgcaattctt	gaaggacatc	tgtgttatgt	ctttaagagt	1560
ggtgatcgtt	tttatgcggc	acctctttct	gggaattttg	cattgcatga	tgtgcattgt	1620
tgtgagcgtg	ttgtctgtct	gtctgatggt	gtaacaccag	agataaatga	tggactcatt	1680
ctagcagcaa	tctattcatc	ttttagtgtc	tcagaactcg	tggcagcact	taaaaagggt	1740
gaaccattca	agttcttggg	tcataaattt	gtgtatgcga	aggatgcagc	agtctctttc	1800
actcttgcaa	aagcagccac	tattgcagat	gtactgaagc	tgtttcaatc	agctcgtgtg	1860
caaacggaag	atgtgtggtc	tgcatttact	gaaaagtett	ttaatttctg	gaaactcgca	1920
tatggaaaag	tgcgtaatct	tgaagaagtt	gtgaagactc	atttttgtaa	agctcaaatg	1980
tcaattatca	ttctagcagc	agtgettgge	gaaggcattt	ggcatcttgt	ttcacaggtc	2040
atctataaag	taggtggtct	ttttactaga	gtcgttgact	tttgtgaaaa	acactggaag	2100
ggtttctgtg	cacaacttaa	aaaggctaag	ctcgttgtca	cagaaactct	ttgtgttctt	2160
aagggagtgg	cacagcattg	ttttcaacta	ttgctggatg	caatacattc	tttgtatatg	2220
agttttaaga	agtgtgcact	tggtagaatt	catggagact	tactcttctg	gaaagggggt	2280
gtacacaaaa	ttgttcaaga	tggcgatgaa	gtttggtttg	acgccattga	tagtattgat	2340
gttgaagatc	tgggtgttgt	ccaagaaaaa	cccatagatt	ttgaggtttg	tgaagacgta	2400
acacttccag	aaaatcaacc	tggtcatatg	gttcaaatcg	aggatgacgg	aaagaactat	2460
atgttcttcc	gcttcaaaag	ggatgagaac	atctactata	caccaatgtc	tcaacttggt	2520
gtaattaatg	tagtttgcaa	agcaggcggt	aaaaccgtta	cctttggaga	caccattgtg	2580
aaagaaatac	cgccacctga	tgttgtgcct	attaaggtta	gcatagagtg	ttgtggtgaa	2640
ccatggaata	caatcttcaa	gaaagcttat	aaagagccca	ttgaagttga	aactgacctc	2700
acagtagaac	aattgctctc	tgtgatctat	gagaaaatgt	gcgacgacct	caaattgttt	2760
ccagaggcac	cagagccacc	gccatttgag	aatgtcgcac	ttgttgataa	aaacggtaaa	2820
gacttggatt	gcataaaatc	atgccatctt	atctaccgtg	attatgagag	tgatgatgac	2880

atcgaggaag	aagatgctga	ggagtgtgat	actgatttag	aatgtgaaga	agaggatgag	2940
gatactaaag	tgttggctct	tatacaagac	cctgcaagta	ataaataccc	tcttcctctt	3000
gatgatgatt	atagcgtctt	taatggatgt	attgtacata	aggacgctct	tgacgtcgta	3060
aatctaccat	ctggtgaaga	aacctttgtt	gtcaacaact	gctttgaggg	agctgtaaaa	3120
ccactgcctc	agaaagttgt	tgatgttcta	ggtgactggg	gtgaggctgt	tgatgcgcaa	3180
gagcaaattg	cacaaactac	ttcagaggaa	acccctatca	gtagtttgga	ggcaactatt	3240
gagcaagttg	ttgttgagga	acagaaaata	atttctgttg	ttgaagaaga	acagcaggtg	3300
gcggtctaca	cacctgcaga	cctacaagtt	gttgaagaaa	caccagatga	gtttattctt	3360
actgctgatg	tttccacaga	agaaattgtg	cctcatgaag	aaaaggagtc	acagattgaa	3420
caggagccta	ttcaagttgt	taaatcacaa	cgtgaaaaga	aggctaaaaa	gttcaaggtt	3480
aaatctacta	catgtgagaa	acccaaattt	ttggagtaca	caacatgtgt	gggtgaccta	3540
acggtagtga	ttgccaaagc	attggatgag	tttaaagagt	tctgcattgt	aaatgctgct	3600
aatgagcata	tgtctcacgg	tggcggcgtt	gctaaggcaa	ttgcggactt	ttgtggacct	3660
gattttgtgg	agtattgtga	ggactatgtt	aagaaacatg	ggcctcaaca	aagacttgtc	3720
acaccttcat	ttgtcaaagg	cattcaatgt	gtgaacaatg	ttgtaggacc	tcgccatgga	3780
gacagtaact	tgcatgataa	gcttgttgct	gcttacaaga	atgttcttgt	agatggtgtt	3840
gtcaattatg	ttgtgccagt	cctctcatca	ggaatttttg	gtgttgattt	taagatgtct	3900
atagacgcta	tgcgcaaggc	ttttgaaggt	tgcgacatac	gcgttcttct	tttctccttg	3960
tctcaagaac	acatcgatta	tttcgatgtt	acttgtaaac	agaagacaat	ttatcttaca	4020
gaggacggtg	ttaaataccg	ctctgctact	gtgaaaccag	gtgactcttt	gagtcaattt	4080
ggaccggttt	ttgctagaaa	caagacagtc	tttacagcag	acgatgttga	ggataaagaa	4140
attctcttca	ttcctactac	tgacaagact	gtccttgaat	attatgggtt	ggatgcgcaa	4200
aagtatgtaa	tatacttgca	aactcttgca	cagaagtgga	atgtccaata	tagggacaat	4260
tttgttatac	ttgagtggcg	tgatggaaat	tgctggatta	atgcagcagt	agtgctcctt	4320
caagctgcta	agattaggtt	taaaggtttt	cttgcagaag	catgggcaca	acttttgggt	4380
ggagacccaa	ctgattttgt	agcctggtgc	tatgcaagtt	gcaatgctaa	tgttggtgag	4440
ttttcagatg	ctaattggct	tcttgctaat	ttggcagaat	actttgatgc	tgattacacg	4500
aatgcattcc	ttaagaggcg	tgtgtcatgt	aactgtgggg	ttaagaattg	tgaagttaga	4560
ggccttgaag	cttgtattca	accagtaaag	gcacccaatc	ttcttcattt	taagactcag	4620
tacacaaatt	gtacagtgtg	tgatgcaaat	agtgtggatg	aggtggtaga	agcctcacta	4680
ccatatctgt	tgctccttgc	tactgatggt	cctactacag	tggattgtga	tgaaaatgct	4740
gtagggaatg	ttgttttcat	tggctctact	aatagtggcc	attgttacac	gcaagccatt	4800
ggtaaggctt	ttgataatct	tgctaaggat	agaaaatttt	caaagaattc	gccatacatt	4860
acagcaatgt	atacgcgctt	ctctcttaag	agtgaaagct	ctctgtctgt	tgttaaacag	4920
agtaagagta	aaactaaagt	agtaaaagaa	gatgttgcca	accttgctac	tagttctaaa	4980
gccagttttg	atgatcttac	tgactttgaa	cattggtatg	atagtaacat	ctatgaaagt	5040
cttaaagttc	aggaaatacc	tgtgaatttg	gatgagtatg	tgtcatttac	aacgaaagaa	5100
gatactaagt	tgccactgac	acttaaagtt	agaggtatca	aatcagttgt	tgactttatt	5160
	gtttctctta					5220
	cagtettaga					5280
				5555-54	555-5-6	

aattttgttg	ttggtcatcc	aaactactat	agtaagtctc	ttcgcattcc	tactttttgg	5340
gaaaatgcag	agagctttgt	taagataggt	gacaaagttg	atggtgtaac	tatgggcctt	5400
tggcgtgcag	aacatcttaa	caaacctaat	cttgaaagaa	ttttcaacat	tgctaagaaa	5460
gctattgttg	gatccagtgt	tgttactaca	caatgtagta	aattaattag	taaagcagct	5520
acattcattg	ctgataaagt	aggtggggt	gtagttcgta	atattacaga	tagaattaag	5580
ggtctttgtg	gatttacacg	tgggcatttt	gaaagaaaat	tgtctccaca	attcataaaa	5640
acacttatat	tcttcttctt	ttactttgta	aaggctagtg	ctaagagtgt	tgccactagt	5700
tataagcgtg	tgttatgtaa	ggtggttttt	accacgctat	ttatattatg	gtttatgtac	5760
acaagtaaac	cagtaacttt	tactggaaca	cgtgtgctag	acttcttatt	tgagggttct	5820
ttatgtggtc	cctataatga	ctatggtaaa	gactcatttg	acgtactacg	ctattgtgga	5880
gatgatttta	cttgtcgtgt	atgtttacat	gataaagatt	cacttcattt	gtataagcat	5940
gcttatagcg	tagaacaggt	ttataaagat	gcagcttctg	gcattagttt	taattggaat	6000
tggctttatt	tggtctttct	aatattattt	gttaaaccag	tagcaggttt	cgttattatt	6060
tgctattgtg	ttaagtactt	ggtattgagt	tcaactgtgt	tgcaaactgg	tgtaggtttt	6120
atggactggt	ttattcaaac	agtttttact	cactttaatt	ttatgggtgc	aggtttctat	6180
ttctggctct	tctataaatt	gtacatacag	gttcatcata	tactgtattg	taaggatata	6240
acatgtgaag	tgtgtaagag	agttgcacgc	agtaacaggc	atgaggttag	tgttgttgtt	6300
ggtggacgca	agcaaattgt	gcacgtgtac	actaactctg	gttacaactt	ttgtaagaga	6360
cataattggt	attgtaggaa	ttgtgatgta	tatggtcacc	aaaacacatt	tatgtctcct	6420
gaagttgctg	gcgagctttc	tgaaaagctt	aaacgccatg	ttaaacctac	agcacatgct	6480
taccacgttg	tggatgaggc	ttgcgtagtt	gatgattttg	ttaacttaaa	atacaaagct	6540
gcaactcctg	gtaaggatgg	tgcacctcct	gcagttaaat	gtttcagtgt	tacagatttc	6600
ttgaagaaag	ctgtttttct	taaggatgcg	ctgaaatgtg	aacaaatatc	taatgatggt	6660
tttatagtgt	gtaatacgca	gagtgcgcat	gctttagagg	aagcaaagaa	tgcagccatc	6720
tattatgcgc	aatacctgtg	taaacctata	cttatactcg	accaggcact	ctaccagaat	6780
ttaatagtgg	aacctgtatc	gaagagcgtt	gtcaacaaag	tgtgtgacat	tttgtctagg	6840
ataatttctg	tagatactgc	atctttggat	tataaagcag	gtacaattcg	tgatgccttg	6900
ctgtctgtta	ctaaagatga	agaagctgta	gatatggcta	tettetgtea	taatcatgaa	6960
gttgaatata	caggtgatgg	ttttactaat	gttataccgt	catatggtat	agacactgat	7020
aaattaacac	ctcgtgatag	agggtttttg	ataaatgcag	atgettetgt	tgctaactta	7080
agagttaaaa	atgeteegee	ggtagtatgg	aagttetetg	atcttattaa	gttgtctgac	7140
agttgtctta	aatatttaat	ctcagcaact	gtcaagtcag	ggtctcgttt	ctttataaca	7200
agatctggtg	ctaaacaaat	tttttcttgt	agtactcaga	aattgttggt	agagaaaaag	7260
gctggtggtg	tcgttagtgg	tacctttaat	tggtttaaga	gttgttgtaa	atggctcttg	7320
atcttctatg	tgctttttac	attgtgttgt	ttgggttgtt	atcatatgga	gacgaataaa	7380
agttttgttc	atcctatgta	tgatgttaac	tctacaatgc	atgttgaagg	ctttaaggtt	7440
atagataaag	gtgttattag	agacattgta	ccagaggatg	cttgtttctc	taataagttt	7500
gctaactttg	atgcattttg	gggtaaacca	tatgtgaata	gtagagactg	tccaattgtt	7560
acagcagtca	tagatggcgc	tggaacaata	gtagetggtg	ttcctggttt	tgtagactgg	7620

gttcttgatg	gtgttatgtt	tgtacacatg	acacaaacag	aaagaaaacc	ctggtacatt	7680
cccatgtggt	ttaacagaga	aattgttggt	tacactcagg	attcaattat	tactgaaggt	7740
agtttttata	catctatagc	tttgttttca	gctaggtgtt	tatatttaac	agccagcaat	7800
acaccacaat	tgtattgttt	taatggtcat	aatgatgctc	ctggagcctt	accatttagc	7860
agtatcactt	cacacagggt	ctacttccaa	ccaaatggtg	ttaggcttat	aattcctcaa	7920
caaataatgc	acacacccta	cgtagtaaag	tttttatcag	acagctattg	tagaggtagt	7980
gtatgtgagt	atactaaacc	gggttattgt	gtttcactaa	attcccaatg	ggttttattt	8040
aatgacgaat	acacaagtaa	accaggagta	ttctgtggtt	ctactgttag	agaacttatg	8100
tttaatatgg	ttagtacatt	ttttactggt	gtcaacccta	atatttatat	gcagctggcg	8160
actatgttct	taatactagt	tgttgttgtg	ttaatttttg	caatggttat	aaagtttcaa	8220
tgtgttttta	aagcttatgc	aaccattgtg	tttataataa	tgctagtttg	ggttgttaat	8280
gcatttattt	tgtgtgtaca	tagttataat	agtgttgtgg	ctgttatact	actagtaatc	8340
tattgttatg	catcattggt	tacaagtcgt	aatactgcta	taataatgca	ttgttggctt	8400
gtgtttacct	ttggtttaat	tgtacccata	tggttggcgt	gttgctacct	ggcatttgtt	8460
ttatatatgt	acacaccatt	gcttttctgg	tgttacggta	ctactaaaaa	tactcgtaag	8520
ttgtatgatg	gcaacgagtt	tgttggtaat	tatgaccttg	ctgcgaagag	cacttttgtt	8580
attcgtggta	ctgaatttgt	taagcttacg	aatgagatag	gtgataaatt	tgaatcctat	8640
ctttctgcgt	atgctagact	taaatattat	tcaggcactg	gcagtgagca	agattacttg	8700
caagcctgtc	gtgcatggtt	agcttatgct	ttggaccaat	atagaaatag	tggtgtggaa	8760
attgtgtata	ctccaccacg	ttactctatt	ggtgttagta	gattacaggc	tggttttaag	8820
aaactagttt	ttcctagtag	tgctgttgaa	aagtgcattg	ttagtgtctc	ttatagaggt	8880
aataatctta	atggactatg	gctaggtgat	actatctact	gtccgcgaca	tgttctaggc	8940
aagttttcag	gtgatcaatg	gagtgatgta	cttaatcttg	ctaataatca	tgagtttgag	9000
gttgcaactc	aaaatggtgt	tactttgaat	gttgttagta	ggcggttgag	aggcgcagtt	9060
ttaattttac	aaactgctgt	cgccaatgct	gacactccta	agtataagtt	tgttaaagct	9120
aattgtggtg	atagtttcac	tatagcttgt	tcttatggtg	gtacagttgt	gggactctac	9180
cctgttacta	tgcgttctaa	tggtactatt	agagettett	tccttgcagg	agcttgtggc	9240
tcagttggtt	ttaatataga	gaagggtgta	gttaatttct	tttatatgca	ccatcttgag	9300
ttacctaatg	cattacacac	tggaactgac	ctaatgggtg	atttctatgg	tggttatgtg	9360
gacgaagagg	ttgcacaaag	ggtgccacca	gataatttag	ttactaataa	tattgtagca	9420
tggctttatg	ccgcaattat	tagtgttaag	gagagtagtt	tctcactgcc	taaatggttg	9480
gagagtacta	ctgtcagtgt	tgaagactat	aataagtggg	ctggtgataa	tggttttaca	9540
ccattttcta	ctagtactgc	tattactaaa	ttaagtgcta	taacgggagt	agatgtttgt	9600
aaactccttc	gcactattat	ggtaaaaagt	agtcaatggg	gtagtgatcc	cattttagga	9660
caatataatt	ttgaagatga	attgacacca	gagtctgttt	tcaaccagat	aggtggtgtt	9720
aggttacagt	catctattgt	aagaagagtc	acatcttggt	tttggagtag	atgtgtgtta	9780
gcttgcttct	tatttgtgtt	gtgtgctatt	gtcttgttta	cggcagtacc	acttaaatac	9840
tatgtacatg	cagctgttat	tttgttaaca	gctgtacttt	ttatttcttt	tactgttaaa	9900
	catatatgga					9960
	aagtcccttt					10020
55-99	gcccccc	- acacacaac		Jeenageege	Laccocca	

agccaatggt	atgatcctgt	agtctttgat	actatggtac	catggatgtt	attgccatta	10080
gtgttgtaca	ctgcttttaa	gtgtgtacaa	ggttgctata	tgaattcttt	caatacttct	10140
ttgttaatgc	tgtatcagtt	tatgaagtta	ggttttgtta	tttacacctc	ttctaacact	10200
cttactgcat	atacagaagg	taattgggag	ttattttttg	agttagttca	cactactgtg	10260
ttggctaatg	ttagtagcaa	ttctttaatt	ggtctacttg	tgtttaagtg	tgctaagtgg	10320
atgttgtatt	attgcaatgc	aacatacttt	aataattatg	tgttaatggc	agtcatggtt	10380
aatggcatag	gctggctttg	tacttgttac	tttggattgt	attggtgggt	taataaggtt	10440
tttggtttaa	ctttaggtaa	atacaatttt	aaagtctcag	tagatcaata	taggtatatg	10500
tgtttgcata	agataaatcc	acctaaaact	gtgtgggaag	tcttttcgac	aaatatactt	10560
atacaaggaa	ttggtggtga	tcgtgtgttg	cctattgcta	cagttcaatc	taaattgagt	10620
gatgtaaagt	gtacaactgt	tgttttaatg	cagcttttga	ctaagcttaa	tgttgaagca	10680
aattcaaaaa	tgcatgctta	tcttgttgag	ttacacaata	aaatccttgc	atctgatgat	10740
gttggagagt	gcatggataa	tttgttgggt	atgcttatta	cactgttttg	tatagattct	10800
actattgatt	tgagtgagta	ttgtgatgat	atacttaaga	ggtcaactgt	cttacagtca	10860
gttactcaag	agttctcaca	cataccctct	tatgctgaat	atgaaagagc	taagaatctt	10920
tatgaaaagg	ttttaactga	ttctaaaaat	ggtggtgtaa	cacagcaaga	gcttgctgca	10980
tatcgtaaag	ctgccaatat	tgcaaagtca	gtttttgata	gagacttggc	tgttcaaaag	11040
aagttagaca	gcatggcaga	acgtgctatg	acaacaatgt	ataaagaggc	gcgtgtaact	11100
gatagacgag	caaaattagt	ttcatcacta	catgcgttac	tcttttcaat	gcttaagaaa	11160
atagattctg	aaaagcttaa	tgtcttattt	gatcaggcta	gtagcggtgt	tgtacctcta	11220
gctactgttc	caattgtttg	tagtaataag	cttacccttg	taataccaga	tccagaaact	11280
tgggtcaagt	gtgtggaagg	tatgcatgtt	acatattcaa	cagttgtttg	gaatatagac	11340
actgttattg	atgctgatgg	tacagagtta	catccaactt	ctataggtag	tggattgaca	11400
tactgtataa	gtggtgacaa	tatagcatgg	cctttaaagg	tcaacttgac	taggaatggg	11460
cataacaagg	ttgatgctgc	tttgcagaat	aatgagctta	tgcctcatgg	tgtaaaaaca	11520
aaggcttgcg	tagcaggtgt	agatcaagca	cattgtagcg	tagagtctaa	atgttattat	11580
acaaatatta	gtggcaattc	agttgtagct	gctattactt	cttcaaatcc	aaatctgaaa	11640
gtagcttcgt	ttttgaacga	ggcaggcaat	cagatttatg	tagacttaga	cccaccatgt	11700
aaatttggca	tgaaggtggg	tgacaaggtt	gaggttgttt	acttgtattt	tataaagaat	11760
acaaggtcga	ttgttagggg	tatggtactt	ggtgctatat	ctaatgttgt	tgtcttacag	11820
tctaaagggc	atgaaacaga	ggaagtggat	gctgttggca	ttctttcact	ttgctcattt	11880
gcagtagatc	ccgctgatac	atattgtaaa	tatgtggcgg	caggtaatca	acctttaggt	11940
aactgtgtta	aaatgttgac	agtacataat	ggtagtggct	ttgctataac	atcaaagcca	12000
agtccaactc	ctgatcagga	ttcttatgga	ggagcttctg	tgtgtctcta	ttgtagagca	12060
cacatagcac	acccaggagg	tgcaggaaat	ttagatggac	gttgtctatt	taaaggttct	12120
tttgtgcaaa	tacctactac	ggagaaagac	cccgtcggat	tctgtctacg	taataaggtt	12180
tgtactgttt	gtcagtgttg	gattggttat	ggctgtcagt	gcgatgcact	tagacaacct	12240
aaaccttttg	ttcagtcagt	tgctggtgca	tctgattttg	ataagaatta	tttaaacggg	12300
tacggggtag	cagtgaggct	cggctgatac	cccttgctag	tggatgtgat	cctgatgttg	12360

taaagcgagc	ctttgatgtt	tgtaataagg	aatcatctgg	tatgtttcga	aactttaagc	12420
gtaactgtgc	gagattccaa	gaagtacgtg	atactgaaga	tggaaatctt	gagtattgtg	12480
attcgtactt	tgtggttaaa	caaaccactc	ctagtaatta	tgaacatgag	cggtcttgtc	12540
acgaagactt	aaagtcagac	gtaatagccg	atcatgattt	ctttgtgttc	aataagaaca	12600
tttataatat	tagtaggcag	aggcttacta	aatatactat	gatggacttt	tgctacgctt	12660
tgaggcattt	tgacccaaag	gactgcgaag	ttcttaaaga	aatacttgtc	acttatggtt	12720
gtatagaaga	ttatcaccct	aagtggtttg	aagagaataa	ggattggtac	gacccaatag	12780
aaaacccaaa	atattatgcc	atgttggcta	aaatggggcc	tattgtacga	cgtgctctat	12840
tgaatgctat	tgagttcgga	aaccttatgg	ttgaaaaagg	ttatgttggt	gttgttacac	12900
ttgataacca	agatettaae	ggtaaatttt	atgattttgg	tgattttcaa	aaaacagcac	12960
ctggtgctgg	tgttcctgtt	tttgatacat	attattctta	catgatgccc	atcatagcca	13020
tgacggatgc	tttggcacct	gaaaggtatt	ttgaatatga	tgtgcataag	ggttataagt	13080
cttatgatct	cctcaagtat	gattatactg	aggagaaaca	agagttgttt	cagaaatact	13140
ttaagtattg	ggaccaggag	taccatccta	actgccgtga	ctgtattgat	gacaggtgtt	13200
tgatacattg	tgcaaacttc	aacatcttgt	tttctacact	gataccgcag	acttcttttg	13260
gtaatttgtg	tagaaaggtg	tttgttgatg	gtgtaccttt	tatagctact	tgtggctatc	13320
attccaaaga	acttggtgtt	attatgaatc	aagataacac	tatgtcgttc	tcaaaaatgg	13380
gtttaagtca	actcatgcag	tttgttggag	accetgeett	gttagtggga	acatccaata	13440
atttaatcga	tcttagaacg	tcttgtttta	gtgtttgtgc	attggcgtct	ggtattactc	13500
atcaaacggt	aaaaccaggt	cactttaaca	aggatttcta	tgattttgca	gagaaggctg	13560
gtatgtttaa	ggaaggttct	tctataccac	ttaaacattt	cttctaccct	cagactggta	13620
atgctgctat	aaacgattat	gattattatc	gttataacag	gcctaccatg	ttcgatatac	13680
gtcaacttct	attttgttta	gaagtgactt	ctaaatactt	tgaatgctat	gaaggegget	13740
gtataccagc	aagccaagtt	gtagttaata	atctagataa	gagegeagge	tacccattta	13800
ataagtttgg	aaaagcccgt	ctctattatg	aaatgagtct	agaggaacag	gaccaactct	13860
ttgagagtac	aaagaagaat	gtcctgccca	ctataactca	aatgaattta	aaatatgcca	13920
tatccgcgaa	aaatagagcg	cgtacagtgg	caggtgtgtc	tatcctttct	actatgacta	13980
ataggcagtt	tcatcagaag	attcttaagt	ctatagtcaa	cactagaaac	gctcctgtag	14040
ttattggaac	aaccaagttt	tatggcggtt	gggacaatat	gttgagaaac	cttattcagg	14100
gtgttgaaga	tccgattctt	atgggttggg	actatccaaa	gtgtgataga	gcaatgccaa	14160
atttgctacg	tatagcagca	tctttggtac	ttgctcggaa	acacactaac	tgttgtactt	14220
ggtctgagcg	catttatagg	ttgtataatg	aatgcgctca	ggttttatca	gaaactgtcc	14280
tagctacagg	tggtatttat	gtaaaacctg	gtggtactag	cagtggtgat	gctactactg	14340
cttatgcaaa	cagtgttttt	aatataatac	aagctacatc	tgctaatgtt	gcgcgtcttt	14400
tgagtgttat	aacgcgtgat	attgtttatg	atgacattaa	gagcctgcag	tatgagttgt	14460
accagcaggt	ttataggcga	gttaattttg	acccagcctt	tgtagaaaag	ttttattctt	14520
acttatgtaa	gaatttctct	ttgatgatct	tgtccgacga	cggtgttgtt	tgttataaca	14580
atacactagc	caaacaaggt	cttgtagcag	atatttctgg	ttttagagaa	gttctctact	14640
accaaaataa	tgtctttatg	tctgacgcta	aatgttgggt	ggaaccagat	ttagaaaaag	14700
	attttgttca					14760
	J	-	- 5 55		- -	

acttgccata	tccagaccct	tcacgcattt	taggtgcatg	tgtttttgta	gatgatgtgg	14820
ataagacgga	acctgtggct	gttatggagc	gttatatagc	tctagccata	gacgcttacc	14880
cgctagtaca	tcatgaaaat	gaggagtaca	agaaggtgtt	ctttgtgctt	ctttcataca	14940
tcagaaaact	ctatcaagag	ctttctcaga	atatgcttat	ggactactct	tttgtaatgg	15000
atatagacaa	gggtagtaaa	ttttgggaac	aggagttcta	tgagaatatg	tatagagete	15060
ctacgacttt	acaatcttgt	ggtgtctgtg	tagtttgtaa	tagtcaaact	atactgcgct	15120
gtggtaattg	tattcgcaaa	ccatttttgt	gttgtaaatg	ttgctatgac	catgtcatgc	15180
atacagacca	caaaaatgtt	ttgtctataa	atccatacat	ttgctcacag	cccggttgtg	15240
gcgaggcaga	tgttactaaa	ttgtacctcg	gaggtatgtc	atacttctgt	ggtaatcata	15300
aaccaaaatt	gtcaataccg	ttggtatcta	atggtactgt	ttttggaatt	tacagggcta	15360
attgtgctgg	tagcgaaagt	gttgatgatt	ttaatcaact	agctactact	aattggtcta	15420
ctgtggaacc	ttatattttg	gcaaatcgct	gtagtgactc	attgagacgc	ttcgctgcgg	15480
aaacagtaaa	agctacagag	gagttgcata	agcagcagtt	tgctagtgct	gaagtgcgag	15540
aagttctctc	agatcgtgag	ttgattctat	catgggagcc	aggtaaaact	aggcctccat	15600
tgaataggaa	ttatgtcttt	acaggctatc	actttacaag	aactagtaag	gtgcagcttg	15660
gtgattttac	atttgaaaaa	ggtgaaggta	aagatgttgt	ctattatagg	gcaacgtcca	15720
ctgctaaatt	gtctgttgga	gacatttttg	ttttaacttc	acgcaatgtt	gtttctcttg	15780
tagcaccaac	attgtgtcca	caacagacct	tttctaggtt	tgtaaactta	agacctaatg	15840
taatggtacc	agaatgtttt	gtgaacaaca	ttccactcta	ccatttagta	ggtaagcaga	15900
agcgtactac	agtacaaggt	cccccaggca	gtggtaaatc	acattttgct	ataggccttg	15960
cagcatactt	tagtaacgct	cgtgttgtct	ttactgcatg	ttctcatgca	gctgttgatg	16020
ctttatgtga	aaaagctttt	aagtttttaa	aagttgatga	ttgcactagg	atagtacctc	16080
aaagaactac	tatcgactgc	ttttcaaagt	ttaaagctaa	tgacacaggc	aaaaagtata	16140
tttttagtac	tataaatgcc	ttgccagaag	ttagttgtga	cattcttttg	gttgacgagg	16200
ttagtatgtt	gaccaattat	gaattgtctt	ttattaatgg	taagataaac	taccaatatg	16260
ttgtgtatgt	aggtgatccc	gctcaattac	cggcacctcg	taccttactt	aatggttcac	16320
tttcaccaaa	ggattataat	gttgtaacaa	accttatggt	ttgcgttaaa	cccgatatct	16380
tccttgcgaa	gtgttaccgt	tgtcctaagg	aaattgtaga	cactgtgtct	actcttgttt	16440
atgatggaaa	gtttattgca	aataacccag	aatcacgtca	gtgtttcaag	gttatagtta	16500
ataatggcaa	ttctgatgta	ggacatgaaa	gtggttcagc	ctacaacaca	actcaattag	16560
aatttgtgaa	agattttgtt	tgtcgcaata	aggagtggcg	ggaagcaaca	ttcatttcac	16620
cttataatgc	tatgaaccag	agagcctatc	gtatgcttgg	acttaatgtt	cagacagtag	16680
actcgtctca	aggttcagag	tatgattatg	ttatattctg	tgttacagca	gattcgaatc	16740
atgcactgaa	tattaacaga	ttcaatgtag	cgcttacaag	agctaagcgt	ggtatactag	16800
ttgtcatgcg	tcagcgtgat	gaattgtatt	cggctcttaa	gtttacagag	cttgatagtg	16860
aaacaagtct	gcaaggtaca	ggtttgttta	aaatttgcaa	caaggacttt	agtggtgtcc	16920
atcctgctta	tgcagtcaca	actaaggctc	ttgccgcaac	ttataaagtt	aatgatgaac	16980
ttgctgcact	tgttaatgtg	gaagetggtt	cagaaataac	atataaacat	cttatttctc	17040
ttttaggatt	taagatgagt	gttaatgttg	aaggetgeea	caacatgttt	ataacacgtg	17100
	3 3 3 -	5 5	-3 3	3 -	, ,	

aagaggcaat	tcgtaatgtg	agaggttggg	taggttttga	tgtagaagct	acacatgctt	17160
gtggtactaa	catcggcact	aacttgcctt	ttcaagtagg	tttctctact	ggtgctgact	17220
ttatagtcac	gcctgaggga	attgtagata	cttcaatagg	caataatttt	gagcctgtta	17280
attctaaggc	acctccaggt	gaacaattta	atcacttaag	ggctttattt	aaaagtgcta	17340
aaccttggca	tgttataaga	ccaaggattg	tacaaatgtt	agcagacaac	ctatgcaatg	17400
tttcagattg	cgtagttttt	gtaacttggt	gtcatggtct	agaactaact	actttgcgct	17460
attttgttaa	aataggcaaa	gaacaagtat	gttcttgtgg	ttctagagct	acaacattta	17520
attctcatac	tcaagcttat	gcttgttgga	agcattgttt	gggttttgat	tttgtttata	17580
acccacttct	agtggatgtt	caacagtggg	gttactctgg	taacctacaa	tttaatcatg	17640
acttgcactg	taatgtgcat	ggacacgcgc	atgttgcctc	tgcggatgct	attatgacgc	17700
gttgtcttgc	aattaacaat	gcattttgtc	aagatgtcaa	ctgggatttg	acataccctc	17760
atattgcaaa	tgaggatgaa	gtcaattcta	gttgtagata	cttacaacgc	atgtatctta	17820
atgcatgtgt	tgatgctctt	aaaattaacg	ttgtctatga	tataggcaac	cctaaaggta	17880
taaaatgtgt	tagacgtgga	gacttgagtt	ttagattcta	tgataagaat	ccaatagtac	17940
ccaacgtcaa	gcagtttgag	tatgactata	atcagcataa	agataagttt	gctgatggtc	18000
tttgtatgtt	ctggaattgt	aatgtggatt	gttatcctga	taattccttg	gtttgcaggt	18060
atgacacacg	aaatttgagt	gtgtttaact	taccaggttg	taatggtggt	agcctgtatg	18120
tcaataaaca	tgcattccac	acacctaaat	ttgatcgcat	tagetttegt	aatttgaaag	18180
ctatgccatt	ctttttctat	gactcatctc	cttgcgaaac	cattcaagtg	gatggagttg	18240
cacaggatct	tgtgtcacta	gctactaaag	attgtatcac	aaaatgcaac	ataggcggtg	18300
ctgtttgtaa	gaaacatgcg	cagatgtatg	cagagtttgt	gacttcttat	aatgcagcgg	18360
taacagctgg	ttttactttt	tgggttacta	ataattttaa	cccatataat	ttgtggaaaa	18420
gtttttcagc	tetecagtet	atcgataaca	ttgcttataa	tatgtataag	ggtggtcatt	18480
acgacgctat	tgcaggagaa	atacccacca	tegtaaetgg	agataaagtt	tttgttattg	18540
atcaaggtgt	agaaaaggca	gtttttgtta	atcaaacaac	actgcctact	tctgtggcgt	18600
ttgaactgta	tgcgaagaga	aatattcgca	cactgccaaa	caaccgtatt	ttgaagggtc	18660
ttggtgtaga	tgtaaccaat	ggttttgtaa	tttgggatta	tgcgaaccaa	acaccattat	18720
atcgtaatac	tgttaaggta	tgtgcataca	cagacattga	gccaaatggc	ctaatagttc	18780
tgtatgatga	tagatatggt	gattaccaat	cttttcttgc	cgctgataat	gctgttctag	18840
tttctacaca	gtgttataag	cgatattcat	atgtagaaat	accgtcaaac	atgcttgttc	18900
agaatggtat	gccattaaaa	gacggagcga	atctgtatgt	ctataagcgt	gttaatggag	18960
cgtttgttac	gctacctaac	acactaaaca	cacaaggtcg	cagttatgaa	acttttgaac	19020
ctcgtagcga	cgttgagcgt	gattttctcg	acatgtcgga	agaggatttt	gtagaaaagt	19080
atggtaaaga	cttaggtcta	caacacatac	tgtatggtga	agttgataaa	ccacaattgg	19140
gcggtttaca	cactgttata	ggtatgtaca	gacttttacg	tgcgaataag	ttgaatgcaa	19200
agtctgttac	taattcagat	tctgatgtca	tgcaaaatta	ttttgtgttg	gcagataatg	19260
gttcttacaa	gcaagtgtgc	actgttgtgg	atttactgct	tgatgatttc	ttagaactgc	19320
ttaggaacat	actgaatgag	tatggtacta	ataagtcaaa	agttgtaaca	gtgttaattg	19380
attaccatag	cataaatttt	atgacttggt	ttgaagatgg	cagtattaaa	acatgttatc	19440
			ataatatgcc			19500
<u> </u>	5 55		5 -	-		

attgtgttat	ggaaccttgc	aacattccta	attatggtgt	tggaataacg	ttgccaagtg	19560
gtattatgat	gaatgtggca	aagtacacac	aactttgtca	atacctttcg	aaaacaacaa	19620
tgtgtgtgcc	gcataatatg	cgcgttatgc	attttggagc	tggcagtgat	aaaggagtgg	19680
ctccaggtag	tactgttctt	aaacagtggc	ttcctgaagg	gacactcctt	gtagataatg	19740
atattgtaga	ttatgtgtct	gatgcacatg	tttctgtgct	ttcagattgc	aataaatata	19800
agacagagca	caagtttgat	cttgtgatat	ctgatatgta	tacagacaat	gattcaaaaa	19860
gaaagcatga	aggcgtgata	gccaacaatg	gcaatgatga	cgttttcata	tatctttcag	19920
actttcttcg	taacaatttg	gctcttggcg	gcagttttgc	tgtaaaggtg	acagagacaa	19980
gttggcacga	gaatttatat	gacattgcac	aagattgtgc	atggtggaca	atgttttgta	20040
ctgcagtgaa	tgettettet	tcagaagcat	ttctggttgg	tgttaattat	ttgggtgcaa	20100
gtgaaaagct	taaagttaat	ggaaaaaccc	tgcacgcaaa	ttatatattt	tggaggaatt	20160
gtaattattt	acaaacctca	gcttatagta	tatttgacgt	tgctaagttt	gatttgaaat	20220
taaaagcaac	gccagttgta	aatttgaaaa	ctgaacaaaa	gaccgactta	gtagttaatt	20280
tactaaggaa	cggtaaattg	ttagttagag	atgttggtga	agtcactgtt	tctagtgacc	20340
attttgtttg	cactatgtag	tgctaattta	tatgacaacg	aatcttttgt	gtattactac	20400
cagagtgctt	ttaggccagg	acatggttgg	catttacatg	gaggtgctta	tgcagtagtt	20460
aatgtgtcta	gtgaaaataa	taatgcaggt	actgccccaa	gttgcactgc	tggtgctatt	20520
ggctacagta	agaatctcag	tgcggcctca	gtagccatga	ctgcaccact	aagtggtatg	20580
tcatggtctg	ccaactcttt	ttgtacagcc	cactgtaatt	ttacttctta	tatagtgttt	20640
gttacacatt	gttataagag	cggatctaat	agttgtcctt	tgacaggtct	tattccaagc	20700
ggttatattc	gtattgctgc	tatgaaacat	ggaagtgcta	tgcctggtca	cttattttat	20760
aatttaacag	tttctgtgac	taaatatcct	aagtttagat	cgctacaatg	tgttaataat	20820
catacttctg	tatatttaaa	tggtgacctt	gttttcacat	ctaactatac	tgaagatgtt	20880
gtagctgcag	gtgtccattt	taaaagtggt	ggacctataa	cttataaagt	tatgagagag	20940
gttaaagcct	tggcttattt	tgtcaatggt	actgcacatg	atgtcattct	atgtgatgac	21000
acacctagag	gtttgttagc	atgccaatat	aatactggca	atttttcaga	tggcttctat	21060
ccttttacta	atactagtat	tgttaaggat	aagtttattg	tttatcgtga	aagtagtgtc	21120
aatactactt	taacattaac	taatttcacg	tttagtaatg	aaagtggtgc	ccctcctaat	21180
acaggtggtg	ttgacagttt	tattttatac	cagacacaaa	cagctcagag	tggttattat	21240
aattttaact	tttcatttct	gagtagtttt	gtttataggg	aaagttatta	tatgtatgga	21300
tcttaccatc	cacgttgtag	ttttagacct	gaaaccctta	ataatggttt	gtggtttaat	21360
tccctttctg	tttcattaac	atacggtccc	attcaaggtg	gttgtaagca	atctgtattt	21420
aatggtaaag	caacttgttg	ttatgcttat	tcatacggag	gacctcgtgg	ttgtaaaggt	21480
gtctatagag	gtgagctaac	acagcatttt	gaatgtggtt	tgttagttta	tgttactaag	21540
agcgatggct	cccgtataca	aactgcaaca	caaccacctg	tattaaccca	aaattttat	21600
aataacatca	atttaggtaa	gtgtgttgat	tataatatat	atggcagaat	tggccaaggt	21660
cttattacta	atgtaaccga	cttagctgtt	agttataatt	atttatcaga	cgcaggtttg	21720
	atacatctgg					21780
	aggttaatcc					21840
			Janacaaa			

aaattagtag	gtattctcac	ttcacgtaat	gaaacaggtt	ctcagcttct	tgagaaccag	21900
ttttatatta	aaatcactaa	tggaactcgt	cgttctagac	gttctgttac	tgaaaatgtt	21960
acaaattgcc	cttatgttag	ttatggcaag	ttttgtataa	aacctgatgg	ttcaatttct	22020
gtaatagtac	caaaagaact	ggatcagttt	gtggcacctt	tacttaatgt	tactgaatat	22080
gtgctcatac	ctaacagttt	taatttaact	gttacagatg	agtacataca	aacgcgtatg	22140
gataagatcc	aaattaattg	cctgcagtat	gtttgtggca	attctttggc	ctgtagaaag	22200
ctgtttcaac	aatatgggcc	tgtttgtgac	aacatattgt	ctgtagtaaa	tagtgttggt	22260
caaaaagaag	atatggaact	tttaaatttc	tattcttcta	ctaaaccagc	tcgttttaat	22320
acaccagttt	ttagtaatct	tagcactggt	gagtttaata	tttctctttt	gttaacaccc	22380
cctagtagtc	ctaggaggcg	ttcttttatt	gaagatcttt	tatttacaag	tgttgaatct	22440
gtaggattac	caacagatga	cgcatacaaa	aagtgcactg	caggaccttt	aggctttctt	22500
aaagaccttg	catgtgctcg	tgaatataat	ggtttgcttg	tgttgcctcc	tattataaca	22560
gcagaaatgc	aaactttgta	tactagttct	ttagtagctt	ctatggcttt	tggtggtatt	22620
actgcagctg	gtgccatacc	ttttgccaca	caactgcagg	ctagaattaa	tcacttgggt	22680
attacccagt	cacttttgtt	gaagaatcaa	gaaaaaattg	ctgcttcctt	taataaggcc	22740
attggtcata	tgcaggaagg	ttttaggagt	acatctctag	cattacaaca	aattcaagat	22800
gttgttaata	agcagagtgc	tattcttact	gagactatgg	cagcacttaa	taaaaatttt	22860
ggtgctattt	cttctgtgat	tcaagacatt	taccagcaac	ttgattccat	acaagcagat	22920
gctcaagtgg	atcggctcat	aactggtaga	ttgtcatcac	tttctgtctt	agcatctgct	22980
aagcagtcgg	agtacattag	agtgtcacaa	cagcgtgagt	tagctactca	gaaaattaat	23040
gagtgtgtta	aatcacagtc	tattaggtat	tccttttgtg	gtaatggacg	acatgtttta	23100
accataccac	aaaatgcccc	taatggtata	gtgtttatac	actttactta	tacaccagag	23160
agctttatta	atgttactgc	aatagtgggt	ttttgtgtaa	gtcctgctaa	tgctagtcag	23220
tatgcaatag	tgcccgctaa	tggtaggggt	atttttatac	aagttaatgg	tagttactac	23280
atcactgcac	gagatatgta	tatgccaaga	gatattactg	caggagatat	agttacgctt	23340
acttcttgtc	aagcaaatta	tgtaagtgta	aataagaccg	tcattactac	atttgtagac	23400
aatgatgatt	ttgattttga	tgatgaattg	tcaaaatggt	ggaatgatac	taagcatgag	23460
ctaccagact	ttgacaaatt	caattacaca	gtacctatac	ttgacattga	tagtgaaatt	23520
gatcgtattc	aaggcgttat	acagggtctt	aacgactctc	taatagacct	tgaaacacta	23580
tcaatactca	aaacttatat	taagtggcct	tggtatgtgt	ggttagccat	agcttttgcc	23640
actattatct	tcatcttaat	actaggatgg	ttgtttttca	tgactggttg	ttgtggttgt	23700
tgttgtggat	gctttggcat	tattccttta	atgagtaagt	gtggtaagaa	atcttcttat	23760
tacacgactt	ttgataatga	tgtggtaact	gaacaataca	gacctaaaaa	gtctgtttaa	23820
tgattcaaag	tcccacatct	tttctaatag	tattaatttt	tctttggtgt	aaacttgcac	23880
taagttgttt	taaagagtgt	gttatagcac	tccagcaact	aatacaagtt	ttactccaaa	23940
ttattaatag	taacttacag	tctagacttc	tgctttggca	cagtctagac	taatgttaga	24000
ttttgaagca	attattgaaa	ctggtcagca	aataattcaa	caaatcagtt	tcgatttaca	24060
gcaaatttca	agtgtgctaa	gcactgaatt	atttgacccc	tttgaagtct	gtgtttacag	24120
aggaggtaat	tattgggagt	tagagtcagc	tgacgagttt	tcaggtgatg	acgaatatat	24180
tgagtaaatc	gctagaggag	aacggaagtt	tcctaacagc	agtttacata	tttgttggat	24240

ttttagcatt	ttacctatta	ggtagagcac	tccaagcatt	tgtacaagct	gctgatgctt	24300
gttgtttatt	ttggtataca	tgggtagtag	ttcctggagc	taagggtaca	gcctttgtgt	24360
ataatcatac	atatggtaaa	aaacttaaca	aaccggagtt	agaagcggtt	attgttaacg	24420
agttccccaa	gaacggttgg	aataataaaa	gtccagcaaa	tttccaatat	gatggaaaat	24480
tgcacactta	acttagagca	ggcaactctg	ctttttaaag	aatataattt	atttataacc	24540
gcattcctat	tgtttcttac	tatactactt	cagtatgggt	acgcaactag	gagtcggttt	24600
atttatatac	tgaaaatgat	agtgttatgg	tgcttttggc	cccttaacat	tgcagtaggt	24660
gtaatttcat	gtatatatcc	accaaataca	ggaggtcttg	tcgcagcgat	aatacttact	24720
gtgtttgctt	gtctttcttt	tgtaggttat	tggattcaga	gttgtagact	ctttaaaagg	24780
tgtaggtctt	ggtggtcttt	taaccccgag	tctaatgccg	taggttcaat	actcctcaca	24840
aatggtcaac	aatgtaattt	tgctatagag	agtgtgccta	tggtgcttgc	tccaattata	24900
aagaacggtg	tcctttattg	tgagggtcag	tggcttgcta	aatgtgaacc	agaccacttg	24960
cctaaagaca	tatttgtatg	cacaccggat	agacgtaata	tctatcgtat	ggtgcagaaa	25020
tacactggtg	accaaagcgg	aaataagaaa	aggtttgcta	catttgtcta	tgcaaagcag	25080
tcagtagaca	ctggcgagct	agaaagtgta	gcaacaggag	gaagtagtct	ttacacataa	25140
atgtgtgtgt	gtagagagta	tttaagacta	ttctttaata	gtgcctctat	tttaagagcg	25200
catacgagta	tttattttga	ggatattaat	ataaatcctc	tttgttttat	actctcttt	25260
caagagctat	tatttaaaaa	acagtttttc	cactcttttg	tgccaaaaac	tattgttgtt	25320
aacggtgtta	cctttcaagt	ggataatgga	aaagtctact	acgaaggaac	accagttttc	25380
caaaaaggtt	gttgtagaat	gtggtccaat	tataagaaag	attagaataa	ttaagccacc	25440
aactacactt	atttttataa	gaggcgtttt	atcttacaaa	cgcttaacaa	atacggacga	25500
tgaaatggct	gactagtttt	ggaagagcag	ttatttcatg	ttataaagcc	ctactattaa	25560
ctcaattaag	agtgttagat	aggttaattt	taggtcacgg	accaaaacgc	gttttaacgt	25620
gtagtaggcg	agtgcttttg	tttcagttag	atttagttta	taggttggcg	tttacgccca	25680
cccaatcgct	ggtatgaata	atagtaaaga	taatcctttt	cgcggagcaa	tagcaagaaa	25740
agcgcgaatt	tatctgagag	aaggattaga	ttgtgtttac	tttcttaaca	aagcaggaca	25800
agcagagcct	tgtcccgcgt	gtacctctct	agtattccaa	gggaaaactt	gtgaggcaca	25860
cataaataat	aataatcttt	tgtcatggca	agcggtaagg	caactggaaa	gacagacgcc	25920
ccagcgccag	tcatcaaact	aggaggacca	aagccaccta	aagttggttc	ttctggaaat	25980
gcatcttggt	ttcaagcaat	aaaagccaag	aagctaaatt	cacctccacc	taagtttgaa	26040
ggtagcggtg	ttcctgataa	tgaaaatctt	aaaacaagcc	agcaacatgg	atactggaga	26100
cgccaagcta	ggtttaagcc	aggtaaaggc	ggaagaaaac	cagtcccaga	tgcttggtac	26160
ttctattata	ctggaacagg	accagccgct	gacctgaatt	ggggtgatag	ccaagatggt	26220
atagtgtggg	ttgctgcaaa	gggtgctgat	gttaaatcta	gatctaacca	gggtacaagg	26280
gaccctgaca	agtttgacca	atatccacta	cgattctcgg	acggaggacc	tgatggtaat	26340
ttccgttggg	acttcattcc	tctgaatcgt	ggtaggagtg	gaagatcaac	agcagcttca	26400
tcagcagcat	ctagtagagc	accgtcgcgt	gacggctcgc	gtggtcgtag	aagtggttct	26460
gaagatgatc	ttattgctcg	tgcagcaaag	ataatccagg	atcagcagaa	gaagggttct	26520
cgcattacta	aggctaaggc	tgatgaaatg	gctcatcgcc	ggtattgcaa	gcgcattatt	26580

-continued

				-conti	nued		
ccacctggtt	ataaggttga	tcaagtcttt	ggtccccgta	ctaaaggtaa	ggagggaaat	26640	
tttggtgatg	acaagatgaa	tgaggaaggt	attaaggatg	ggcgtgttac	ggcaatgctc	26700	
aacctagtcc	ctagcagcca	tgcttgcctt	tttggaagta	gggtgacgcc	caaacttcaa	26760	
ccagatgggc	ttcacttgag	atttgaattt	actactgtgg	tcccgcgtga	tgatccgcag	26820	
tttgataatt	atgtgaaaat	ttgtgaccag	tgtgttgatg	gtgtaggaac	acgtccaaaa	26880	
gatgacgaac	cgagaccaaa	gtcacgctca	agttcaagac	ctgctacaag	aacaagttct	26940	
ccggcgccaa	gacaacaacg	cccaaagaag	gagaaaaagt	caaagaagca	ggatgatgaa	27000	
gtagataaag	cattgacctc	agatgaggag	aggaacaatg	cacagctgga	atttgatgat	27060	
gaacccaagg	ttattaactg	gggggattca	gctttaggtg	agaatgaact	ttgagtaaca	27120	
taatggacct	gctgcatttt	ttggtacatt	ttgttaaaca	ctatttctgt	gctttcctat	27180	
caattattac	aggcattgat	tgtgattatg	tgcaatattt	aagcttcttt	tggttgcttt	27240	
ttgcttgttg	tgttgttgct	gtgcttttta	ttattgtgat	tctcattagt	ttgttttatc	27300	
gtagaagttc	aatagtaaga	gttaaggaag	ataggcatgt	agcttagcac	ctacatgtct	27360	
atcgccaggg	aaatgtctaa	tctgtctact	tagtagcctg	gaaacgaacg	gtagaccctt	27420	
agattttaat	ttagtttaat	ttttagttta	gtttaagtta	gtttagagta	ggtataaaga	27480	
tgccagtgcc	ggggccacgc	ggagtacgat	cgagggtaca	gcactaggac	gcccattaag	27540	
ggaagagcta	aattttagtt	taagttaagt	ttaattggct	aagtatagtt	aaaatttgta	27600	
ggctagtata	gagttagagc	aaaaaaaaa	aaaaaa			27636	
<210> SEQ I <211> LENGT <212> TYPE: <213> ORGAN	H: 3510 DNA	tious Bronch	nitis Virus				
<400> SEQUE	INCE: 2						
atgttggtga	agtcactgtt	tctagtgacc	attttgtttg	cactatgtag	tgctaattta	60	
tatgacaacg	aatcttttgt	gtattactac	cagagtgctt	ttaggccagg	acatggttgg	120	
catttacatg	gaggtgctta	tgcagtagtt	aatgtgtcta	gtgaaaataa	taatgcaggt	180	
actgccccaa	gttgcactgc	tggtgctatt	ggctacagta	agaatctcag	tgcggcctca	240	
gtagccatga	ctgcaccact	aagtggtatg	tcatggtctg	ccaactcttt	ttgtacagcc	300	
cactgtaatt	ttacttctta	tatagtgttt	gttacacatt	gttataagag	cggatctaat	360	
agttgtcctt	tgacaggtct	tattccaagc	ggttatattc	gtattgctgc	tatgaaacat	420	
ggaagtgcta	tgcctggtca	cttattttat	aatttaacag	tttctgtgac	taaatatcct	480	
aagtttagat	cgctacaatg	tgttaataat	catacttctg	tatatttaaa	tggtgacctt	540	
gttttcacat	ctaactatac	tgaagatgtt	gtagctgcag	gtgtccattt	taaaagtggt	600	
ggacctataa	cttataaagt	tatgagagag	gttaaagcct	tggcttattt	tgtcaatggt	660	
actgcacatg	atgtcattct	atgtgatgac	acacctagag	gtttgttagc	atgccaatat	720	
aatactggca	atttttcaga	tggcttctat	ccttttacta	atactagtat	tgttaaggat	780	
aagtttattg	tttatcgtga	aagtagtgtc	aatactactt	taacattaac	taatttcacg	840	
tttagtaatg	aaagtggtgc	ccctcctaat	acaggtggtg	ttgacagttt	tattttatac	900	
cagacacaaa	cagctcagag	tggttattat	aattttaact	tttcatttct	gagtagtttt	960	
gtttataggg	aaagttatta	tatgtatgga	tcttaccatc	cacgttgtag	ttttagacct	1020	

gaaaccctta ataatggttt gtggtttaat teeetttetg ttteattaac ataeggteec 1080

attcaaggtg	gttgtaagca	atctgtattt	aatggtaaag	caacttgttg	ttatgcttat	1140
tcatacggag	gacctcgtgg	ttgtaaaggt	gtctatagag	gtgagctaac	acagcatttt	1200
gaatgtggtt	tgttagttta	tgttactaag	agcgatggct	cccgtataca	aactgcaaca	1260
caaccacctg	tattaaccca	aaattttat	aataacatca	atttaggtaa	gtgtgttgat	1320
tataatatat	atggcagaat	tggccaaggt	cttattacta	atgtaaccga	cttagctgtt	1380
agttataatt	atttatcaga	cgcaggtttg	gctattttag	atacatctgg	tgccatagac	1440
atcttcgttg	tacaaggtga	atatggtcct	aactattata	aggttaatcc	atgtgaagat	1500
gtcaaccaac	agtttgtagt	ttctggtggt	aaattagtag	gtattctcac	ttcacgtaat	1560
gaaacaggtt	ctcagcttct	tgagaaccag	ttttatatta	aaatcactaa	tggaactcgt	1620
cgttctagac	gttctgttac	tgaaaatgtt	acaaattgcc	cttatgttag	ttatggcaag	1680
ttttgtataa	aacctgatgg	ttcaatttct	gtaatagtac	caaaagaact	ggatcagttt	1740
gtggcacctt	tacttaatgt	tactgaatat	gtgctcatac	ctaacagttt	taatttaact	1800
gttacagatg	agtacataca	aacgcgtatg	gataagatcc	aaattaattg	cctgcagtat	1860
gtttgtggca	attctttggc	ctgtagaaag	ctgtttcaac	aatatgggcc	tgtttgtgac	1920
aacatattgt	ctgtagtaaa	tagtgttggt	caaaaagaag	atatggaact	tttaaatttc	1980
tattcttcta	ctaaaccagc	tcgttttaat	acaccagttt	ttagtaatct	tagcactggt	2040
gagtttaata	tttctctttt	gttaacaccc	cctagtagtc	ctaggaggcg	ttcttttatt	2100
gaagatcttt	tatttacaag	tgttgaatct	gtaggattac	caacagatga	cgcatacaaa	2160
aagtgcactg	caggaccttt	aggctttctt	aaagaccttg	catgtgctcg	tgaatataat	2220
ggtttgcttg	tgttgcctcc	tattataaca	gcagaaatgc	aaactttgta	tactagttct	2280
ttagtagctt	ctatggcttt	tggtggtatt	actgcagctg	gtgccatacc	ttttgccaca	2340
caactgcagg	ctagaattaa	tcacttgggt	attacccagt	cacttttgtt	gaagaatcaa	2400
gaaaaaattg	ctgcttcctt	taataaggcc	attggtcata	tgcaggaagg	ttttaggagt	2460
acatctctag	cattacaaca	aattcaagat	gttgttaata	agcagagtgc	tattcttact	2520
gagactatgg	cagcacttaa	taaaaatttt	ggtgctattt	cttctgtgat	tcaagacatt	2580
taccagcaac	ttgattccat	acaagcagat	gctcaagtgg	atcggctcat	aactggtaga	2640
ttgtcatcac	tttctgtctt	agcatctgct	aagcagtcgg	agtacattag	agtgtcacaa	2700
cagcgtgagt	tagctactca	gaaaattaat	gagtgtgtta	aatcacagtc	tattaggtat	2760
tccttttgtg	gtaatggacg	acatgtttta	accataccac	aaaatgcccc	taatggtata	2820
gtgtttatac	actttactta	tacaccagag	agctttatta	atgttactgc	aatagtgggt	2880
ttttgtgtaa	gtcctgctaa	tgctagtcag	tatgcaatag	tgcccgctaa	tggtaggggt	2940
atttttatac	aagttaatgg	tagttactac	atcactgcac	gagatatgta	tatgccaaga	3000
gatattactg	caggagatat	agttacgctt	acttcttgtc	aagcaaatta	tgtaagtgta	3060
aataagaccg	tcattactac	atttgtagac	aatgatgatt	ttgattttga	tgatgaattg	3120
tcaaaatggt	ggaatgatac	taagcatgag	ctaccagact	ttgacaaatt	caattacaca	3180
gtacctatac	ttgacattga	tagtgaaatt	gatcgtattc	aaggcgttat	acagggtctt	3240
	taatagacct					3300
	ggttagccat					3360
	tgactggttg					3420
Ligitica	- Jacey Greek	9-999-	-geegeggat	Society	Jaccoccica	3120

- 	
atgagtaagt gtggtaagaa atcttcttat tacacgactt ttgataat	ga tgtggtaact 3480
gaacaataca gacctaaaaa gtctgtttaa	3510
<210> SEQ ID NO 3 <211> LENGTH: 1169 <212> TYPE: PRT <213> ORGANISM: Infectious Bronchitis Virus	
<400> SEQUENCE: 3	
Met Leu Val Lys Ser Leu Phe Leu Val Thr Ile Leu Phe 1 5 10	Ala Leu Cys 15
Ser Ala Asn Leu Tyr Asp Asn Glu Ser Phe Val Tyr Tyr 20 25	Tyr Gln Ser 30
Ala Phe Arg Pro Gly His Gly Trp His Leu His Gly Gly 35 40 45	Ala Tyr Ala
Val Val Asn Val Ser Ser Glu Asn Asn Asn Ala Gly Thr 50 55 60	Ala Pro Ser
Cys Thr Ala Gly Ala Ile Gly Tyr Ser Lys Asn Leu Ser 65 70 75	Ala Ala Ser 80
Val Ala Met Thr Ala Pro Leu Ser Gly Met Ser Trp Ser 85 90	Ala Asn Ser 95
Phe Cys Thr Ala His Cys Asn Phe Thr Ser Tyr Ile Val	Phe Val Thr 110
His Cys Tyr Lys Ser Gly Ser Asn Ser Cys Pro Leu Thr 115 120 125	Gly Leu Ile
Pro Ser Gly Tyr Ile Arg Ile Ala Ala Met Lys His Gly 130 135 140	Ser Ala Met
Pro Gly His Leu Phe Tyr Asn Leu Thr Val Ser Val Thr 145 150 155	Lys Tyr Pro 160
Lys Phe Arg Ser Leu Gln Cys Val Asn Asn His Thr Ser	Val Tyr Leu 175
Asn Gly Asp Leu Val Phe Thr Ser Asn Tyr Thr Glu Asp	Val Val Ala 190
Ala Gly Val His Phe Lys Ser Gly Gly Pro Ile Thr Tyr 195 200 205	Lys Val Met
Arg Glu Val Lys Ala Leu Ala Tyr Phe Val Asn Gly Thr 210 215 220	Ala His Asp
Val Ile Leu Cys Asp Asp Thr Pro Arg Gly Leu Leu Ala 225 230 235	Cys Gln Tyr 240
Asn Thr Gly Asn Phe Ser Asp Gly Phe Tyr Pro Phe Thr 245 250	Asn Thr Ser 255
Ile Val Lys Asp Lys Phe Ile Val Tyr Arg Glu Ser Ser	Val Asn Thr 270
Thr Leu Thr Leu Thr Asn Phe Thr Phe Ser Asn Glu Ser 275 280 285	Gly Ala Pro
Pro Asn Thr Gly Gly Val Asp Ser Phe Ile Leu Tyr Gln 290 295 300	Thr Gln Thr
Ala Gln Ser Gly Tyr Tyr Asn Phe Asn Phe Ser Phe Leu 305 310 315	Ser Ser Phe 320
Val Tyr Arg Glu Ser Tyr Tyr Met Tyr Gly Ser Tyr His 325 330	Pro Arg Cys 335
Ser Phe Arg Pro Glu Thr Leu Asn Asn Gly Leu Trp Phe	Asn Ser Leu 350
Ser Val Ser Leu Thr Tyr Gly Pro Ile Gln Gly Gly Cys	Lys Gln Ser

		355					360					365			
Val	Phe 370	Asn	Gly	Lys	Ala	Thr 375	Сла	Сла	Tyr	Ala	Tyr 380	Ser	Tyr	Gly	Gly
Pro 385	Arg	Gly	Сув	Lys	Gly 390	Val	Tyr	Arg	Gly	Glu 395	Leu	Thr	Gln	His	Phe 400
Glu	Cya	Gly	Leu	Leu 405	Val	Tyr	Val	Thr	Lys 410	Ser	Asp	Gly	Ser	Arg 415	Ile
Gln	Thr	Ala	Thr 420	Gln	Pro	Pro	Val	Leu 425	Thr	Gln	Asn	Phe	Tyr 430	Asn	Asn
Ile	Asn	Leu 435	Gly	Lys	Cys	Val	Asp 440	Tyr	Asn	Ile	Tyr	Gly 445	Arg	Ile	Gly
Gln	Gly 450	Leu	Ile	Thr	Asn	Val 455	Thr	Asp	Leu	Ala	Val 460	Ser	Tyr	Asn	Tyr
Leu 465	Ser	Asp	Ala	Gly	Leu 470	Ala	Ile	Leu	Asp	Thr 475	Ser	Gly	Ala	Ile	Asp 480
Ile	Phe	Val	Val	Gln 485	Gly	Glu	Tyr	Gly	Pro 490	Asn	Tyr	Tyr	Lys	Val 495	Asn
Pro	Cys	Glu	Asp 500	Val	Asn	Gln	Gln	Phe 505	Val	Val	Ser	Gly	Gly 510	Lys	Leu
Val	Gly	Ile 515	Leu	Thr	Ser	Arg	Asn 520	Glu	Thr	Gly	Ser	Gln 525	Leu	Leu	Glu
Asn	Gln 530	Phe	Tyr	Ile	Lys	Ile 535	Thr	Asn	Gly	Thr	Arg 540	Arg	Ser	Arg	Arg
Ser 545	Val	Thr	Glu	Asn	Val 550	Thr	Asn	Сув	Pro	Tyr 555	Val	Ser	Tyr	Gly	560
Phe	CAa	Ile	Lys	Pro 565	Asp	Gly	Ser	Ile	Ser 570	Val	Ile	Val	Pro	Lys 575	Glu
Leu	Asp	Gln	Phe 580	Val	Ala	Pro	Leu	Leu 585	Asn	Val	Thr	Glu	Tyr 590	Val	Leu
Ile	Pro	Asn 595	Ser	Phe	Asn	Leu	Thr 600	Val	Thr	Asp	Glu	Tyr 605	Ile	Gln	Thr
Arg	Met 610	Asp	Lys	Ile	Gln	Ile 615	Asn	Сув	Leu	Gln	Tyr 620	Val	Cys	Gly	Asn
Ser 625	Leu	Ala	Cys	Arg	630	Leu	Phe	Gln	Gln	Tyr 635	Gly	Pro	Val	Cha	Asp 640
Asn	Ile	Leu	Ser	Val 645	Val	Asn	Ser	Val	Gly 650	Gln	Lys	Glu	Asp	Met 655	Glu
Leu	Leu	Asn	Phe 660	Tyr	Ser	Ser	Thr	Lys 665	Pro	Ala	Arg	Phe	Asn 670	Thr	Pro
Val	Phe	Ser 675	Asn	Leu	Ser	Thr	Gly 680	Glu	Phe	Asn	Ile	Ser 685	Leu	Leu	Leu
Thr	Pro 690	Pro	Ser	Ser	Pro	Arg 695	Arg	Arg	Ser	Phe	Ile 700	Glu	Asp	Leu	Leu
Phe 705	Thr	Ser	Val	Glu	Ser 710	Val	Gly	Leu	Pro	Thr 715	Asp	Asp	Ala	Tyr	Lув 720
ГÀа	Cys	Thr	Ala	Gly 725	Pro	Leu	Gly	Phe	Leu 730	Lys	Asp	Leu	Ala	Сув 735	Ala
Arg	Glu	Tyr	Asn 740	Gly	Leu	Leu	Val	Leu 745	Pro	Pro	Ile	Ile	Thr 750	Ala	Glu
Met	Gln	Thr 755	Leu	Tyr	Thr	Ser	Ser 760	Leu	Val	Ala	Ser	Met 765	Ala	Phe	Gly
Gly	Ile 770	Thr	Ala	Ala	Gly	Ala 775	Ile	Pro	Phe	Ala	Thr 780	Gln	Leu	Gln	Ala

Glu Lys Ile Ala Ala Ser Phe Asn Lys Ala Ile Gly His Met Gln G 805 810 815	
	lu
Gly Phe Arg Ser Thr Ser Leu Ala Leu Gln Gln Ile Gln Asp Val V 820 825 830	al
Asn Lys Gln Ser Ala Ile Leu Thr Glu Thr Met Ala Ala Leu Asn L 835 840 845	λa
Asn Phe Gly Ala Ile Ser Ser Val Ile Gln Asp Ile Tyr Gln Gln L 850 855 860	eu
Asp Ser Ile Gln Ala Asp Ala Gln Val Asp Arg Leu Ile Thr Gly A 865 870 875 875	rg 80
Leu Ser Ser Leu Ser Val Leu Ala Ser Ala Lys Gln Ser Glu Tyr I 885 890 895	le
Arg Val Ser Gln Gln Arg Glu Leu Ala Thr Gln Lys Ile Asn Glu C 900 905 910	λa
Val Lys Ser Gln Ser Ile Arg Tyr Ser Phe Cys Gly Asn Gly Arg H	is
Val Leu Thr Ile Pro Gln Asn Ala Pro Asn Gly Ile Val Phe Ile H 930 935 940	is
Phe Thr Tyr Thr Pro Glu Ser Phe Ile Asn Val Thr Ala Ile Val G 945 950 955 9	ly 60
Phe Cys Val Ser Pro Ala Asn Ala Ser Gln Tyr Ala Ile Val Pro A 965 970 975	la
Asn Gly Arg Gly Ile Phe Ile Gln Val Asn Gly Ser Tyr Tyr Ile T 980 985 990	hr
Ala Arg Asp Met Tyr Met Pro Arg Asp Ile Thr Ala Gly Asp Ile 995 1000 1005	Val
Thr Leu Thr Ser Cys Gln Ala Asn Tyr Val Ser Val Asn Lys Th 1010 1015 1020	r
Val Ile Thr Thr Phe Val Asp Asn Asp Asp Phe Asp Phe Asp Asp 1025 1030 1035	p
Glu Leu Ser Lys Trp Trp Asn Asp Thr Lys His Glu Leu Pro As 1040 1045 1050	p
Phe Asp Lys Phe Asn Tyr Thr Val Pro Ile Leu Asp Ile Asp Se 1055 1060 1065	r
Glu Ile Asp Arg Ile Gln Gly Val Ile Gln Gly Leu Asn Asp Se 1070 1075 1080	r
Leu Ile Asp Leu Glu Thr Leu Ser Ile Leu Lys Thr Tyr Ile Ly 1085 1090 1095	s
Trp Pro Trp Tyr Val Trp Leu Ala Ile Ala Phe Ala Thr Ile Il 1100 1105 1110	e
Phe Ile Leu Ile Leu Gly Trp Leu Phe Phe Met Thr Gly Cys Cy 1115 1120 1125	s
Gly Cys Cys Cys Gly Cys Phe Gly Ile Ile Pro Leu Met Ser Ly 1130 1135 1140	s
Cys Gly Lys Lys Ser Ser Tyr Tyr Thr Thr Phe Asp Asn Asp Va 1145 1150 1155	1
Val Thr Glu Gln Tyr Arg Pro Lys Lys Ser Val	

	-continued														
	<212> TYPE: PRT <213> ORGANISM: Infectious Bronchitis Virus														
< 400	O> SI	EQUEI	NCE:	4											
Met 1	Leu	Val	Lys	Ser 5	Leu	Phe	Leu	Val	Thr 10	Ile	Leu	Phe	Ala	Leu 15	Cys
Ser	Ala	Asn	Leu 20	Tyr	Asp	Asn	Glu	Ser 25	Phe	Val	Tyr	Tyr	Tyr 30	Gln	Ser
Ala	Phe	Arg 35	Pro	Gly	His	Gly	Trp 40	His	Leu	His	Gly	Gly 45	Ala	Tyr	Ala
Val	Val 50	Asn	Val	Ser	Ser	Glu 55	Asn	Asn	Asn	Ala	Gly 60	Thr	Ala	Pro	Ser
Сув 65	Thr	Ala	Gly	Ala	Ile 70	Gly	Tyr	Ser	ГÀа	Asn 75	Leu	Ser	Ala	Ala	Ser 80
Val	Ala	Met	Thr	Ala 85	Pro	Leu	Ser	Gly	Met 90	Ser	Trp	Ser	Ala	Asn 95	Ser
Phe	CAa	Thr	Ala 100	His	CÀa	Asn	Phe	Thr 105	Ser	Tyr	Ile	Val	Phe 110	Val	Thr
His	Cys	Tyr 115	Lys	Ser	Gly	Ser	Asn 120	Ser	Cys	Pro	Leu	Thr 125	Gly	Leu	Ile
Pro	Ser 130	Gly	Tyr	Ile	Arg	Ile 135	Ala	Ala	Met	Lys	His 140	Gly	Ser	Ala	Met
Pro 145	Gly	His	Leu	Phe	Tyr 150	Asn	Leu	Thr	Val	Ser 155	Val	Thr	Lys	Tyr	Pro 160
Lys	Phe	Arg	Ser	Leu 165	Gln	CÀa	Val	Asn	Asn 170	His	Thr	Ser	Val	Tyr 175	Leu
Asn	Gly	Asp	Leu 180	Val	Phe	Thr	Ser	Asn 185	Tyr	Thr	Glu	Asp	Val 190	Val	Ala
Ala	Gly	Val 195	His	Phe	Lys	Ser	Gly 200	Gly	Pro	Ile	Thr	Tyr 205	Lys	Val	Met
Arg	Glu 210	Val	Lys	Ala	Leu	Ala 215	Tyr	Phe	Val	Asn	Gly 220	Thr	Ala	His	Asp
Val 225	Ile	Leu	Cys	Asp	Asp 230	Thr	Pro	Arg	Gly	Leu 235	Leu	Ala	Cys	Gln	Tyr 240
Asn	Thr	Gly	Asn	Phe 245	Ser	Asp	Gly	Phe	Tyr 250	Pro	Phe	Thr	Asn	Thr 255	Ser
Ile	Val	Lys	Asp 260	Lys	Phe	Ile	Val	Tyr 265	Arg	Glu	Ser	Ser	Val 270	Asn	Thr
Thr	Leu	Thr 275	Leu	Thr	Asn	Phe	Thr 280	Phe	Ser	Asn	Glu	Ser 285	Gly	Ala	Pro
Pro	Asn 290	Thr	Gly	Gly	Val	Asp 295	Ser	Phe	Ile	Leu	Tyr 300	Gln	Thr	Gln	Thr
Ala 305	Gln	Ser	Gly	Tyr	Tyr 310	Asn	Phe	Asn	Phe	Ser 315	Phe	Leu	Ser	Ser	Phe 320
Val	Tyr	Arg	Glu	Ser 325	Tyr	Tyr	Met	Tyr	Gly 330	Ser	Tyr	His	Pro	Arg 335	Cys
Ser	Phe	Arg	Pro 340	Glu	Thr	Leu	Asn	Asn 345	Gly	Leu	Trp	Phe	Asn 350	Ser	Leu
Ser	Val	Ser 355	Leu	Thr	Tyr	Gly	Pro 360	Ile	Gln	Gly	Gly	Cys 365	Lys	Gln	Ser
Val	Phe	Asn	Gly	Lys	Ala	Thr 375	Сув	Сув	Tyr	Ala	Tyr 380	Ser	Tyr	Gly	Gly
Pro 385	Arg	Gly	Cys	Lys	Gly 390	Val	Tyr	Arg	Gly	Glu 395	Leu	Thr	Gln	His	Phe 400

-continued

Glu Cys Gly Leu Leu Val Tyr Val Thr Lys Ser Asp Gly Ser Arg Ile 410 Gln Thr Ala Thr Gln Pro Pro Val Leu Thr Gln Asn Phe Tyr Asn Asn Ile Asn Leu Gly Lys Cys Val Asp Tyr Asn Ile Tyr Gly Arg Ile Gly Gln Gly Leu Ile Thr Asn Val Thr Asp Leu Ala Val Ser Tyr Asn Tyr Leu Ser Asp Ala Gly Leu Ala Ile Leu Asp Thr Ser Gly Ala Ile Asp Ile Phe Val Val Gln Gly Glu Tyr Gly Pro Asn Tyr Tyr Lys Val Asn Pro Cys Glu Asp Val Asn Gln Gln Phe Val Val Ser Gly Gly Lys Leu Val Gly Ile Leu Thr Ser Arg Asn Glu Thr Gly Ser Gln Leu Leu Glu 520 Asn Gln Phe Tyr Ile Lys Ile Thr Asn Gly Thr Arg Arg Ser Arg Arg 535 <210> SEO ID NO 5 <211> LENGTH: 625 <212> TYPE: PRT <213 > ORGANISM: Infectious Bronchitis Virus <400> SEOUENCE: 5 Ser Val Thr Glu Asn Val Thr Asn Cys Pro Tyr Val Ser Tyr Gly Lys Phe Cys Ile Lys Pro Asp Gly Ser Ile Ser Val Ile Val Pro Lys Glu 25 Leu Asp Gln Phe Val Ala Pro Leu Leu Asn Val Thr Glu Tyr Val Leu 40 Ile Pro Asn Ser Phe Asn Leu Thr Val Thr Asp Glu Tyr Ile Gln Thr Arg Met Asp Lys Ile Gln Ile Asn Cys Leu Gln Tyr Val Cys Gly Asn Ser Leu Ala Cys Arg Lys Leu Phe Gln Gln Tyr Gly Pro Val Cys Asp Asn Ile Leu Ser Val Val Asn Ser Val Gly Gln Lys Glu Asp Met Glu Leu Leu Asn Phe Tyr Ser Ser Thr Lys Pro Ala Arg Phe Asn Thr Pro Val Phe Ser Asn Leu Ser Thr Gly Glu Phe Asn Ile Ser Leu Leu Thr Pro Pro Ser Ser Pro Arg Arg Ser Phe Ile Glu Asp Leu Leu Phe Thr Ser Val Glu Ser Val Gly Leu Pro Thr Asp Asp Ala Tyr Lys 170 Lys Cys Thr Ala Gly Pro Leu Gly Phe Leu Lys Asp Leu Ala Cys Ala 185 Arg Glu Tyr Asn Gly Leu Leu Val Leu Pro Pro Ile Ile Thr Ala Glu Met Gln Thr Leu Tyr Thr Ser Ser Leu Val Ala Ser Met Ala Phe Gly Gly Ile Thr Ala Ala Gly Ala Ile Pro Phe Ala Thr Gln Leu Gln Ala

225					230					235					240
Arg	Ile	Asn	His	Leu 245	Gly	Ile	Thr	Gln	Ser 250	Leu	Leu	Leu	Lys	Asn 255	Gln
Glu	Lys	Ile	Ala 260	Ala	Ser	Phe	Asn	Lys 265	Ala	Ile	Gly	His	Met 270	Gln	Glu
Gly	Phe	Arg 275	Ser	Thr	Ser	Leu	Ala 280	Leu	Gln	Gln	Ile	Gln 285	Asp	Val	Val
Asn	Lys 290	Gln	Ser	Ala	Ile	Leu 295	Thr	Glu	Thr	Met	Ala 300	Ala	Leu	Asn	Lys
Asn 305	Phe	Gly	Ala	Ile	Ser 310	Ser	Val	Ile	Gln	Asp 315	Ile	Tyr	Gln	Gln	Leu 320
Asp	Ser	Ile	Gln	Ala 325	Asp	Ala	Gln	Val	330	Arg	Leu	Ile	Thr	Gly 335	Arg
Leu	Ser	Ser	Leu 340	Ser	Val	Leu	Ala	Ser 345	Ala	Lys	Gln	Ser	Glu 350	Tyr	Ile
Arg	Val	Ser 355	Gln	Gln	Arg	Glu	Leu 360	Ala	Thr	Gln	Lys	Ile 365	Asn	Glu	Cys
Val	Lys 370	Ser	Gln	Ser	Ile	Arg 375	Tyr	Ser	Phe	Cys	Gly 380	Asn	Gly	Arg	His
Val 385	Leu	Thr	Ile	Pro	Gln 390	Asn	Ala	Pro	Asn	Gly 395	Ile	Val	Phe	Ile	His 400
Phe	Thr	Tyr	Thr	Pro 405	Glu	Ser	Phe	Ile	Asn 410	Val	Thr	Ala	Ile	Val 415	Gly
Phe	Cys	Val	Ser 420	Pro	Ala	Asn	Ala	Ser 425	Gln	Tyr	Ala	Ile	Val 430	Pro	Ala
Asn	Gly	Arg 435	Gly	Ile	Phe	Ile	Gln 440	Val	Asn	Gly	Ser	Tyr 445	Tyr	Ile	Thr
Ala	Arg 450	Asp	Met	Tyr	Met	Pro 455	Arg	Asp	Ile	Thr	Ala 460	Gly	Asp	Ile	Val
Thr 465	Leu	Thr	Ser	CAa	Gln 470	Ala	Asn	Tyr	Val	Ser 475	Val	Asn	Lys	Thr	Val 480
Ile	Thr	Thr	Phe	Val 485	Asp	Asn	Asp	Asp	Phe 490	Asp	Phe	Asp	Asp	Glu 495	Leu
Ser	Lys	Trp	Trp 500	Asn	Asp	Thr	Lys	His 505	Glu	Leu	Pro	Asp	Phe 510	Asp	Lys
Phe	Asn	Tyr 515	Thr	Val	Pro	Ile	Leu 520	Asp	Ile	Asp	Ser	Glu 525	Ile	Asp	Arg
Ile	Gln 530	Gly	Val	Ile	Gln	Gly 535	Leu	Asn	Asp	Ser	Leu 540	Ile	Asp	Leu	Glu
Thr 545	Leu	Ser	Ile	Leu	Lys 550	Thr	Tyr	Ile	Lys	Trp 555	Pro	Trp	Tyr	Val	Trp 560
Leu	Ala	Ile	Ala	Phe 565	Ala	Thr	Ile	Ile	Phe 570	Ile	Leu	Ile	Leu	Gly 575	Trp
Leu	Phe	Phe	Met 580	Thr	Gly	Cys	Cys	Gly 585	Cys	Cys	Cys	Gly	Cys 590	Phe	Gly
Ile	Ile	Pro 595	Leu	Met	Ser	Lys	GNa	Gly	Lys	Lys	Ser	Ser 605	Tyr	Tyr	Thr
Thr	Phe 610	Asp	Asn	Asp	Val	Val 615	Thr	Glu	Gln	Tyr	Arg 620	Pro	Lys	Lys	Ser
Val 625															

-continued

	-continued														
<212	<211> LENGTH: 546 <212> TYPE: PRT <213> ORGANISM: Infectious Bronchitis Virus														
< 400	D> SI	EQUEI	NCE :	6											
Met 1	Leu	Val	Lys	Ser 5	Leu	Phe	Leu	Val	Thr 10	Ile	Leu	Phe	Ala	Leu 15	CAa
Ser	Ala	Asn	Leu 20	Tyr	Asp	Asn	Glu	Ser 25	Phe	Val	Tyr	Tyr	Tyr 30	Gln	Ser
Ala	Phe	Arg 35	Pro	Gly	His	Gly	Trp 40	His	Leu	His	Gly	Gly 45	Ala	Tyr	Ala
Val	Val 50	Asn	Val	Ser	Ser	Glu 55	Asn	Asn	Asn	Ala	Gly 60	Thr	Ala	Pro	Ser
Cys 65	Thr	Ala	Gly	Ala	Ile 70	Gly	Tyr	Ser	Lys	Asn 75	Leu	Ser	Ala	Ala	Ser 80
Val	Ala	Met	Thr	Ala 85	Pro	Leu	Ser	Gly	Met 90	Ser	Trp	Ser	Ala	Asn 95	Ser
Phe	Cys	Thr	Ala 100	His	CÀa	Asn	Phe	Thr 105	Ser	Tyr	Ile	Val	Phe 110	Val	Thr
His	Cha	Tyr 115	Lys	Ser	Gly	Ser	Asn 120	Ser	CÀa	Pro	Leu	Thr 125	Gly	Leu	Ile
Pro	Ser 130	Gly	Tyr	Ile	Arg	Ile 135	Ala	Ala	Met	ГЛа	His 140	Gly	Ser	Ala	Met
Pro 145	Gly	His	Leu	Phe	Tyr 150	Asn	Leu	Thr	Val	Ser 155	Val	Thr	Lys	Tyr	Pro 160
Lys	Phe	Arg	Ser	Leu 165	Gln	CÀa	Val	Asn	Asn 170	His	Thr	Ser	Val	Tyr 175	Leu
Asn	Gly	Asp	Leu 180	Val	Phe	Thr	Ser	Asn 185	Tyr	Thr	Glu	Asp	Val 190	Val	Ala
Ala	Gly	Val 195	His	Phe	Lys	Ser	Gly 200	Gly	Pro	Ile	Thr	Tyr 205	Lys	Val	Met
Arg	Glu 210	Val	Lys	Ser	Leu	Ala 215	Tyr	Phe	Val	Asn	Gly 220	Thr	Ala	His	Asp
Val 225	Ile	Leu	Cys	Asp	Asp 230	Thr	Pro	Arg	Gly	Leu 235	Leu	Ala	СЛа	Gln	Tyr 240
Asn	Thr	Gly	Asn	Phe 245	Ser	Asp	Gly	Phe	Tyr 250	Pro	Phe	Thr	Asn	Thr 255	Ser
Ile	Val	Lys	Asp 260	Lys	Phe	Ile	Val	Tyr 265	Arg	Glu	Ser	Ser	Val 270	Asn	Thr
Thr	Leu	Thr 275	Leu	Thr	Asn	Phe	Thr 280	Phe	Ser	Asn	Glu	Ser 285	Gly	Ala	Pro
Pro	Asn 290	Thr	Gly	Gly	Val	Asp 295	Ser	Phe	Ile	Leu	Tyr 300	Gln	Thr	Gln	Thr
Ala 305	Gln	Ser	Gly	Tyr	Tyr 310	Asn	Phe	Asn	Phe	Ser 315	Phe	Leu	Ser	Ser	Phe 320
Val	Tyr	Arg	Glu	Ser 325	Tyr	Tyr	Met	Tyr	Gly 330	Ser	Tyr	His	Pro	Arg 335	Cya
Ser	Phe	Arg	Pro 340	Glu	Thr	Leu	Asn	Asn 345	Gly	Leu	Trp	Phe	Asn 350	Ser	Leu
Ser	Val	Ser 355	Leu	Thr	Tyr	Gly	Pro 360	Ile	Gln	Gly	Gly	Сув 365	Lys	Gln	Ser
Val	Phe 370	Asn	Gly	Lys	Ala	Thr 375	Сув	Cys	Tyr	Ala	Tyr 380	Ser	Tyr	Gly	Gly

Pro Arg Gly Cys Lys Gly Val Tyr Arg Gly Glu Leu Thr Gln His Phe

385	390	395	400
Glu Cys Gly	Leu Leu Val Tyr	Val Thr Lys Ser Asp	Gly Ser Arg Ile

Gln Thr Ala Thr Gln Pro Pro Val Leu Thr Gln Asn Phe Tyr Asn Asn 420 425 430

Ile Asn Leu Gly Lys Cys Val Asp Tyr Asn Ile Tyr Gly Arg Ile Gly
435 440 445

Gln Gly Leu Ile Thr Asn Val Thr Asp Leu Ala Val Ser Tyr Asn Tyr

Leu Ser Asp Ala Gly Leu Ala Ile Leu Asp Thr Ser Gly Ala Ile Asp 465 470 475 480

Ile Phe Val Val Gln Gly Glu Tyr Gly Pro Asn Tyr Tyr Lys Val Asn
485
490
495

Pro Cys Glu Asp Val Asn Gln Gln Phe Val Val Ser Gly Gly Lys Leu

Val Gly Ile Leu Thr Ser Arg Asn Glu Thr Gly Ser Gln Leu Leu Glu
515 520 525

Asn Gln Phe Tyr Ile Lys Ile Thr Asn Gly Thr Arg Arg Ser Arg Arg 530 535 540

Ser Val

545

The invention claimed is:

- 1. A method comprising passing a heterogeneous attenuated population of infectious bronchitis virus (IBV) in chicken embryonic kidney cells (CEKC) to obtain a passaged population of IBV, wherein the heterogenous attenuated population has less than about 95% homogeneity in the S1 polypeptide at an amino acid position selected from the group consisting of Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide; and wherein the passaged population has greater than about 95% homogeneity in the S1 polypeptide at the amino acid position selected from the group consisting 45 of Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide.
 - 2. The method of claim 1, wherein:
 - (i) the heterogenous attenuated population has less than about 95% homogeneity in the S1 polypeptide at amino acid positions including Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 55 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide; and
 - (ii) the passaged population has greater than about 95% 60 homogeneity in the S1 polypeptide at amino acid positions including Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of 65 the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide.

3. The method of claim 1, wherein the heterogenous attenuated population has less than about 95% homogeneity with respect to Ser at amino acid position 213 of the S1 polypeptide and the passaged population has greater than about 95% homogeneity of Ser at amino acid position 213 of the S1 polypeptide.

76

- **4**. The method of claim **1**, wherein the heterogeneous attenuated population of IBV is passaged in chicken embryonic kidney cells for at least 7 passages.
- **5**. The method of claim **1**, further comprising further passaging the passaged population of IBV in embryonated chicken eggs.
- 6. A vaccine comprising a passaged attenuated population of IBV strain ArkDPI and a suitable carrier or excipient, wherein the passaged attenuated population of IBV exhibits at least about 95% homogeneity at amino acid positions in the S1 polypeptide including Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide.
- 7. A method for vaccinating a subject against infection by IBV, the method comprising administering to the subject the vaccine of claim 6.
- 8. A method comprising passing a heterogeneous attenuated population of infectious bronchitis virus (IBV) Ark serotype in chicken embryonic kidney cells (CEKC) to obtain a passaged population, wherein the heterogenous attenuated population has less than about 95% homogeneity in the S1 polypeptide at an amino acid position selected from the group consisting of Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide, and wherein the passaged population has

greater than about 95% homogeneity in the S1 polypeptide at the amino acid position selected from the group consisting of Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide.

- 9. The method of claim 8, wherein:
- (i) the heterogenous attenuated population has less than about 95% homogeneity in the S1 polypeptide at amino acid positions including Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 15 399 of the S1 polypeptide; and
- (ii) the passaged population has greater than about 95% homogeneity in the S1 polypeptide at amino acid positions including Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of 20 the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide.
- **10**. The method of claim **8**, wherein the heterogeneous 25 attenuated population of IBV is passaged in chicken embryonic kidney cells for at least 7 passages.
- 11. The method of claim 8, further comprising passaging the passaged population of IBV in embryonated chicken eggs.
- 12. A method comprising passing a heterogeneous attenuated population of infectious bronchitis virus (IBV) ArkDPI strain in chicken embryonic kidney cells (CEKC) to obtain a passaged population, wherein the heterogeneous attenuated population has less than about 95% homogeneity in the S1 35 polypeptide at an amino acid position selected from the group consisting of Ser at amino acid position 213 of the S1

78

polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide, and wherein the passaged population has greater than about 95% homogeneity in the S1 polypeptide at the amino acid position selected from the group consisting of Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide.

- 13. The method of claim 12, wherein:
- (i) the heterogenous attenuated population has less than about 95% homogeneity in the S1 polypeptide at amino acid positions including Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide; and
- (ii) the passaged population has greater than about 95% homogeneity in the S1 polypeptide at amino acid positions including Ser at amino acid position 213 of the S1 polypeptide, Arg at amino acid position 323 of the S1 polypeptide, Arg at amino acid position 386 of the S1 polypeptide, Gln at amino acid position 398 of the S1 polypeptide, and His at amino acid position 399 of the S1 polypeptide.
- 14. The method of claim 12, wherein the heterogeneous attenuated population of IBV is passaged in chicken embryonic kidney cells for at least 7 passages.
- 15. The method of claim 12, further comprising passaging the passaged population of IBV in embryonated chicken eggs.

* * * * *