United States Patent

Worley et al.

BIOCIDAL N-HALAMINE EPOXIDES

Inventors: Shelby D. Worley, Auburn, AL (US); Jie Liang, Auburn, AL (US); Yongsun Chen, Bellevue, WA (US); Royall M. Broughton, Valley, AL (US); Jia-Wang Wang, Jinan (CN); Rong Wu, Auburn, AL (US); Unchin Cho, Edina, MN (US); Jaewoong Lee, Auburn, AL (US); Kevin Barnes, Opelika, AL (US).

Assignee: Auburn University Office of Technology Transfer, Auburn, AL (US).

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 2223 days.

Appl. No.: 11/373,458

Filed: Mar. 10, 2006

Prior Publication Data

Related U.S. Application Data

Provisional application No. 60/660,819, filed on Mar. 11, 2005.

Int. Cl.

A01N 25/00 (2006.01)
A01N 65/00 (2009.01)
A61Q 17/00 (2006.01)

U.S. Cl.

CPC A01N 65/00 (2013.01); A61Q 17/005 (2013.01)

USPC 424/405

Field of Classification Search

CPC A01N 65/00; A61Q 17/005; A01N 65/00

USPC 424/405

See application file for complete search history.

ABSTRACT

N-halaminediolatoxime epoxide compounds which can be used for the construction of coatings and materials which can be rendered biocidal by exposure to halogen solutions either before or after curing the coating or material are disclosed. The biocidal coatings and materials can then be used to inactivate pathogenic microorganisms such as bacteria, fungi, and yeasts, as well as virus particles, which can cause infectious diseases, and those microorganisms which cause noxious odors and unpleasant coloring such as mildew. The coatings are compatible with a variety of substrates including, but not limited to, cellulose, chinin, chitosan, synthetic fibers, cement grout, latex caulk, acrylic films, polyurethanes, plastics and paints.

13 Claims, 3 Drawing Sheets

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

CH 1368080 9/1974 C07D 49/32
JP 54-29400 3/1979 C08G 73/06

Primary Examiner — Benjamin Packard
Attorney, Agent, or Firm — Haverstock & Owens LLP

150
References Cited

U.S. PATENT DOCUMENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor(s)</th>
<th>Classification(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,463,058 A</td>
<td>10/1995</td>
<td>Carrozzi et al.</td>
<td>546/14</td>
</tr>
<tr>
<td>5,499,983 A</td>
<td>2/1996</td>
<td>Worley et al.</td>
<td>424/405</td>
</tr>
<tr>
<td>5,862,357 A</td>
<td>3/1999</td>
<td>Sun et al.</td>
<td>8/189</td>
</tr>
<tr>
<td>5,902,818 A</td>
<td>5/1999</td>
<td>Worley et al.</td>
<td>514/376</td>
</tr>
<tr>
<td>6,770,287 B1</td>
<td>8/2004</td>
<td>Sun et al.</td>
<td>424/404</td>
</tr>
<tr>
<td>6,969,769 B2</td>
<td>11/2005</td>
<td>Worley et al.</td>
<td>548/110</td>
</tr>
</tbody>
</table>

OTHER PUBLICATIONS

* cited by examiner
Fig. 2

200

Treating a Material with Hydantoinyl Expoxide

201

Treating the Hydantoinyl with Halogen

203

Curing the Material to Bind the Hydantoinyl to the Material

205
BIOCIDAL N-HALAMINE EPOXIDES

RELATED APPLICATIONS

FIELD OF THE INVENTION

The invention relates to methods of attaching biocides onto surfaces and/or incorporating biocides into materials. More specifically, this invention relates to methods for attaching biocidal N-Halamine structures onto surfaces and/or incorporating them into materials.

BACKGROUND

Previous attempts to incorporate biocidal activity into materials and coatings have primarily involved two methods—physical mixing (blending) of biocides into the materials and coatings, and chemical binding of biocidal functional groups to the polymers or copolymers comprising the materials and coatings. Chemical binding should be preferable for long-term biocidal activity if the bound biocidal functionality does not adversely affect the other desired properties such as strength, appearance, and chemical resistance of the material or coating. For example, a significant amount of work has been performed concerning rendering sponges biocidally active. This involves encapsulation of a variety of weak biocides into the porous structure of the sponge, either through physical blending or chemical bonding to the surface. The sponges modified in this manner can exhibit biocidal activity, but the contact times necessary for action are generally long, and some pathogens are not inactivated even at contact times of several hours. Anti-fouling polyurethanes have been prepared by chemical incorporation of tributyl tin as described in U.S. Pat. No. 5,104,504, and quaternary ammonium salts (see for example, J. Appl. Polym. Sci. 50:663 (1993); J. Appl. Polym. Sci. 50:671 (1993)). Coatings containing organotin compounds are being discredited as threats to the environment, and poly-quat's are weak biocides which are nonrenewable.

Poly-1,3-dichloro-5-methyl-1-(4'-vinylphenyl)hydantoin is a non-toxic, non-irritating, polymer that has been described in U.S. Pat. No. 5,490,983, which has been shown to exhibit biocidal properties (see Ind. Eng. Chem. Res. 33:168 (1994); Water Res. Bull. 32:793 (1996); Ind. Eng. Chem. Res. 34:4106 (1995); J. Virolog. Meth. 66:263 (1997); Trends in Polym. Sci. 4:364 (1996); Water Cond. & Pur. 39:96 (1997)). This polymer is effective against a broad spectrum of pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans. Klebsiella terrigena, polyvirus, and rotaviruses, among others, causing large log reductions in contact times of the order of a few seconds in water disinfection applications.

Because of the aforementioned environmental hazards of tin-based biocidal materials and the limited application of the previously known N-Halamine biocidal materials, there is a continued need for more effective biocidal coatings and materials.

SUMMARY

The present invention is directed to using N-halamines in biocidal coatings and/or in the fabrication of materials. In accordance with the embodiments of the invention the N-halamines are N-halamine hydantoxyl epoxide compounds that are synthesized and used for the construction of biocidal coatings and materials. The N-halamine hydantoyl epoxide compounds are preferably attached to a surface or material through a ring opening mechanism of the epoxide portion of the N-halamine hydantoyl epoxide.

The biocidal coatings and materials made in accordance with the embodiments of the invention inactivate pathogenic microorganisms such as bacteria, fungi, and yeasts, as well as virus particles, which can cause infectious diseases, and those microorganisms that cause noxious odors and unpleasant coloring such as mildew. The coatings can be made that are compatible with a variety of substrates including, but not limited to, cellulose, chitin, chitosan, synthetic fibers, cement grout, latex caulk, acrylic films, polyurethanes, plastics, and paints.

UK Patent No. 1,368,080 describes producing epoxy resins containing unhalogenated poly-glycidylhydantoin compounds for the purpose of producing molded shapes with good electrical and mechanical properties but fails to teach halogenation of such derivatives before or after bonding to a surface to render the surface biocidal. The compound 3-glycidyl-1,3,8-triazene-7,7,9,9-tetramethylspiro[4.5]decan-2,4-dione (such as shown in FIG. 1B and unhalogenated) has been employed as a light stabilizer for polymers (Japanese Patent No. 1977-04808), but a method of making materials with biocidal activity is neither taught nor suggested.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-B show structures of N-Halamine hydantoyl epoxide compounds.

FIG. 2 is a block diagram outlining the steps of the method for making a biocidal material, in accordance with the embodiment of the invention.

FIGS. 3A-B are schematic representations showing an N-Halamine hydantoyl epoxide compound bonding to a surface of a material through a ring opening mechanism of the epoxide portion of the N-Halamine hydantoyl epoxide compound.

DETAILED DESCRIPTION OF THE INVENTION

N-halamines are in accordance with the preferred embodiment of the invention N-Halamine hydantoyl epoxide compounds 100 and 150, such as shown in FIGS. 1A-B. In accordance with this preferred embodiment, one or more N-halamine hydantoyl epoxide compounds 100 and 150 are synthesized and used for fabricating biocidal coatings and/or materials. Preferably, the hydantoyl portion of the N-Halamine hydantoyl epoxide is halogenated, either before or after adding them to materials and/or attaching them.
to a surface of a material in order to render them biocidal. Herein “unhalogenated compounds” refers to the compounds 100 and 150 wherein X, X₁, and X₂ are H and “halogenated compounds” refers to the structures 100 and 150, wherein X, X₁, and X₂ are Cl or Br. Herein, “the functionalized surface or material” refers to a surface or material that bound N-halamine hydantoinyl moieties. Preferably, the N-halamine hydantoinyl moieties bind to the surface or material through a condensation reaction of the epoxy portion of the N-halamine hydantoinyl epoxide compounds, such as described below with reference to FIGS. 3A-B.

Referring to FIG. 1A, where the N-halamine hydantoinyl epoxide has a structure represented by 100, R₁ and R₂ are C₁-C₄ alkyl, cycloalkyl, and phenyl groups or alternatively are a spiropentamethylene or other cyclic structure 103. Preferably, X is one of H, Cl or Br group. When R₁ and R₂ are both methyl groups, then X is preferably one of a Cl and a Br group.

Referring to FIG. 1B, where the N-halamine hydantoinyl epoxide has a structure represented by 150, X₁ and X₂ are a H, Cl, and Br groups or a mixture thereof. However, preferably only one of X₁ and X₂ is H. As described above, preferably the halogenated versions of the N-halamine hydantoinyl epoxide compounds 100 and 150 are used to make biocidal coatings and/or materials.

FIG. 2 is a block diagram 200 outlining the steps of a method of making a composition with biocidal activity, in accordance with the embodiments of the invention. In the step 203, one or more materials are treated with one or more of the N-halamine hydantoinyl epoxide compounds 100 and 150 (FIGS. 1A-B). After the one or more materials are treated with one or more of the N-halamine hydantoinyl epoxide compounds 100 and 150 in the step 203, in the step 205, the mixture of the one or more N-halamine hydantoinyl epoxide compounds and/or the one or more materials is cured by, for example, heating the mixture or exposing the mixture to microwave radiation to generate a functionalized material or materials, such as described below with reference to FIGS. 3A-B. After the mixture of the one or more N-halamine hydantoinyl epoxide compounds and the one or more materials is cured to generate the functionalized material or materials in the step 205, in the step 201 the functionalized material or materials is treated to a oxidizing halogen agent in order to halogenate the nitrogen atoms and render the composition biocidal.

Still referring to FIG. 2, in accordance with alternative embodiments of the invention, the one or more N-halamine hydantoinyl epoxide compounds are halogenated in the step 201, prior to the step 203 of treating the one or more materials with the one or more of the N-halamine hydantoinyl epoxide compounds. In still further embodiments of the invention, the hydantoinyl portions of the one or more N-halamine hydantoinyl epoxide compounds are halogenated after the step 205 of curing the mixture, such that the functionalized material or materials that are formed in the step 205 are biocidal. In any case, as described above, it is preferable at some point that the hydantoinyl portions of the one or more N-halamine hydantoinyl epoxide compounds are halogenated to optimize the biocidal activity of the composition formed. It will be clear to one skilled in the art that the step 201 of halogenating can be performed multiple times during the fabrication of the biocidal composition.

The material or materials used to make a biocidal composition in accordance with the method of the invention can include, but are not limited to, cellulose, chitin, chitosan, synthetic fibers, cement grout, latex caulk, acrylic film, polyurethane, plastics and paint. The biocidal composition formed can be used directly, that is applied directly to a surface and/or used as an additive to other materials.

Referring to FIG. 3A, a material 303 is functionalized with N-halamine hydantoinyl moieties 301 by adding one or more N-halamine hydantoinyl epoxide compounds 300 to the material 303 and curing the mixture of the material 303 and the one or more N-halamine hydantoinyl epoxide compounds 301, such that the epoxide portion 305 opens and binds to the material 303 or surface of the material 303 and forms the functionalized material 303 with the N-halamine hydantoinyl moieties 301 attached thereto. The N-halamine hydantoinyl moieties 301 preferably include hydrogen groups R₁ and R₂ and oxidative halogen groups X₁ and X₂ or a combination thereof attached to the hydantoinyl portions 302 of the N-halamine hydantoinyl moieties 301.

Now referring to FIG. 3B, as described above, where the N-Halamine hydantoinyl moieties 301 can have hydrogen groups R₁ and R₂ attached thereto, the functionalized material 303 can be treated with a halogenating agent to replace a portion of the hydrogen groups R₁ and R₂ with oxidative halogen groups X₁ and X₂ and form a biocidal composition.

The unhalogenated hydantoinyl epoxide compounds can be synthesized by reacting the sodium or potassium salts of the appropriate hydantoin compounds with epichlorohydrin in water at ambient temperature for 6-10 hours. Some of the hydantoins such as 5,5-dimethylhydantoin and 1,3,8-triazaspiro[7,7,9,9-tetramethylspiro[4.5]decane-2,4-dione, and the epichlorohydrin, can be obtained commercially from vendors such as the Aldrich Chemical Company in Milwaukee, Wis. The other hydantoin compounds can be prepared by reacting the appropriate dialkyl ketone with ammonium carbonate and potassium cyanide in a molar ratio of about 0.67:2:0.1, respectively, in a water/ethanol (1:1 by volume) solvent mixture at 50-60° C. for 4-10 hours. The alkali metal salts of the hydantoins can be prepared by mixing the dialkylhydantoin with equimolar quantities of either NaOH or KOH in water and stirring at ambient temperature for about 5-10 minutes. The hydantoinyl epoxide compounds can then be reacted with free chlorine or free bromine to produce the corresponding N-halaminohydantoinyl epoxide compounds which are biocidal, or they can be tethered to a surface or material before reaction with chlorine or bromine to produce a biocidal surface or material in situ. The chlorinated compounds or surfaces/materials can be prepared by reacting the corresponding unhalogenated precursor compounds dissolved in water at ambient temperature with free chlorine from such sources as gaseous chlorine, sodium hypochlorite bleach, calcium hypochlorite, chloroisocyanurates, and dichlorohydantoins. In the case of the dichlorohydantoins, the chloride moiety on the imide nitrogen should transfer to the more stable amide nitrogen of the hydantoinyl epoxide. Likewise, the brominated compounds or surfaces/materials can be prepared by exposing them in aqueous solution at ambient temperature to free bromine from such sources as molecular bromine liquid, sodium bromide in the presence of an oxidizer such as potassium peroxymonosulfate, and brominated hydantoins. Halogenation can also be effected in organic solvents employing free radical halogenating agents such as t-butyl hypochlorite.

The unhalogenated or halogenated hydantoinyl epoxides can be bound to a surface or material by exposing the surface or material to a solution of the unhalogenated hydantoinyl epoxide and then curing the surface or material at temperatures in the range of 0 to 300° C, more preferably 20 to 150° C., depending upon the nature of the surface or material, or by exposing the surface or material to a solution of the halogenated hydantoinyl epoxide at ambient temperature, and then
exposing the surface or material to temperatures in the range of 0 to 60°C, more preferably 20 to 40°C, depending upon the nature of the surface or material, for curing purposes. The solvent for the coating process can be water or mixtures of water and organic solvents such as acetone, depending upon the solubility of the given hydantoinyl epoxide in water alone. Organic materials such as ethanol are less useful for the halogenated hydantoinyl epoxides because they partially protonate the nitrogen of the heterocyclic ring liberating halogen.

Dilute base can also be added to the aqueous solutions to enhance the opening of the epoxide ring moiety during bonding to the surfaces or materials. However, the epoxides should not be left in contact with a dilute base for extended periods in a bath before exposure to a surface or material because partial decomposition of the hydantoin ring may result. Also, the epoxides should not be left in contact with dilute acid for long periods if a bath is to be used for future surface or material because the diol which will slowly form will be less reactive with the surface or material than the epoxide.

Other additives can be introduced to the solutions of the hydantoinyl epoxides to enhance bonding to the surface or materials, e.g. potassium thiocyanate for binding to cellulose. The solutions containing the copolymers can be exposed to the surfaces or materials by soaking, spraying, spreading, and the like. Following drying of the solution on the surface, curing at some temperature (the value of which depends upon the surface or material composition, e.g. 25°C for paper, 95°C for cotton fibers, etc.) for 15 to 30 minutes, should then be performed.

The surface or material can be rendered biocidal if the unhalogenated hydantoinyl epoxide were employed by exposure to a source of oxidative halogen, such as an aqueous solution of sodium hypochlorite bleach, calcium hypochlorite, chloroisocyanurates, and dichlorohydrants, or an organic solution of t-butyl hypochlorite, for chlorination, or an aqueous solution of molecular bromine liquid, sodium bromide in the presence of an oxidizer such as potassium peroxymonosulfate, and brominated hydantoins for bromination. For example, an aqueous solution of 5 to 10% Clorex® can be used for efficient chlorination which can be accomplished at ambient temperature by spraying or soaking the surface or material with Clorex®. After halogenation, the surface or material should be rinsed with water and then allowed to dry in air at temperatures up to 40°C. (ambient temperature is preferable if time permits). The surface or material will then exhibit strong biocidal properties for various time periods dependent upon the composition of the surface or material, the use pattern (contact with organisms and halogen demand), the storage temperature, etc. When the bound halogen content becomes too low for sufficient biocidal activity, the surface or material can be recharged with halogen in the same manner as for the original charging noted above.

An alternative means of attaching similar biocidal moieties to surfaces utilizing epoxide chemistry comprises first bondng an epoxide containing a substituted electrophilic alkyI functional group to the surface, and then bonding the heterocyclic N-Halamine or precursor N-halamine group to the already-tethered epoxide through nucleophilic substitution reactions. For example, epichlorohydrin could be used to bond the epoxide to the surface as disclosed in a permanent press application for cellulose in U.S. Pat. No. 2,985,501, and then the chloropropyl functionality thus tethered through the epoxide is reacted with the alkali metal salt of a 5,5-diallylhydantoin to produce an anchored hydantoin which is halogenated in situ as described above to render the surface biocidal.

The mechanism of action of the biocidal surfaces and materials produced from the hydantoinyl epoxides described herein is believed to be a result of surface contact of the organism with chlorine or bromine moieties covalently bound to the heterocyclic functional groups on the bound hydantoinyl epoxide. The chlorine or bromine atoms are transferred to the cells of the microorganisms where they cause inactivation through a mechanism not completely understood, but probably involving oxidation of essential groups contained within the enzymes comprising the organisms.

A marked advantage of the biocidal surfaces and materials of this invention over prior technology is that they are much more effective biocidally against pathogenic microorganisms encountered in medical applications such as Staphylococcus aureus and Pseudomonas aeruginosa than are commercial biocides such as the quaternary ammonium salts, so they can serve a dual function: inactivation of disease-causing pathogens and of odor-causing microorganisms. For this reason the invention will have wide-spread use in medical settings such as hospitals, nursing facilities, and research laboratories. It should also be useful for biocidal applications in a variety of other industrial settings as well as in the home. A few examples of surfaces and materials which can be made biocidal with this invention include envelopes, surgical gowns and gowns, sheets, bandages, sponges, synthetic fibers, wood, chitin, chitosan, cement grout, latex caulk, acrylic films, paints, and polyurethanes.

The present invention is more particularly described in the following examples which are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art.

EXAMPLES

Example 1

Preparation of Hydantoinyl Epoxides

5,5-Diallylhydantoin derivatives are prepared by reaction of the appropriate dialkyketone with ammonium carbonate and either sodium or potassium cyanide in a molar ratio of about 0.67:2:0:1:0, respectively, in a water/ethanol (1:1 by volume) solvent mixture at 50-60°C for 4-10 hours. For example, 5-methyl-5-propylhydantoin was prepared by first mixing 86.4 grams (0.90 mole) of ammonium carbonate with 29.3 grams (0.45 mole) of potassium cyanide in 125 ml of water in a 500 ml round-bottom flask. To this solution were added 25.8 grams (0.30 mole) of 2-pentanone in 125 ml of ethanol. The reaction mixture was heated to 50-65°C while stirring for 6 hours. After cooling to ambient temperature, the reaction mixture was slowly poured into 200 ml of a 10% HCl solution. The resulting crude white solid product was collected by filtration and purified by recrystallization from a water/ethanol mix to produce 41.2 grams of white crystals (88% yield) which exhibited the following properties: mp 124-125°C; 1H NMR (CDCl3) δ 0.93 (t, 3H), 1.23-1.80 (m, 4H), 1.45 (s, 3H), 6.30 (s, 1H); 13C NMR (CDCl3) δ 13.9, 16.9, 23.8, 39.9, 64.8, 156.2, 177.3; IR (KBr) 3233, 1767, 1712, 1433, 775, 449 cm⁻¹; m/z 156. Other 5,5-diallylhydantoins were prepared by an analogous procedure, and their structures were verified by NMR, IR, and mass spectrometry. In this manner the ketones acetone, 2-pentanone, 2-octanone, acetonophenone, benzophenone, cyclohexanone, and 2,2,6,6-tetramethyl-4-piperidone were employed to synthesize 5,5-dimethylhydantoin, 5-methyl-5-propylhydantoin, 5-hexyl-5-methylhydantoin, 5-methyl-5-phenylhydantoin, 5,5-
TABLE 1

Initial Chlorine Loadings on Dialkylhydantoinyl Epoxides Coated on Cotton from Baths Containing Equimolar Concentrations of the Epoxide Derivatives

<table>
<thead>
<tr>
<th>Dialkylhydantoinyl Epoxide Derivative</th>
<th>Initial Weight Percent of Cl+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethyl</td>
<td>0.15</td>
</tr>
<tr>
<td>Methyl Propyl</td>
<td>0.22</td>
</tr>
<tr>
<td>Hexyl Methyl</td>
<td>0.06</td>
</tr>
<tr>
<td>Methyl Phenyl</td>
<td>0.29</td>
</tr>
<tr>
<td>Trimethylcyclohexyl</td>
<td>0.16</td>
</tr>
</tbody>
</table>

These results are not easily rationalized. Several factors may be operable here including electronic and steric effects. The alkyl groups are all electron-donating substituents which should stabilize the N—Cl bonds; this effect should increase roughly with the number of carbon atoms in the alkyl group. Increased size of the alkyl groups should hinder the approach of water molecules in a hydrolysis process to remove the Cl+. To cause hydrolysis of the epoxide from the cellulose. Both arguments can rationalize why the dimethyl derivative either loads the least amount of chlorine and/or bonds the least firmly to the cotton. In any case, it is apparent that the capacity of the dialkylhydantoinyl epoxide derivatives bound to cotton to bind chlorine varies with the nature of the alkyl group, a fact which might be useful in tuning a particular structural group for a particular application. Two of the identical derivatives coated on cotton swatches were analyzed for chlorine content after 30 days of storage at ambient temperature from which room lighting was excluded. The dimethyl derivative then contained 0.10% by weight chlorine, and the methyl propyl derivative contained 0.16% by weight chlorine. However, after recharge using the procedure described above, the two derivatives contained 0.14 and 0.20% by weight chlorine, respectively, indicative of minimal loss of the hydantoin-epoxy coating.

Example 3

Stability toward Washing of Cotton Coated with 3-glycidyl-5,5-dimethylhydantoin

Swatches of Style 400 Bleached 100% Cotton print Cloth (Testfabrics, Inc., West Pittston, Pa.) were soaked in a 10% aqueous solution of 3-glycidyl-5,5-dimethylhydantoin containing 1% NaOH. The swatches were squeezed and cured at 65-70°C for 80-90 minutes and then at 155-160°C for about 5 minutes. After rinsing with water, the swatches were chlorinated in a 5% Cloroxy solution buffered to pH 7 for 50 minutes at ambient temperature. They were then rinsed with water and dried at 50°C to remove occluded free chlorine. Weight percent Cl+ was determined by iodometric/thiosulfate titration before and after standard washing cycles according to AATCC Test Method 61-1986. The results are shown in Table 2. These results clearly indicate that although the oxidative chlorine dissociates from the hydantoin ring during washing, the hydantoin moiety remains attached to the cotton through its condensation with the epoxide moiety, such that it can be recharged repeatedly with free chlorine (bleach). Furthermore, if bleach were added to each wash cycle, the coating could be maintained with oxidative chlorine, and hence remain biocidal, probably throughout the lifetime of the cotton fabric.

TABLE 2

Stability of Chlorinatable 3-glycidyl-5,5-dimethylhydantoin-Coated Cotton Swatches to Washing Cycles

<table>
<thead>
<tr>
<th>Washing Cycles</th>
<th>Cl+ % Remaining</th>
<th>Cl+ % Recharge</th>
<th>Chlorination after Washing Control Swatches (% Cl+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.32</td>
<td>0.23</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>0.03</td>
<td>0.21</td>
<td>0.23</td>
</tr>
<tr>
<td>10</td>
<td>0.01</td>
<td>0.21</td>
<td>0.24</td>
</tr>
<tr>
<td>25</td>
<td>0.00</td>
<td>0.22</td>
<td>0.23</td>
</tr>
</tbody>
</table>

*The weight % Cl+ for chlorinated swatches before the indicated washing cycles.
*Rechlorination after washing swatches.
*Chlorination of washed unchlorinated swatches.
Similar washing testing was performed for the 5-methyl-5-phenyl, 5-hexyl-5-methyl, and 5-spiropentamethylene hydantoInyl epoxide derivatives coated on cotton swatches. Although higher initial chlorine loadings were obtained for all of these as compared to the 5,5-dimethyl derivative discussed above, there were greater losses of the hydantoInyl epoxy coatings during washings as evidenced by lesser recharge abilities following 50 washing cycles.

Example 4

Stability of Chlorine on Polyester Coated with 3-Glycidyl-5,5-dimethylhydantoIn

In the case of polyester fabric (PET) (100% Dacron Type 54, Test Fabrics, Inc., Middlesex, N.J.), swatches were first treated with dilute NaOH (concentrations ranging from 0.5 to 20.0 N) at temperatures ranging from ambient to 100°C for time periods of 5 to 60 min. After rinsing thoroughly with water, the swatches were soaked in an aqueous bath containing 9% by weight of 3-glycidyl-5,5-dimethylhydantoIn at ambient temperature for 30 minutes. The swatches were then squeezed on a padding machine and dried at 60°C for 60 minutes and cured at temperatures ranging from 75 to 175°C for times ranging from 5 to 120 minutes. Chlorination was performed by soaking the treated fabric swatches in 10% Chlorox solutions for 30 minutes. Then the swatches were thoroughly rinsed with water and dried in air at ambient temperature. The weight percent Cl\(^+\) on the swatches was then determined by iodometric/thiosulfate titration at various times of exposure to ambient air in storage, and before and after washing tests conducted as described in Example 3. The 3-glycidyl-5,5-dimethylhydantoIn adds to polyester fibers through disruption of a portion of the ester linkages, a process which is accelerated in the presence of dilute NaOH. The results of washing tests on the derivatized PET fibers are shown in Table 3. It is evident that pretreatment of the PET with dilute NaOH does enhance the loading of the epoxyhydantoIn derivative on the material as evidenced by the increased loading of Cl\(^+\). Furthermore, although the washing process causes the dissociation of bound chlorine from the PET, it can almost entirely be replenished by exposure to dilute bleach. In a practical use pattern, one should add dilute bleach into each wash cycle which should serve to maintain biocidal activity for the lifetime of the PET material. Finally, identical samples to those listed in Table 3 which had been pretreated with dilute NaOH were exposed to ambient air for 90 days. The losses of Cl\(^+\) (in weight %) for the two types of samples were 0.19 to 0.11, and 0.21 to 0.12 over the 90 day period.

<table>
<thead>
<tr>
<th>Washing Cycles</th>
<th>Pretreat in Water%</th>
<th>After Recharge</th>
<th>Pretreat in NaOH%</th>
<th>After Recharge</th>
<th>Pretreat in NaOH%</th>
<th>After Recharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.12</td>
<td>0.01</td>
<td>0.19</td>
<td>0.01</td>
<td>0.21</td>
<td>0.01</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>0.09</td>
<td>0.16</td>
<td>0.01</td>
<td>0.17</td>
<td>0.01</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>0.09</td>
<td>0.01</td>
<td>0.15</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>25</td>
<td>0.00</td>
<td>0.09</td>
<td>0.00</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>50</td>
<td>0.00</td>
<td>0.07</td>
<td>0.00</td>
<td>0.14</td>
<td>0.00</td>
<td>0.01</td>
</tr>
</tbody>
</table>

*The PET was pretreated with a 10% solution of 3-glycidyl-5,5-dimethylhydantoIn in water for 30 minutes.
*The PET was pretreated with a 10% solution of 3-glycidyl-5,5-dimethylhydantoIn in a 1% solution of NaOH for 30 minutes.
*The PET was first soaked in a 0.01 N solution of NaOH at 60°C for 60 min and then pretreated with a 10% solution of 3-glycidyl-5,5-dimethylhydantoIn in a 1% solution of NaOH for 30 minutes.
Biocidal efficacy tests were performed on the cotton swatches. Each swatch was inoculated with a 25 microliter drop of *Staphylococcus aureus* (ATCC 6538) containing 9.47x10^6 colony forming units (CFU). A second identical swatch was placed on top of the inoculated swatch as in a sandwich and was held in place by a steel weight. Following a specific contact time (5, 10, and 30 minutes) the bacterial cells were washed off the cotton with distilled, deionized water while vortexing, quenched with dilute sodium thiosulfate (0.02 N), and plated onto trypticase agar. Colony counts were performed after incubation at 37°C for 24 and 48 hours. The results are shown in Table 4.

Table 4

<table>
<thead>
<tr>
<th>Biocidal Efficacy against S. aureus for Dialkylhydantoin Epoxide Coated on Cotton</th>
<th>Weight Percent Loading of Cl⁻</th>
<th>Contact Time (minutes)</th>
<th>Log Reduction of Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton Control</td>
<td>0</td>
<td>5</td>
<td>0.60</td>
</tr>
<tr>
<td>Dimethyl Control</td>
<td>0</td>
<td>10</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>30</td>
<td>0.74</td>
</tr>
<tr>
<td>Dimethyl</td>
<td>0</td>
<td>5</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Dimethyl</td>
<td>0.44</td>
<td>5</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.98</td>
<td></td>
</tr>
<tr>
<td>Dimethyl Control</td>
<td>0</td>
<td>5</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>Dimethyl</td>
<td>0.15</td>
<td>5</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>4.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>4.85</td>
<td></td>
</tr>
<tr>
<td>Methyl Propyl Cl⁻</td>
<td>0</td>
<td>5</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>Methyl Propyl</td>
<td>0.22</td>
<td>5</td>
<td>3.62</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.98</td>
<td></td>
</tr>
<tr>
<td>Spirocyclexyl</td>
<td>0</td>
<td>5</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Spirocyclexyl</td>
<td>0.19</td>
<td>5</td>
<td>3.58</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>6.98</td>
<td></td>
</tr>
</tbody>
</table>

As can be seen from the results in Table 4, all of the chlorinated coatings provided complete inactivation of *S. aureus* within a contact time of 30 minutes except the unpurified dimethyl derivative which contained the lowest chlorine loading (0.15%). The purified dimethyl derivative did provide complete inactivation within a 30 minute contact time; it also provided the highest chlorine loading (0.44%). The chromatographic purification process is a bit tedious and would add additional expense to the coating process, so it may be desirable to use the crude, unpurified derivatives, perhaps at higher concentrations, in the coating bath. It is evident that the control samples only provided about a loss of one Log of the bacteria; thus, most of the losses noted for the chlorinated samples can be attributed to true inactivation of the bacteria. Similar results were obtained for *E. coli* with a complete inactivation of this bacterium (6.65 logs) within 10 minutes contact for all derivatives tested. It can be concluded that the chlorinated hydantoinyl epoxide derivatives are biocidal and could be used to create biocidal cotton.

Example 7

1-Bromo-3-glycidyl-5,5-dimethylhydantoin Coated on Cotton

The hydantoinyl epoxide, 3-glycidyl-5,5-dimethylhydantoin, was coated onto cotton swatches. The coating bath contained 5% by weight mixture of crude hydantoinyl epoxide in acetone and water (1:1 weight ratio). The cotton swatches (Style 400 Bleached 100% Cotton print Cloth (Textilfabrics, Inc., West Pittsburgh, Pa.)) were soaked in the solution for 15 minutes at ambient temperature, cured at 95°C for 1 hour and then at 145°C for 20 minutes, rinsed thoroughly with water, brominated with a 0.6% by weight unbuffered aqueous solution of liquid bromine for 1 hour at ambient temperature, washed thoroughly with water, and dried at 45°C for about 30 minutes. An iodometric/thiosulfate titration determined that the swatches contained 0.25% by weight Br⁻. Identical samples were stored for 30 days at ambient temperature in the absence of room lighting. At that point the samples contained no titratable bromine; however, after a recharge with bromine as described above, they again contained 0.25% by weight bromine. Thus, although the N—Br bond on the hydantoin ring dissociates much more rapidly than a corresponding N—Cl bond, the coating remains intact and could be continually recharged with bromine. Biocidal tests on cotton swatches, as described in the previous example, revealed that the freshly brominated swatches provided a 6.6 log reduction (complete inactivation) of *S. aureus* and *E. coli* within 30 minutes and 10 minutes, respectively. N-bromamines are always more biocidal than their N-chloramine counterparts, but the increased stability of the N-chloramines as compared to the N-bromamine counterparts can render the N-chloramine derivatives more effective in a particular use pattern.

Although the present invention has been described with reference to specific details of certain embodiments thereof, it is not intended that such details should be regarded as limitations upon the scope of the invention except as and to the extent that they are included in the accompanying claims.

What is claimed is:

1. A method for rendering a material biocidal, the method comprising:
 a) adding an N-halamine or a precursor of N-halamine comprising a hydantoinyl portion and an epoxide portion to the material, wherein the N-halamine or the precursor of N-halamine is a hydantoinyl epoxide having a structure:
and wherein R₁ and R₂ are one or more of C₁-C₈ alkyl groups, methyl groups, cycloalkyl groups and phenyl groups and X is one of H, Cl, and Br; and
b) curing the N-halamine or the precursor of N-halamine with the material, such that the epoxide portion opens and attaches the hydantoinyl portion to a portion of the material.

2. The method of claim 1, further comprising adding a halogen solution.

3. The method of claim 2, wherein the halogen solution is added prior to the step of curing the N-halamine and the material.

4. The method of claim 2, wherein the halogen solution is added after the step of curing the N-halamine and the material.

5. The method of claim 1, wherein the material is selected from the group consisting of cellulose, chitin, chitosan, synthetic fibers, cement grout, latex caulk, acrylic film, polyurethane, plastics and paint.

6. A composition comprising hydantoinyl epoxide structures that are bound to a material through oxygen atoms of epoxide moieties of the hydantoinyl structures, wherein the hydantoinyl epoxide has the structure:

![Chemical Structure](image)

and wherein R₁ and R₂ are one or more of C₁-C₈ alkyl groups, methyl groups, cycloalkyl groups and phenyl groups and X is one of H, Cl, and Br.

7. The composition claim 6, wherein the hydantoinyl structures are halogenated.

8. The composition of claim 7, wherein the hydantoinyl structures are halogenated through nitrogen atoms of the hydantoinyl structures.

9. The composition of claim 6, wherein material includes one or more of cellulose, chitin, chitosan, synthetic fibers, cement grout, latex caulk, acrylic film, polyurethane, plastics and paint.

10. A composition comprising hydantoinyl epoxide structures that are bound to a material through oxygen atoms of epoxide moieties of the hydantoinyl structures, wherein the hydantoinyl epoxide has the structure:

![Chemical Structure](image)

and wherein X₁ and X₂ are a H, Cl, and Br groups or a mixture thereof.

11. The composition of claim 10, wherein the hydantoinyl structures are halogenated.

12. The composition of claim 11, wherein the hydantoinyl structures are halogenated through nitrogen atoms of the hydantoinyl structures.

13. The composition of claim 10, wherein the material includes one or more of cellulose, chitin, chitosan, synthetic fibers, cement grout, latex caulk, acrylic film, polyurethane, plastics and paint.

* * * * *